UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XXV, 8

SECTIO A

1971

Instytut Matematyki UMCS

JAN STANKIEWICZ

Some Extremal Problems for the Class S_a

Pewne problemy ekstremalne dla klasy S_a Некоторые экстремальные проблемы пля класса S_a

1. On a connection between the class Sa and the class P of functions of positive real part

Let S_a , S_{γ}^* , $0 \leqslant a$, $\gamma \leqslant 1$ denote classes of functions of the form

$$f(z) = z + a_2 z^2 + \dots$$

that are holomorphic in the disc $K_1(K_r = \{z : |z| < r\})$ and satisfy the conditions

(2)
$$\left| \arg \frac{zf'(z)}{f(z)} \right| < a\pi/2 \quad \text{for } z \in K_1,$$

(2')
$$\operatorname{re} \frac{zf'(z)}{f(z)} > \gamma \quad \text{ for } z \in K_1,$$

respectively.

Let P denote the class of functions

(3)
$$p(z) = 1 + p_1 z + p_2 z^2 + \dots$$

holomorphic in K_1 and having the positive real part there.

In this paper using a connection between S_a and P we obtain estimates of some functionals in the class S_a . We obtain also some relations between S_a and S_a^* .

It follows from the definition of the class S_a that if $f \in S$ than $p(z) = [zf'(z)/f(z)]^{1/a} \in P$. Conversly if $p \in P$ and a function $f(z) = z + a_2 z^2 + \ldots$ is defined by the formula $zf'(z)/f(z) = p^a(z)$ then $f \in S_a$.

From this we obtain a structural formula of the class S_a .

Theorem 1. A function f analytic in K_1 belongs to the class Sa if and only if there exists a function $p \in P$ such that

(4)
$$f(z) = z \exp \int_{0}^{z} \frac{p^{a}(\zeta) - 1}{\zeta} d\zeta$$

holds,

Proof. A function $f \in S$ if and only there exists a function $p \in P$ such (5) $zf'(z)/f(z) = p^{\alpha}(z)$ and (4) follows by integrating.

2. Some estimates in the class S_a

From (5) we obtain the following

Theorem 2. If $f \in S_a$, then we have for |z| = r < 1

(6)
$$\left(\frac{1-r}{1+r}\right)^{a} \leqslant \operatorname{re} \frac{zf'(z)}{f(z)} \leqslant \left(\frac{1+r}{1-r}\right)^{a},$$

(7)
$$\left(\frac{1-r}{1+r}\right)^a \leqslant \left|\frac{zf'(z)}{f(z)}\right| \leqslant \left(\frac{1+r}{1-r}\right)^a,$$

(8)
$$\left| \arg \frac{zf'(z)}{f(z)} \right| \leqslant 2a \operatorname{arctg} r,$$

and these estimates are sharp. The extremal functions have the form

(9)
$$F(z) = z \exp \int_{0}^{z} \left[\left(\frac{1 + \varepsilon \zeta}{1 - \varepsilon \zeta} \right)^{a} - 1 \right] \frac{d\zeta}{\zeta}, \quad |\varepsilon| = 1,$$

and map the disc K_1 onto the domains bounded by two logarythmic spirals joining the point $\bar{\epsilon}r_a$ to the point $-\bar{\epsilon}r_a \exp\left\{\pi\operatorname{tg}\frac{a\pi}{2}\right\}$, where r_a is the radius of the largest disc centered at the origin and covered by values of functions of the class $S_a[3]$.

Proof. In order to obtain (6) and (7) it is sufficient to consider the formula (5) and well-known estimates of re p(z) and |p(z)| in the class P whereas (8) follows from the fact $\arg p^a(z) = \alpha \arg p(z)$. The extremal function F(z) corresponds to the function $p(z) = (1 + \varepsilon z)/(1 - \varepsilon z)$, $|\varepsilon| = 1$, by the formula (5).

Using the structural formula (4) one can easily establish the following

Theorem 3. If $f \in S_a$ and |z| = r < 1, then

(10)
$$r\exp\sum_{n=1}^{\infty}\sum_{k=0}^{n}(-1)^{k}\binom{a}{k}\binom{-a}{n-k}\frac{r^{n}}{n}\leqslant|f(z)|$$

$$\leqslant r \exp \sum_{n=1}^{\infty} \sum_{k=0}^{n} (-1)^k {-a \choose k} {a \choose n-k} \frac{r^n}{n},$$

(11)
$$\left(\frac{1-r}{1+r}\right)^a \exp \sum_{n=1}^\infty \sum_{k=0}^n (-1)^k \binom{a}{k} \binom{-a}{n-k} \frac{r^n}{n} \leqslant |f'(z)|$$

$$\leqslant \left(\frac{1-r}{1+r}\right)^a \exp \sum_{n=1}^\infty \sum_{k=0}^n (-1)^k \binom{-a}{k} \binom{a}{n-k} \frac{r^n}{n}.$$

and both results are sharp. The extremal functions have the form (9).

3. The radius of strong starlikness of order α and some other radii

We shall start with some notations that we will need further. Let us denote by S, S^* , S^* families of functions as follows:

- (i) $f \in S \Leftrightarrow f(z) = z + a_2 z^2 + \dots$ regular and univalent in K_1 ,
- (ii) $f \in S^* \Leftrightarrow f \in S$ and $\operatorname{re} \{ z f'(z) / f(z) \} > 0, \ z \in K_1,$
- (iii) $f \in S_{\beta}^* \Leftrightarrow f \in S$ and $\operatorname{re} \{zf'(z)/f(z)\} > \beta$, $0 \leqslant \beta < 1$, $z \in K_1$. Let us observe that $S^* = S_0^* = S_1$.

A function $f(z) = z + a_2 z^2 + \ldots$ shall be called starlike (starlike of order β ; strongly starlike of order a) in the disc K_a if and only if $\operatorname{re}\{zf'(z)/f(z)\} > 0$ ($\operatorname{re}\{zf'(z)/f(z)\} > \beta$, $|\operatorname{arg}\{zf'(z)/f(z)\}| < a\pi/2$) holds in K_a .

Connections between univalence, the strong starlikness of order a and starlikeness of order β are given by the following theorems.

Theorem 4. Each function $f \in S$ is a strongly starlike function of order a in the disc $K_{R(a)}$, where

(12)
$$R(a) = th \frac{a\pi}{4}.$$

Proof. If $f \in S$ then [c f. 2]

$$\left|\arg\left\{zf'(z)/f(z)\right\}\right|\leqslant \log\frac{1+|z|}{1-|z|}.$$

holds for |z| < 1. It follows that a function f is strongly starlikness of order a in a disc K_R if

$$\log rac{1+|z|}{1-|z|} < rac{a au}{2} \quad ext{ for } |z| < R.$$

Hence the number R(a) is the smallest positive root of the equation

$$\log\frac{1+R}{1-R}=\frac{\alpha\pi}{2}.$$

The equation has exactly one root in the interval (0, 1) given by the formula (12). The theorem has been established.

Corollary 1. Taking a = 1 we get the radius of starlikeness of the class S,

(13)
$$R(1) = r^* = th \frac{\pi}{4}.$$

Theorem 5. Each function f of the class S^*_{β} is strongly starlike of order a in the disc $|z| < R^*(\beta, a)$ where

(14)
$$R^*(\beta, \alpha) = \begin{cases} \frac{1-\beta-\sqrt{(1-\beta)^2-(1-2\beta)\sin^2(\alpha\pi/2)}}{(1-2\beta)\sin(\alpha\pi/2)} & \text{for } \beta \neq 1/2\\ \sin(\alpha\pi/2), & \text{for } \beta = 1/2. \end{cases}$$

The number $R^*(\beta, \alpha)$ is the best possible one. The extremal functions have the form

(15)
$$F_{\beta}(z) = z(1-\varepsilon z)^{-2(1-\beta)}, \quad |\varepsilon| = 1.$$

Proof. If $f \in S_{\beta}^{\bullet}$ then there exists a function $p \in P$ such that

$$zf^{\prime}(z)/f(z) = (1-eta)p(z) + eta.$$

Hence if $f \in S_{\beta}^*$ then

(16)
$$\left| \arg \frac{zf'(z)}{f(z)} \right| \leqslant \arcsin \frac{2r}{1 + r^2 + \frac{\beta}{1 - \beta} (1 - r^2)}$$

holds for |z| = r < 1 [1].

Hence, a function f is strongly starlike of order a in the disc K_r if the inequality

(17)
$$\arcsin \frac{2r}{1+r^2+\frac{\beta}{1-\beta}(1-r^2)} \leqslant \alpha\pi/2$$

or an equivalent one

(18)
$$\frac{2r}{1+r^2+\frac{\beta}{1-\beta}(1-r^2)} - \leqslant \sin(\alpha\pi/2)$$

holds.

Taking the sign of equality in (18) we obtain the equation for $R^*(\beta, \alpha)$ whose smallest positive root is given by (14).

The proof of the first part of Theorem 5 has been established.

The equality in (16) occurs for the functions F given by (15), and these functions are the extremal ones in this problem. They are strongly starlike of order α in the disc of the radius $R^*(\beta, \alpha)$ and only in this disc.

Corollary 2. If $f \in S^c$, S^c is the class of convex functions, then f is strongly starlike of order a, at least in the disc $|z| < R^c_{\beta} = \sin(a\pi/2)$. The number R^c_{β} is exact one. The extremal functions have the form

$$F(z) = F_{1/2}(z) = z/(1-\varepsilon z), \quad |\varepsilon| = 1.$$

Proof. It is well-known that $S^c \subset S_{1/2}$ and that the function F_{β} given by (15) is convex for $\beta = 1/2$. Taking in account these two remarks and Theorem 5 we obtain Corollary 2.

Taking $\beta = 0$ in Theorem 5 we obtain

Corollary 3. Each function of the class S^* is strongly starlike of order a, at least, in the disc

$$|z| < R^*(0, \, a) \, = \operatorname{tg}(a\pi/4).$$

The extremal functions is the Koebe function $F(z) = z/(1-\varepsilon z)^2$, $|\varepsilon| = 1$.

Theorem 6. Each function of the class S_a is starlike of order β , at least, in the disc

$$|z| < R_*(\alpha, \beta) = (1 - \beta^{1/2})/(1 + \beta)^{1/2}.$$

The number $R^*(\alpha, \beta)$ is the best possible one. The extremal functions are of the form (9).

Proof. In view of (6) a function $f \in S_a$ is starlike of order β if

$$\left(rac{1-r}{1+r}
ight)^a\geqslant eta$$
 .

Hence, $R_*(a, \beta)$ is given by the equation

$$\left(\frac{1-r}{1+r}\right)^a = \beta.$$

The example of the function (9) shows that the number $R_*(a, \beta)$ can not be improved since functions (9) are starlike of order β if and only if $|z| < R_*(a, \beta)$.

Corollary 4. If $f \in S^*$ then it is starlike of order β at least, in the disc

$$|z| < R_*(1, \beta) = (1 - \beta)/(1 + \beta).$$

In particular, it is starlike of order 1/2 in the disc

$$|z|<1/3$$
 . We see that the same $|z|<1/3$.

Remark. Let us observe that $R^*(\beta, \alpha)$, $R_*(\beta, \alpha)$ may take the value 1 only in the limit cases $\beta = 0$, $\alpha = 1$ or $\beta = 1$, $\alpha = 0$. It shows that the classes S^*_{β} and S_{α} don't include each other for $0 < \beta < 1$ and $0 < \alpha < 1$. These classes are always different ones.

Theorem 7. If $f \in S_{\gamma}$ then it is strongly starlike of order α , at least, in the disc $|z| < R(\gamma, \alpha)$, where

$$R(\gamma,\, a) \, = \left\{ egin{array}{ll} {
m tg}\,(a\pi/4\gamma) & ext{ for } a < \gamma\,, \ & & ext{ for } a \geqslant \gamma\,. \end{array}
ight.$$

The radius $R(\gamma, \alpha)$ cannot be improved. The extremal functions have the form (9).

Proof. If $f \in S_{\nu}$ then, in view of (8), we have

$$\left|rgrac{zf^{\prime}\left(z
ight)}{f(z)}
ight|\leqslant2\gammarc\operatorname{tg}\left|z
ight|.$$

Hence a function f is strongly starlike of order α if the condition

$$2\,\gammarc\operatorname{tg}|z|< a\pi/2$$

holds. It follows that $R(\gamma, \alpha)$ is the smallest positive root of the equation

$$2\gamma \operatorname{arctg} r = a\pi/2$$
.

If $a \geqslant \gamma$ then $S_a \subset S_{\gamma}$.

Theorem 7 has been established.

Theorem 8. Each function of the class S_a is convex, at least, in the disc $|z| < R_c^{(a)}$ where $R_c(a)$ is the smallest positive root of

$$(1-r)^{1+\alpha}(1+r)^{1-\alpha}-2\alpha r = 0.$$

The number $R_c(a)$ cannot be improved. The extremal functions have the form (9).

Proof. From (5) we obtain

$$rac{1}{z}+rac{f^{\prime\prime}(z)}{f^{\prime}(z)}-rac{f^{\prime}(z)}{f(z)}=a\,rac{p^{\prime}(z)}{p\left(z
ight)}\,.$$

In view of (5) after some calculations we have

$$1+rac{zf^{\prime\prime}\left(z
ight)}{f^{\prime}\left(z
ight)}\,=\,p^{a}(z)+a\,rac{zp^{\prime}\left(z
ight)}{p\left(z
ight)}$$

Thus

$$\operatorname{re}\left\{1+\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\right\}\geqslant\operatorname{re}p^{a}\left(z\right)-a\left|\frac{zp^{\prime}(z)}{p\left(z\right)}\right|\geqslant\left(\frac{1-r}{1+r}\right)^{a}-a\frac{2r}{1-r^{2}}$$

Since f(z) has to be convex in the disc |z| < R so the condition

$$\left(\frac{1-r}{1+r}\right)^a - a \frac{2r}{1-r^2} > 0$$

must be satisfied for r < R.

Hence we obtain Theorem 8.

REFERENCES

- [1] Bielecki, A. and Lewandowski, Z., Sur des familles de fonctions a -étoilées, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 15 (1961), 45-55.
- [2] Голузин, Г. М., Геометрическая теория функций комплексного переменного, Москва — Ленинград 1952.
- [3] Stankiewicz, J., Some Remarks Concerning Starlike Functions, Bull. Acad. Sci., Ser. sci. math., astr. et phys., 18 (1970) No. 3, 143-146.
- [4] , Quelques problèmes extrémaux dans les classes des fonctions a-angulairementé étoilées, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 20 (1966), 59-75.

STRESZCZENIE

W pracy tej rozważana jest klasa S_a funkcji α -kątowo gwiaździstych określona warunkiem (2). Korzystając ze związku pomiędzy klasą S_a a klasą P funkcji o części rzeczywistej dodatniej wyprowadzono oszacowania pewnych funkcjonałów (6), (7), (8), (10), (11) w klasie S_a .

W dalszej części pracy wyliczone zostały promienie a-kątowej gwiaździstości w różnych klasach funkcji analitycznych i na odwrót różne promienie w klasie S_a .

PE3IOME

В работе рассмотрен класс S_a , α -углово-звездных функций, который определяется условием (2). Используя связь между классом S_a и классом P функций с реальной положительной частью, выведены оценки некоторых функционалов (6), (7), (8), (10), (11) в классе S_a .

Кроме того вычислены радиусы α -угловой звездности в разных классах аналитических функций и наоборот — разные радиусы в классе S_{α} .