UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXV, 4

SECTIO A

1971

Department of Mathematics
Punjabi University, Patiala (India)

RAM MURTI GOEL

The Radius of Convexity and Starlikeness for Certain Classes of Analytic Functions with Fixed Second Coefficients

Promień wypukłości i gwiaździstości dla pewnych klas funkcji analitycznych z ustalonym drugim współczynnikiem

Радиус выпуклости и звездности для некоторых классов аналитических функций с фиксированным вторым коэффициентом

1. Introduction

Let S* denote the class of functions

$$f(z) = z + a_2 z^2 + \ldots + a_n z^n + \ldots$$

which are regular, univalent and starlike in the unit disc D:|z|<1. It is well known that the radius of convexity of the above class of functions is $2-\sqrt{3}$.

In this paper we shall generalize this result and find the radius of convexity of the class S of starlike functions by fixing the value of a_2 . Without loss of generality we may assume that a_2 is non-negative since $e^{-i\theta} \cdot f(ze^{i\theta})$ belongs to S whenever f(z) belongs to S.

We shall further consider the class of analytic functions

$$f(z) = z + a_2 z^2 + \ldots + a_n z^n + \ldots$$

which satisfy the condition

$$\operatorname{Re}\left[rac{f(z)}{z}
ight] > 0 \ ext{for} \ |z| < 1.$$

Mac Gregor has proved that the radius of starlikeness of this class is $\sqrt{2}-1$, [1]. We shall generalize this result and determine the radius of starlikeness when a_2 is fixed.

2. Basic lemma (*)

We shall need the following

Lemma. If

$$P(z) = 1 + b_2 z + \ldots + b_{n+1} z^n + \ldots$$

is regular in the unit disc D and has positive real part for |z| < 1 then

$$\left|\frac{zP^{'}(z)}{P(z)}\right| \leqslant \frac{2\,r}{1-r^2} \cdot \frac{pr^2+2\,r+p}{r^2+2\,pr+1}\,,$$

where $r = |z|, p = \frac{1}{2}|b_2|$.

Proof. We can as before assume b_2 to be non-negative. Put $b_2 = 2p$ so that $0 \le p \le 1$.

Since real part of P(z) is positive for |z| < 1, therefore

(2)
$$P(z) = \frac{1 + g(z)}{1 - g(z)},$$

where

$$g(z) = pz + \dots$$

and

$$|g(z)| < 1 ext{ for } |z| < 1.$$

Differentiating (2) we get

(3)
$$\frac{zP'(z)}{P(z)} = \frac{2zg'(z)}{1-g((z))}.$$

Let

(4)
$$h(z) = \frac{\frac{g(z)}{z} - p}{1 - p \cdot \frac{g(z)}{z}},$$

then h(0) = 0 and |h(z)| < 1. Therefore by Schwarz's Lemma $|h(z)| \leq |z|$. $g(z) \, = rac{zig(p+h\,(z)ig)}{1+ph\,(z)}\,.$ From (4) we have

$$g(z) = \frac{z(p+h(z))}{1+ph(z)}.$$

^{*}As pointed out to the author by the referee, the same result as in Lemma 1 and Theorem 1 has been obtained independently by: D. E. Tepper - T. A. M. S. vol. 150, No 2, August 1970, p. 519-529 ("On the radius of convexity and boundary distortion of schlicht functions").

Differentiation and simplication gives

$$rac{g'(z)}{1-ig(g(z)ig)^2} = rac{rac{p+h(z)}{1+p\,h(z)} + (1-p^2)\,rac{zh'(z)}{ig(1+p\,h(z)^2ig)}}{1-z^2igg(rac{p+h(z)}{1+p\,h(z)}igg)_2}\,.$$

Putting

$$rac{p+h(z)}{1+ph(z)}=h_1(z), \quad ext{ then } rac{(1-p^2)\,h'(z)}{(1+ph(z))^2}=h_1'(z).$$

Therefore

(6)
$$\frac{g'(z)}{1-(g(z))^2} = \frac{h_1(z)+zh'_1(z)}{1-z^2(h_1(z))^2}.$$

Obviously $h_1(z)$ is analytic in D and $|h_1(z)| < 1$, therefore

(7)
$$|h_1'(z)| \leqslant \frac{1 - |h_1(z)|^2}{1 - |z|^2}.$$

Using (7) we get from (6)

(8)
$$\left| \frac{g'(z)}{1 - (g(z))^2} \right| \leq \frac{|h_1(z)| + |z| \frac{1 - |h_1(z)|^2}{1 - |z|^2}}{1 - |z|^2 |h_1(z)|^2}$$

$$= \frac{\left(|h_1(z)| + |z|\right)\left(1 - |z| |h_1(z)|\right)}{(1 - |z|^2)\left(1 + |z| |h_1(z)|\right)} = \frac{|h_1(z)| + |z|}{(1 - |z|^2)\left(1 + |z| |h_1(z)|\right)} .$$

Since $|h(z)| \leq |z|$, therefore by [2]

Since
$$|h(z)| \le |z|$$
, therefore by [2]

(9) $|h_1(z)| \le \frac{p+|z|}{1+p\,|z|}$.

The inequality (8) gives in conjunction with (9)

The inequality (8) gives in conjunction with (9)

(10)
$$\left| \frac{g'(z)}{1 - (g(z))^2} \right| \leqslant \frac{pr^2 + 2r + p}{(1 - r^2)(r^2 + 2pr + 1)}, \quad r = |z|.$$

From (3) and (10) we get

$$\left|rac{zP'(z)}{P(z)}
ight| \leqslant rac{2\,r}{1-r^2} \cdot rac{pr^2+2r+p}{r^2+2pr+1} \,.$$

The function $P(z)=rac{1-z^2}{1-2pz+z^2}$ shows that the result is sharp and the upper bound is attained for z = -r.

3. Radius of convexity for starlike functions

Theorem 1. Let $f(z) = z + 2pz^2 + ...$

be regular, univalent and starlike in the unit disc, $0 \le p \le 1$. Then f(z) is convex for $|z| < r_0$, where r_0 is the smallest positive root of the equation

(11)
$$1-2 pr-6 r^2-2 pr^3+r^4=0.$$

The result is sharp.

Proof. Since f(z) is starlike in |z| < 1, therefore

$$\operatorname{Re}igg[rac{zf'(z)}{f(z)}igg] > 0, \quad ext{ for } |z| < 1.$$

Let

(12)
$$\frac{zf'(z)}{f(z)} = P(z),$$

then P(0) = 1 and $\operatorname{Re}[P(z)] > 0$ for |z| < 1 and

$$P(z) = 1 + 2 pz + \dots$$

Differentiating (12) we get after some simplification

$$1+rac{zf^{\prime\prime}(z)}{f^{\prime}(z)}=P(z)+rac{zP^{\prime}(z)}{P(z)}.$$

we have

$$egin{split} \operatorname{Re}igg[1+rac{zf''(z)}{f'(z)}igg] &\geqslant \operatorname{Re}P(z)-igg|rac{zP'(z)}{P(z)}igg| \ &\geqslant rac{1-r^2}{1+2\,pr+r^2}-rac{2r}{1-r^2}\cdotrac{pr^2+2r+p}{r^2+2pr+1}\,, \end{split}$$

where we have used the estimate given in [3], p. 393:

$$\operatorname{Re} P(z)\geqslant rac{1-r^2}{1+2\,pr+r^2}\,.$$

Therefore, we get

$$\mathrm{Re}igg[1+rac{zf^{\prime\prime}(z)}{f^{\prime}(z)}igg]\geqslantrac{1-2\,pr-6r^2-2pr^3+r^4}{(1-r^2)(1+2\,pr+r^2)}.$$

From this result we obtain the radius of convexity as given above.

We shall show that the result obtained is sharp.

Let

$$f(z) = rac{z}{1-2\,pz+z^2}$$

then f(z) is obviously starlike and for this function we have

$$1 + rac{zf''(z)}{f'(z)} = rac{1 + 2\,pz - 6z^2 + 2\,pz^3 + z^4}{(1 - z^2)(1 - 2\,pz + z^2)} = 0 \quad ext{ when } z = -r_0.$$

It follows that f(z) is not convex in any larger circle. This completes the proof of the theorem.

Corollary 1.1. When p = 1, the above equation (11) reduces to 1 - 4r + $+r^2=0$ and we obtain the radius of convexity $r_0=2-\sqrt{3}$.

Corollary 1.2. Let $f(z) = z + a_1 z^3 + a_5 z^5 + \dots$ be an odd starlike function. Then the radius of convexity $r_0 = [3-2\sqrt{2}]^{1/2}$.

Proof. An odd function has vanishing even coefficients and therefore on putting p = 0 in (11) we get the required result.

4. Radius of starlikeness

Theorem 2. If $f(z) = z + 2pz^2 + \dots$ is analytic in D and satisfies the condition

$$ext{Re} \Big[rac{f(z)}{z} \Big] > 0 \,,$$

then f(z) is univalent and starlike for

$$|z| < r_0,$$

(13) $|z| < r_0,$ where r_0 is the smallest positive root of the equation

$$(14) 1 - 4r^2 - 4pr^3 - r^4 = 0.$$

The result is sharp.

Proof. Since

$$\operatorname{Re}\left[rac{f(z)}{z}
ight] > 0 \quad ext{ for } |z| < 1,$$

therefore

$$\frac{f(z)}{z} = P(z),$$

where P(0)=1, $\operatorname{Re} P(z)>0$ for |z|<1 and

$$P(z) = 1 + 2pz + \dots$$

Differentiating (15), we get

$$egin{split} rac{zf'(z)}{f(z)} &= 1 + rac{zP'(z)}{P(z)}. \ & ext{Re}\left[rac{zf'(z)}{f(z)}
ight] \geqslant 1 - \left|rac{zP'(z)}{P(z)}
ight| \geqslant 1 - rac{2\,r}{1-r^2} \cdot rac{p\,r^2 + 2\,r + p}{r^2 + 2\,p\,r + 1} \ &= rac{1 - 4\,r^2 - 4\,p\,r^3 - r^4}{(1-r^2)\,(r^2 + 2\,p\,r + 1)}. \end{split}$$

 $\operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] > 0$ if $1 - 4r^2 - 4pr^3 - r^4 > 0$. Therefore the radius of starlikeness is given by the smallest positive root r_0 of the equation

$$1 - 4r^2 - 4pr^3 - r^4 = 0.$$

For the function $f(z) = \frac{z(1-z^2)}{1-2pz+z^2}$, we have

$$rac{zf'(z)}{f(z)} = rac{1 - 4z^2 + 4pz^3 - z^4}{(1 - z^2)(z^2 - 2pz + 1)},$$

which vanishes for $z = -r_0$.

This shows that the result obtained is sharp.

Corollary 2.1 When p = 1, $r_0 = \sqrt{2} - 1$, which is the result obtained by MacGregor in [1].

Corollary 2.2 Let $f(z)=z+a_3z^3+\dots$ be an odd function such that $\operatorname{Re}\left|\frac{f(z)}{z}\right|>0$, then f(z) is univalent and starlike for $|z|<(\sqrt{5}-2)^{1/2}$.

Proof. Since an odd function has vanishing even coefficients, therefore the result follows by taking p = 0 in (14).

In conclussion the author wishes to thank Professor Vikramaditya Singh for his kind encouragement and guidance.

REFERENCES

- [1] MacGregor, T. H., The Radius of Univalence of Certain Analytic Functions, Proc. Amer. Math. Soc., 14 (1963), 514-520.
- [2] Nehari, Z., Conformal Mapping, New York 1952.
- [3] Robertson, M. S., On the Theory of Univalent Functions, Ann. of Math., 37 (1936), 374-408.

STRESZCZENIE

Niech $f(z)=z+a_2z^2+\dots$ będzie funkcją holomorficzną w kole jednostkowym. Autor rozważa dwie klasy funkcji o powyższym rozwinieciu:

- (1) funkcje spełniające warunek Re[zf'(z)/f(z)] > 0 z ustalonym a_2 ,
- (2) funkcje spełniające warunek Re[f(z)/z] > 0 z ustalonym a_2 . W klasie
- (1) podano dokładną wartość promienia wypukłości, a w klasie (2) promienia gwiaździstości oraz pewne wnioski wynikające z tych wyników. Otrzymane rezultaty uogólniają między innymi wynik MacGregora [1].

PE3IOME

Пусть $f(z)=z+a_2z^2+\ldots$ — голоморфная функция в единичном круге. Автор исследует два класса функций с вышеуказанным разложением:

- (1) функции, которые удовлетворяют условие $\operatorname{Re}\left[\frac{zf'(z)}{f(z)}\right] > 0$ при фиксированном a_2 ,
- (2) функции, которые удовлетворяют условие ${\rm Re}\,[f(z)/z]>0$ при фиксированном a_2 .

Даны точные границы выпуклости для класса (1) и звездности для класса (2), а также некоторые последствия этих результатов. Результаты автора обобщают, в частности, результат Т. Х. МакГрегора [1].