ANNALES

UNIVERSITATIS MARIAE CURIE-SKもODOWSKA LUBLIN - POLONIA
VOL. XXII/XXIII/XXIV, 17 SECTIO A 1968/1969/1970

Department of Mathematics, Tochulcal University of Bulgrado, Yugoslavia

VLADIMIR P. MIĆIĆ

On the Boundary Correspondence under Quasiconformal Mappings in Space

0 odpowiedniości punktów brzegowych przy odwzorowaniach quasikonforemnyoh w przestrzeni

Соответствие граниң для квазиконформных отображении в пространстве
In his paper [1], as the corollary of a more general theorem, F. W. Gehring stated the following result (see [1], p. 21):

If $y(x)$ is a quasiconformal mapping of a sphere D and if $y(x)$ converges to P^{\prime} as x converges to $P \in \partial D$ along some endcut γ of D, then $y(x)$ converges to P^{\prime} as x converges to P in a cone.

Using results and methods of F. W. Gehring we prove that the existence of the limit in a cone follows from the existence of the limit on a sufficiently "dense" sequence of points lying in a cone. By an example we also prove that the obtained density for the sequence of mentioned points is the best possible.

The notations are in accordance with those used in [1].

1. Let K_{φ} be a cone with angle 2φ, vertex at the origin $0 \equiv P$ and axis x_{3} in the Euclidean space E^{3}. We say that a sequence of points x_{n} is " q-dense" if the sequence of norms $\left|x_{n}\right|=a_{n}$ is of the type of geometric progression q^{n}, namely, such that $\lim \left(a_{n+1} / a_{n}\right)=q, 0<q<1$. Further we shall speak about the sequences with norms $\left|x_{n}\right|=q^{n}$ but, of course, this is not restriction which is essential.

It is easy to prove following two statements:
Lemma 1. Let $0<q_{0}<1, a>0$, let π be the plane $x_{3}=0$ and $D=\left\{x ; q_{0}^{2} a<x<a\right\}$. Then, for arbitrary cone K_{φ} there exists a constant $c\left(\varphi, q_{0}\right)$ such that for every pair of points $P, Q \in K_{q} \cap D$, lying on one line through the origin we have that

$$
\frac{|P-Q|}{\varrho(P, \pi)} \leqslant c<1
$$

Lemun 2. Assertion that, for one quasiconformal mapping, from the existence of the limit on sume sequence $x_{n} \in K_{\varphi_{1}}$ follows the existence of the limit in the cone $K_{\varphi_{1}}$ is equivalent with the assertion that, for an other quasiconformal mapping, from the existence of the limit on a sequence of points $x_{n}^{\prime} \in K_{q_{2}}$ follows the existence of the limit in the cone $K_{\Phi_{2}}$, where $\left|x_{n}\right|=\left|x_{n}^{\prime}\right|, 0<\varphi_{1}, \varphi_{2}<\frac{\pi}{2}$.

Using Lemma 9 from [1] and the Theorem 11 from [2], with our two Lemmas we obtain the result:

Theorem. Let $y(x)$ be a quasiconformal mapping of the half-space $x_{3}>0,0<\varphi<\frac{\pi}{2}$ and let $x_{n} \in K_{\varphi}, x_{n} \rightarrow 0$ with $n \rightarrow \infty$ be a sequence of points such that $\left|x_{n}\right|=q^{n}$. Suppose that there exists the $\operatorname{limit} \lim y\left(x_{n}\right)=A$. Then $y(x) \rightarrow A$ as $x \rightarrow 0$ in the cone.

As the angle φ is arbitrary, with $0<\varphi<\frac{\pi}{2}$, we have that, from the existence of the limit on a nontangential " q-dense" sequence follows the existence in every cone.

The obtained result for the "density" of points x_{n} is the best possible. We shall prove this by an example. We start with the example in the plane and then construct the example in the space.

Example. (xiven in the ζ - plane, $\zeta=(\xi, \eta)$ the domain

$$
G=\left\{(\xi, \eta):-\xi^{2}<\eta<-\xi^{2}\left(1-\xi^{e}\right), 0<\xi, \varepsilon>0\right\}
$$

We map it with the function

$$
u+i v=w=e^{i\left(\frac{1}{\zeta}-i\right)}
$$

onto the domain Δ in the W-plane which representes the domain between two spirals around the unit circle. Let w_{n} be the sequence of points lying on the $v=0$ axis and converge to the point $w=1$, such that in every coil lies one of them. These points are the images of points ζ_{n} which converge to the origin and whose real parts, for sufficiently large n, are of the same order as $\frac{1}{2 n \pi}, \xi_{n} \approx \frac{1}{2 n \pi}$. Here, as in further, we use the symbol to characterize the fact that two quantities are of the same order.

On the other side, we can map a subdomain of G quasiconformally onto a semispherical neighbourhood of the origin in the z-plane:

$$
D=\left\{(x, y) ; x^{2}+y^{2}<R^{2}, y>0\right\}
$$

Now we are going to find the approximate value for the modulus of a subdomain of G. It can be find as follows.

Let. n_{0} be a sufficiently large positive integer and let T_{0} be the point on the η-axis, such that, if T is the point in which the tangent on the curve $\eta=-\xi^{2}$, which passes through the point T_{0}, touches it, than we have that $T_{0} T=T_{0} 5_{n_{0}}$. Let T_{1} be the point on the η-axis, between T_{n} and the origin. The segment $T_{1} T$ cuts the curve $\eta=-\xi^{2}$ in the point I_{1}. Let γ_{1} and γ_{2} be two circles with center in the point T_{1} and radii $T_{1} T$ and $T_{1} P_{1}$ respertively. The circle γ_{1} cuts the curve $\eta=-\xi^{2}\left(1-\xi^{8}\right)$ in the point S_{1} and the circle γ_{2} cuts the segment $T_{1} S_{1}$ in the point Q_{1}. Repeating the described procedure, but starting with the points P_{1} and T_{2}, we find the points P_{2}, Q_{2} and S_{2}, e.t.c. The obtained sequence of curvilinear quadrilaterals, in fact, a sequence of ring segments, aproximates our domain $G_{n_{0}}$ and, naturally, by the standard process, we can use it to find the asympthotic behariour of the modulus of a family of curves in the domain $G_{n_{0}}$.

Let V_{i} be the i-th ring segment with vertices $P_{i-1}, l_{i}, Q_{i}, S_{i}$. Consider the family of curves which connect the edges $P_{i-1} P_{i}$ and $Q_{i} S_{i}, \sigma_{i}$. Denote the angle $P_{i-1} T_{i} S_{i}$ by a_{i}. It can be proved that the modulus of the mentioned family of curves has the value

$$
\bmod \sigma_{i}=\frac{1}{\alpha_{i}} \ln \frac{T_{i} P_{i-1}}{T_{i} P_{i}}
$$

As the families σ_{i} are disjoint, the modulus of their union is equal to the sum of moduli, i.e.

$$
\bmod \bigcup_{i=1}^{k} \sigma_{i}=\sum_{i=1}^{i} \frac{1}{\alpha_{i}} \ln \frac{T_{i} P_{i-1}}{T_{i} P_{i}}
$$

Taking into account that for $\zeta_{n_{0}}$ sufficiently close to the origin we can use the following relations, letting $k \rightarrow \infty$, if we have $P_{i}\left(\xi_{i}, \eta_{i}\right), \mu_{i} \approx \sin \mu_{i}$ $\approx \xi_{i}^{1+\epsilon}, \ln \left(T_{i} P_{i-1}\right) /\left(T_{i} P_{i}\right) \approx\left(\xi_{i-1}-\xi_{i}\right) / \xi_{i} \approx \Delta \xi_{i} / \xi_{i}$ we obtain that the modulus of the family of curves $\sigma=\lim _{k \rightarrow \infty} \bigcup_{i=1}^{k} \sigma_{i}, \max T_{i} T_{i-1} \rightarrow 0$ is

$$
\bmod \sigma \approx-\int_{\xi_{n_{0}}}^{0} \frac{d \xi}{\xi^{2+\varepsilon}}=\int_{0}^{\xi_{1}} \frac{d \xi}{\xi^{2+\varepsilon}} .
$$

Deuoting by $G_{n_{0}}^{n}$ and $(\sigma)_{n_{0}}^{n}$ the domain obtained from $G_{n_{0}}$ subtracting its part contained in that of the circles γ which passes through the point ζ_{n} and the corresponding family of curves, we find

$$
\bmod (\sigma)_{n_{0}}^{n} \approx-\int_{\xi_{n_{n}}}^{\varepsilon_{n}} \frac{d \xi}{\xi^{2+\theta}}=\int_{\varepsilon_{n}}^{\varepsilon_{0}^{0}} \frac{d \xi}{\xi^{2+\beta}}=\frac{1}{1+\varepsilon}\left[\left(\xi_{n}\right)^{-(1+\theta)}-\left(\xi_{n_{0}}\right)^{-(1+\theta)}\right]
$$

Under the quasiconformal mapping of a subdomain of G onto the mentioned semicircular neighbourhood of the origin in the z-plane let the domain $G_{n_{0}}^{n}$ is mapped onto the semiring $r_{n}<|z|<r_{n_{0}} \equiv y>0$. The modulus of the family of curves $(\beta)_{n_{0}}^{n}$, the images of $(\sigma)_{n_{0}}^{n}$, is

$$
\bmod (\beta)_{n_{0}}^{n}=\frac{1}{\pi} \ln \frac{r_{n_{0}}}{r_{n}} .
$$

As the modulus of the family of curves is quasiinvariant under the quasiconformal mapping we obtain that

$$
r \approx r_{0}\left(e^{b}\right)^{\frac{8}{n}}(1+c), \quad b<0
$$

and finally, as the image of ξ_{n}, the joint z_{n} lies on the circle $|z|=r_{n}$, and $\xi_{n} \approx \frac{1}{2 n \pi}$, we obtain

$$
\left|z_{n}\right| \approx r_{0} p^{n^{(1+\varepsilon)}}, \quad 0<p<1
$$

So, the sequence of points $\left\{\zeta_{n}\right\}$ is mapped onto a sequence of points $\left\{z_{n}\right\}$ such that the norm of z_{n} is of order $p^{(1+\varepsilon)}$ where ε is an arbitrary positive number.

Consider now the mapping which represents the composition of the inverse of mentioned quasiconformal mapping and the mentioned conformal mapping. It is quasiconformal and the limit on the sequence z_{n} exists, but, evidently, can not speak about the existence of the limit in a cone. The arbitrarity of ε proofs our assertion that the obtained "density" is the best possible.

Now we are going to construct the example in the space. With the domain $G_{n_{0}}^{n}$ we associate the space domain which represents a circular horn, such that its plane of symmetry is our ζ-plane and the intersection of the ζ-plane and the horn is our domain $G_{n_{0}}^{n}$. We map it quasiconformally on the space domain associated with our domain $\Delta_{n_{0}}$ which represents a space spiral whose plane of symmetry is our w-plane and is obtained so that the mapping which was realised, is repeated in every direction on every level of the horn G_{h}. On the other side we map our horn quasiconformally on a 3 -semisphere, so that in one its big circle we obtain our original plane mapping and in every other direction the mapping is repeated, again on every level of the horn. So, composing two quasiconformal mappings, we obtain a quasiconformal mapping of the semisphere onto the space spiral, such that in the planes of symmetry the mapping coincides with already considered plane mappings. Thus, we have a sequence of points with norms $r_{0} p^{(1+\varepsilon)}$ on which there exists the limit, but about the limit in a cone we can not speak. This proves that the obtained bound for density of points is the best possible.

REFERENCES

[1] Gohring, I'. W., The Caralheodory convergence theorem for quasiconformal mappings in space, Ann. Acad. Scient. Fennicre, Ser. A. I. 336 (11), 1963.
[2] -, Rings and quasiconforminl mappings in space, Trans. Amer. Math. Soc., 101 (1962). 353-393.

STRESZCZENIE

Opierajace się na wynikach F. W. Gehringa o odpowiedniosci punktów brzegowych przy odwzorowaniach quasi-konforemnych w przestrzeni autor dowodzi, że dla istnienia granicy przy zblizaniu się wewnątrz stożka wystarczy, by istniała granica dla ciągu punktów wewnątrz stożka których normy tworzą ciag podobny do postępu geometrycznego. Autor wykazuje na przykładzie, że otrzymane ograniczenio na ,gestosé" punktów jest możliwie najlepsze.

РЕЗЮМЕ

Опиралсь на результаты Ф. В. Геринга о соответствии границ для квазиконформных отображений в пространстве, автор доказал, что для существования предела при стремлении внутрь конуса достаточно, чтобы суцествовал предел для некоторых специальных последовательностей точек.

Автор показал на примере, что полученные условня ,„ллотности" точек можно считать наилучшими.

