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Соответствие границ для квазиконформных отображений в пространстве

In his paper [1], as the corollary of a more general theorem, 
F. W. Gehring stated the following result (see [1], p. 21):

7/ y(x) is a quasiconformal mapping of a sphere D and if y(x) converges 
to P' as x converges to Pe dD along some endcut у of D, then y(x) converges 
to P' as x converges to P in a cone.

Using results and methods of F. W. Gehring we prove that the existence 
of the limit in a cone follows from the existence of the limit on a suffi­
ciently ’’dense” sequence of points lying in a cone. By an example we 
also prove that the obtained density for the sequence of mentioned points 
is the best possible.

The notations are in accordance with those used in [1].
1. Let Kv be a cone with angle 2<p, vertex at the origin 0 = P and 

axis x3 in the Euclidean space E\ We say that a sequence of points xn 
is ”g-dense” if the sequence of norms |a?w| = an is of the type of geometric 
progression gn, namely, such that lim(a„+1/an) = q,0 < q<l. Further 
we shall speak about the sequences with norms |®„| = qn but, of course, 
this is not restriction which is essential.

It is easy to prove following two statements:
Lemma 1. Let 0 < q0 < 1, a > 0, let n be the plane x3 = 0 and 

D = {x- q20a < x < a}. Then, for arbitrary cone Krfl there exists a constant 
c(<p, q0) such that for every pair of points P,Qe KfriD, lying on one line 
through the origin we have that

q(P, n)
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Lemma 2. Assertion that, for one quasiconformal mapping, from the 
existence of the limit on some sequence xne K7i follows the existence of the 
limit in the cone KVi is equivalent with the assertion that, for an other 
quasiconformal mapping, from the existence of the limit on a sequence of 
points x'neKT2 follows the existence of the limit in the cone KT2, where 

W = l®»l, 0 <

Using Lemma 9 from [1] and the Theorem 11 from [2], with our 
two Lemmas we obtain the result:

Theorem. Let y(x) be a quasiconformal mapping of the half-space

x3 > 0, 0 < q < -- and let xne Kv, xn 0 with n oo be a sequence

of points such that |a?„| = qn. Suppose that there exists the limit limy(®„) = A. 
Then y(x) -> A as a? -> 0 in the cone. n

As the angle q is arbitrary, with 0 < q <—•, we have that, from 
2

the existence of the limit on a nontangential ’’(/-dense” sequence follows 
the existence in every cone.

The obtained result for the ’’density” of points xn is the best possible. 
We shall prove this by an example. We start with the example in the plane 
and then construct the example in the space.

Example. Given in the f — plane, £ = (f, y) the domain

G = {(£,»?): -P<y< -£2(l-£*), 0 < £, e > 0}

We map it with the function

u + iv — w

onto the domain J in the TF-plane which représentes the domain between 
two spirals around the unit circle. Let wn be the sequence of points lying 
on the v — 0 axis and converge to the point w = 1, such that in every 
coil lies one of them. These points are the images of points £„ which con­
verge to the origin and whose real parts, for sufficiently large n, are of

the same order as —-—, f n ~ . Here, as in further, we use the2nn 2nn ’
symbol to characterize the fact that two quantities are of the same order. 

On the other side, we can map a subdomain of G quasiconformally
onto a semispherical neighbourhood of the origin in the «-plane:

H y); ®2+?/2 < H2,y> o}.

Now we are going to find the approximate value for the modulus 
of a subdomain of G. It can be find as follows.
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Let «„ be a sufficiently large positive integer and let To be the point
on the ^-axis, such that, if T is the point in which the tangent on the curve
rj = —£2, which passes through the point To, touches it, than we have
that T0T = Po£»o- Let be the point on the »/-axis, between P„ and the
origin. The segment 1\T cuts the curve r) = — fa in the point I\. Let yt
and y2 be two circles with center in the point 'L\ and radii PXT and 2\P1
respectively. The circle yt cuts the curve rj = —fs(l—f’) in the point
and the circle y2 cuts the segment TlS1 in the point Qt. Repeating the
described procedure, but starting with the points Pt and T2, we find
the points P2,Q2 and S2, e.t.c. The obtained sequence of curvilinear
quadrilaterals, in fact, a sequence of ring segments, aproximates our domain
G„o and, naturally, by the standard process, we can use it to find the
asympthotic behaviour of the modulus of a family of curves in the
domain GK ."o

Let be the i-th ring segment with vertices P,_i, Plf Con­
sider the family of curves which connect the edges Pi_,P1- and QtSi, at. 
Denote the angle Pi_1Ti8i by af. It can be proved that the modulus of 
the mentioned family of curves has the value

mod (Ti = — In 
a* P.P,

As the families are disjoint, the modulus of their union is equal to the 
sum of moduli, i.e.

. ft
VI 1

mod U = / —In
<=i i=l

7’,/-,

Taking into account that for fn# sufficiently close to the origin we can use 
the following relations, letting k -> oo, if we have P<(£<, »/,•), a; « sin a,-

we obtain that the mo- 
k

dulus of the family of curves <r = lim U -> 0 is
k-+oo <=10 *''« 

-/A4- df
^2+emod a i

S«0
Denoting by and (<r)”o the domain obtained from G„# subtracting 

its part contained in that of the circles y which passes through the point 
sn and the corresponding family of curves, we find

lnO(l (ff)n0
" ^'0

-/A4 d£
£2+« 1+e
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Under the quasiconformal mapping of a subdomain of G onto the 
mentioned semicircular neighbourhood of the origin in the «-plane let 
the domain G”o is mapped onto the semiring rn < |«| < rn y > 0. 
The modulus of the family of curves (/J)"o, the images of is

mod(/J)” = — ln-^.
rn

As the modulus of the family of curves is quasiinvariant under the 
quasiconformal mapping we obtain that

r«sr„(eb)n , & < 0,

and finally, as the image of £n, the joint zn lies on the circle |«| = rn,

and , we obtain
n 2nn

|z„| » r0p»(l+4), 0 < p < 1.

So, the sequence of points {£„} is mapped onto a sequence of points 
{«„} such that the norm of zn is of order where s is an arbitrary
positive number.

Consider now the mapping which represents the composition of the 
inverse of mentioned quasiconformal mapping and the mentioned con­
formal mapping. It is quasiconformal and the limit on the sequence 
zn exists, but, evidently, can not speak about the existence of the limit 
in a cone. The arbitrarily of e proofs our assertion that the obtained 
’’density” is the best possible.

Now we are going to construct the example in the space. With the 
domain G"o we associate the space domain which represents a circular 
horn, such that its plane of symmetry is our C-plane and the intersection 
of the C-plane and the horn is our domain U“ . We map it quasiconformally 
on the space domain associated with our domain A„o which represents 
a space spiral whose plane of symmetry is our w-plane and is obtained 
so that the mapping which was realised, is repeated in every direction 
on every level of the horn Gh. On the other side we map our horn quasi- 
conformally on a 3-semisphere, so that in one its big circle we obtain 
our original plane mapping and in every other direction the mapping 
is repeated, again on every level of the horn. So, composing two quasi­
conformal mappings, we obtain a quasiconformal mapping of the semi­
sphere onto the space spiral, such that in the planes of symmetry the map­
ping coincides with already considered plane mappings. Thus, we have 
a sequence of points with norms rop»(1+e) on which there exists the limit, 
but about the limit in a cone we can not speak. This proves that the 
obtained bound for density of points is the best possible.
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STRESZCZENIE

Opierając się na wynikach F. W. Gehringa o odpowiedniości punktów 
brzegowych przy odwzorowaniach ąuasi-konforemnych w przestrzeni 
autor dowodzi, że dla istnienia granicy przy zbliżaniu się wewnątrz stożka 
wystarczy, by istniała granica dla ciągu punktów wewnątrz stożka któ­
rych normy tworzą ciąg podobny do postępu geometrycznego. Autor 
wykazuje na przykładzie, że otrzymane ograniczenie na „gęstość” punktów 
jest możliwie najlepsze.

РЕЗЮМЕ

Опираясь па результаты Ф. В. Геринга о соответствии границ 
для квазиконформных отображений в пространстве, автор доказал, 
что для существования предела при стремлении внутрь конуса доста­
точно, чтобы существовал предел для некоторых специальных по­
следовательностей точек.

Автор показал на примере, что полученные условия „плотности” 
точек можно считать наилучшими.
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