ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XXII/XXIII/XXIV, 29 SECTIO A

1968/1969/1970

Instytut Matematyki, Uniwersytet Jagielloński, Kraków

TADEUSZ WINIARSKI

Approximation and Interpolation Methods in the Theory of Entire Functions of several Variables

Metoda aproksymacji i interpolacji w teorii funkcji całkowitych wielu zmiennych Приближенный и интерполяционный метод для целых функций многих переменных

Given two systems of n real or complex numbers $a = (a_1, \ldots, a_n)$, $\beta = (\beta_1, \ldots, \beta_n)$, we put

$$aeta = (a_1eta_1, \ldots, a_neta_n),$$
 $rac{a}{eta} = \left(rac{lpha_1}{eta_1}, rac{a_2}{eta_2}, \ldots, rac{a_n}{eta_n}
ight),$ $a^eta = a_1^{eta_1} \ldots a_n^{eta_n},$ $|a| = |a_1| + \ldots + |a_n|,$ $a < eta \Leftrightarrow \{a_j < eta_j \quad ext{ for } \quad j = 1, \ldots, n\}$ $a \leqslant eta \Leftrightarrow \{a_j \leqslant eta_j \quad ext{ for } \quad j = 1, \ldots, n\}$ $a^+ = (|a_1|, \ldots, |a_n|).$

Given $r=(r_1,\ldots,r_n)\in R^n$ and an entire function $f\colon C^n\to C$, we put $M_f(r)=\sup\{|f(z)|\colon z^+\leqslant r\}$.

Let P_f be the set of points $\mu \in \mathbb{R}^n$ such that for every $\mu \in P_f$ there exists a point $r_0 = (r_1^{(0)}, \ldots, r_n^{(0)}) \in \mathbb{R}^n$ such that

$$\ln M_f(r) \leqslant r_1^{\mu_1} + \ldots + r_n^{\mu_n} \quad \text{ for } \quad r \geqslant r^{(0)}.$$

The boundary ∂P_f of the set P_f is called an adjoint order hypersurface of the entire function f. A point $\varrho \in \partial P_f$ is called an adjoint system of f.

UNIVERSITATIS MARIAS OURIE-SKLODOWSKA Let us take $\varrho = (\varrho_1, \dots, \varrho_n) \in \partial P_t$ and denote by $T_t^{(o)}$ the set of all points $\gamma \in \mathbb{R}^n$ such that

$$\ln M_f(r) \leqslant \gamma_1 r_1^{\varrho_1} + \ldots + \gamma_n r_n^{\varrho_n}$$

for sufficiently large r.

Analogously as in the definition of the adjoint systems, the boundary $\partial T_f^{(e)}$ of the set $T_f^{(e)}$ is called an adjoint type hypersurface of the order ϱ . A point $\sigma \in \partial T_f^{(o)}$ is called an adjoint type system of the entire function f of the order ρ .

We are now going to present a characterization of the adjoint order and type system of an entire function $f: \mathbb{C}^n \to \mathbb{C}$ with the aid of the measure $\mathscr{E}_k(f,K)$ $(k=(k_1,\ldots,k_n))$ of the Čebyšev best approximation to f on a compact set $K \subset \mathbb{C}^n$ by polynomials of degree k_j with respect to j-th variable $(j = 1, \ldots, n)$.

Theorem 1. Let K be a compact set in Cⁿ such that there exists a compact $E = E_1 \times ... \times E_n$, where E_i (j = 1, ..., n) is a compact set in the complex z_i -plane, respectively, with the positive transfinite diameter $d_i = d(E_i)$. A system of n positive real numbers $\varrho = (\varrho_1, \ldots, \varrho_n)$ is the adjoint order system of the entire function f, if and only if

$$\limsup_{\min(k_f)\to\infty}\frac{\ln k^{k/\varrho}}{-\ln\mathscr{E}_k(f,\,k)}=1.$$

Theorem 2. A function f defined and bounded on a compact set $E = E_1 \times ... \times E_n$, where $d_i = d(E_i) > 0$, can be continued to an entire function \bar{f} for which $\varrho = (\varrho_1, \ldots, \varrho_n) > (0, \ldots, 0)$ and $\sigma = (\sigma_1, \ldots, \sigma_n)$ > (0, ..., 0) are adjoint order and type systems, respectively, if and only if

$$\limsup_{\min(k_j)\to\infty} \sqrt[k]{\frac{\mathscr{E}_k(f,E)}{d^k} \left(\frac{k}{e\sigma\varrho}\right)^{k/\varrho}} = 1,$$

where $d = (d_1, \ldots, d_n)$.

 $e \ d = (d_1, \ldots, d_n).$ In both the theorems the measure \mathcal{E}_k of the Čebyšev best approximation of f by polynomials can be replaced by the number

$$\|f - L_k\|_E \, = \, \sup \, \{|f(z) - L_k(z)| \, \colon \, z \, \epsilon \, E\}$$

where L_k is the Lagrange interpolation polynomial for f of degree $\leqslant k_j$ with respect to j-th variable with nodes $\eta_1^{(k_1)} \times \ldots \times \eta_n^{(k_n)}$; $\eta_j^{(k_j)}$ being the extremal system of $k_i + 1$ points of the set E_i .

The proof of both the previous theorems is based on some properties of the extremal function $\Phi(z, E)$ defined in [1]. In the case of one complex variable, the formula (2) may be written in the form (cf. [2])

$$d=rac{\limsup_{
u
ightarrow\infty}
u^{1/arrho}\sqrt{\mathscr{E}_{
u}(f,\,E)}}{\left(arepsilon\sigmaarrho
ight)^{1/arrho}}.$$

So it may be used for calculating the transfinite diameter d of the compact set E.

REFERENCES

- [1] Siciak, J., On some extremal functions and their applications in the theory of analytic functions of several complex variables, Trans. Amer. Math. Soc. 105 (2) (1962), 322-357.
- [2] Winiarski, T., Approximation and interpolation of entire functions, Ann. Polon. Math. 23 (3) (1970).

STRESZCZENIE

Celem komunikatu jest charakteryzacja rzędu i typu funkcji całkowitej f wielu zmiennych w terminach najlepszej aproksymacji funkcji f w sensie Czebyszewa.

РЕЗЮМЕ

Цель работы — характеристика порядка и типа целой функции f многих переменных в терминах наилучшего приближения функции f в смысле Чебышева.