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Quasianalytic Functions of Several Variables

Funkcje quasianalityczne wielu zmiennych

KBasuananituyeckue pyHKUHM MHOTHX MEPOMEHHHX

Let. ¥ be a compact set in the space C" of n complex variables and let
€(E) denote the Banach space of complex functions continuous in E
with the norm ||f||; = max|f(2)| for fe €(E). Let us denote by &,(f, E)

E

the »-th measure of the ('ebylev best approximation to fe €(E) on E by
polynomials of » complex variables z = (z,, ..., 2,), i.e.

where inf is taken over all the polynomials P, of degree < ».

Definition 1. We say that a function fe#(E) is quasianalytic on E
in Bernstein’s sense (and write fe #(F)) if

liminfV &,(f, E) < 1.
The term quasianalytic’’ arises from the following identity prin-
ciple proved by Bernstein [1]:
If E and I are compact intervals in the space R of real numbers sand
if I = E, then for every function fe #(E) we have

f=0inI=>f=0in E.

Szmuszkowiczowna [5] proved that the interval I in the above result
could be replaced by any compact subset of E with the positive transfinite
diameter. It appears that the identity principle can be extended on
quasianalytic functions of several complex variables. In order to give
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this extension let us denote by & the extremal function of a compact
set E in C" introduced by Siciak [4]:

®(z; E) = sup{sup{|P,(2)|'": P, is a polynomial in z = (z,,...,2,)
vl

such that degP, <v and ||P,|g < 1}},ze C™
The following theorem holds true [2]

Theorem 1. Let a continuum E in C" be a sum E = E,v...u E,,
where E;, = E{X...xXE}, for j =1,...,m,E}, (k =1,...,n) being con-
tinua not reduced to a point in the complex z,-plane, respectively. Let 1 be
a compact subset of E such that the function ®(z; I) i8 continuous at a point
2 ¢ I. Then every function fe B(E) vanishing on I is identically equal to zero.

One can easily see that the proposition of Theorem 1 holds true
if we replace E by the closure of a bounded domain in R" (treated
a8 a subset of C"). It is known that for every compact set I in C
with the positive transfinite diameter the extremal function @(z;I)
is continuous at a point Ze I. Hence Theorem 1, generalizes the result
of Szmuszkowiczéwna. A more general statement of Theorem 1 is given
in [2].

Let {»,} be a fixed increasing sequence of positive integers. Let us
denote by #(E, [{»}]) a set of functions fe #(E) such that

M
lim V4, (f, B) < 1
for an increasing sequence {u,} such that 1/M < u,/v, < M for k =
1,2,..., M being a positive constant independent of k. The set #(E, [{»,}])
is a ring. If F satisfies conditions of Theorem, 1 then the ring #(E, [{».}])
is a domain of integrity.

Definition 2. We say that a function f continuous in an open set
G in R" is locally quasianalytic in @ if for every point xe G there exists
an n-dimensional interval E, such that z¢ E, c G and fe Z(E,, [{n}]).
One can prove [3] the following

Theorem 2. A function f i8 locally quasianalytic in an open set G in R"
if and only if fe B(E, [{».}]) for every compact set E in G.

Theorem 2 generalizes the following result of Bernstein [1]:

If E and F are compact intervals in R such that ENintF +# @ and

if fe B(E, [{»}]) and fe B(F, [{v}]), then fe B(EUF, [{v}]).
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STRESZCZENIE

Autor rozwaza funkeje quasianalityczne w C™ w sensie Bernsteina
(Definicja 1) i otrzymuje dla nich twierdzenie o identycznoéci (Twier-
dzenie 1).

PE3IOME

ABTOp paccMaTpuBaeT KBaduaHaauTHYeckue yHkuuu B C" B cMuice

Bepumre#ina (Onpenenenue 1) i momyuaer Teopemy o Toxmgectse (Teo-
pema 1).






