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In his paper [1], as the corollary of a more general theorem,
F. W. Gehring stated the following result (see [1], p. 21):

If y(x) is a quasiconformal mapping of a sphere D and if y(x) converges
to P' as x converges to Pe 0D along some endcut y of D, then y(x) converges
to P’ as x converges to P in a cone.

Using results and methods of F. W. Gehring we prove that the existence
of the limit in a cone follows from the existence of the limit on a suffi-
ciently ’’dense’” sequence of points lying in a cone. By an example we
also prove that the obtained density for the sequence of mentioned points
is the best possible.

The notations are in accordance with those used in [1].

1. Let K, be a cone with angle 2¢, vertex at the origin 0 = P and
axis x, in the Euclidean space E°. We say that a sequence of points z,
is ’’¢-dense” if the sequence of norms |z,| = a, is of the type of geometric
progression ¢", namely, such that lim(a,,,/a,) = q,0 < ¢ < 1. Further
we shall speak about the sequences with norms |z,| = ¢" but, of course,
this is not restriction which is essential.

It is easy to prove following two statements:

Lemma 1. Let 0 < g, <1,a >0, let = be the plane z3 = 0 and
D = {z; qta < = < a}. Then, for arbitrary cone K, there exists a constant
c(@, qo) such that for every pair of points P,Qe K 0 D, lying on one line
through the origin we have that
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Lemma 2. Assertion that, for one quasiconformal mapping, from the
existence of the limit on some sequence x,e K, follows the existence of the
limit in the cone K, is equivalent with the assertion that, for an other
quasiconformal mapping, from the eristence of the limit on a sequence of
points T, e K., follows the existence of the limit in the cone K, , where

T
[Za] = @0l 0 < @yy @2 < 9"

-

Using Lemma 9 from [1] and the Theorem 11 from [2], with our
two Lemmas we obtain the result:

Theorem. Let y(x) be a quasiconformal mapping of the half-space
11
T3 >0,0<g@< - and let z,e K, 2, >0 with n > co be a sequence

of points such that |x,| = q". Suppose that there exists the limit limy (r,) = A.
Then y(x) —~ A as x — 0 in the cone. = e
As the angle ¢ is arbitrary, with 0 < ¢ <—2—, we have that, from

the existence of the limit on a nontangential ’q-dense’ sequence follows
the existence in every cone.

The obtained result for the ’density’’ of points x, is the best possible.
We shall prove this by an example. We start with the example in the plane
and then construct the example in the space.

Example. Given in the [ — plane, { = (&, ) the domain
G ==l {( £ i V=52 (1 = £0)l 01T &,e> 0}

We map it with the function

4(%4)

onto the domain 4 in the W-plane which representes the domain hetween
two spirals around the unit circle. Let w, be the sequence of points lying
on the v = 0 axis and converge to the point w = 1, such that in every
coil lies one of them. These points are the images of points (, which con-
verge to the origin and whose real parts, for sufficiently large n, are of

UL+ =w =¢€

1
the same order as — —, &, =
2nrx 2nn

symbol to characterize the fact that two quantities are of the same order.
On the other side, we can map a subdomain of G quasiconformally
onto a semispherical neighbourhood of the origin in the z-plane:

Here, as in further, we use the

D = {(m, y); x*+y® < R, y'>"0}.

Now we are going to find the approximate value for the modulus
of a subdomain of G. It can be find as follows.
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Let. ny be a sufficiently large positive integer and let T, be the point
on the z-axis, such that, if T is the point in which the tangent on the curve
7 = —t2, which passes through the point T,, touches it, than we have
that 7,7 = Ty, . Let T, be the point on the 5-axis, between T, and the
origin. The segment 7', T cuts the curve = — £2 in the point P,. Let y,
and y, be two cireles with center in the point 7', and radii 7, T and 7, P,
respectively. The circle y, cuts the curve = —§&2(1 —¢°) in the point S,
and the circle y, cuts the segment 7,8, in the point @,. Repeating the
described procedure, but starting with the points P, and T,, we find
the points P,, @, and S,, e.t.c. The obtained sequence of curvilinear
quadrilaterals, in fact, a sequence of ring segments, aproxiniates our domain
G,, and, naturally, by the standard process, we can use it to find the
agsympthotic behaviour of the modulus of a family of curves in the
domain G, .

Let ¥V, be the ¢-th ring segment with vertices P;_,, I’;, @, §;. Con-
sider the family of curves which connect the edges P, ,P; and @8, o;.
Denote the angle P; , T;8; by a;. It can be proved that the modulus of
the mentioned famnily of curves has the value
TP,

ik
modo; = — In

a; its

As the families o; are disjoint, the modulus of their union is equal to the
sum of moduli, i.e.
; 51 TP
mod Uo, = 3 - In-ti!
f=1 — (L 1;.1'.
=1
Taking into account that for [ sufficiently close to the origin we can use
the following relations, letting k& — oo, if we have P;(&;, ), ¢; = 8ing;
A & (T P ) (T Pg) & (Eiy — &) [§i ;I.E,-/E,- we obtain that the no-

dulus of the family of curves o =lim U o;, maxT,T; , -0 is

k—o0 i=1

modoa —

. d¢ }‘"0 d&

521‘-1 = £2+a :
o
Denoting by G and (o)p, the domain obtained from @, subtracting

its part. contained in that of the circles y which passes through the point
<n and the corresponding family of curves, we find

'En .%‘0

1
= 2o 3 (1-e) (14-2)
= m = [ (&,,)- 0491,

mod (a);:o R —
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Under the quasiconformal mapping of a subdomain of G onto the
mentioned semicircular neighbourhood of the origin in the z-plane let
the domain @y is mapped onto the semiring r, < |z| <7, =y > 0.
The modulus of the family of curves (), , the images of (a):u, is

Tng

1
mod (B),, = = In —.

Tn

As the modulus of the family of curves is quasiinvariant under the
quasiconformal mapping we obtain that

g (14e)

ra () " y b<o,

and finally, as the image of &,, the joint z, lies on the circle |z2| = r,,
1

2nn

and &, ~ , we obtain

|2] & ropr'*?,  0<p<1.

So, the sequence of points {{,} is mapped onto a sequence of points
{2,} such that the norm of z, is of order p»"'**) where ¢ is an arbitrary
positive number.

Consider now the mapping which represents the composition of the
inverse of mentioned quasiconformal mapping and the mentioned con-
formal mapping. It is quasiconformal and the limit on the sequence
z, exists, but, evidently, can not speak about the existence of the limit
in a cone. The arbitrarity of ¢ proofs our assertion that the obtained
density” is the best possible.

Now we are going to construct the example in the space. With the
domain G we associate the space domain which represents a circular
horn, such that its plane of symmetry is our {-plane and the intersection
of the {-plane and the horn is our domain G} . We map it quasiconformally
on the space domain associated with our domain 4, which represents
a space spiral whose plane of symmetry is our w-plane and is obtained
so that the mapping which was realised, is repeated in every direction
on every level of the horn @,. On the other side we map our horn quasi-
conformally on a 3-semisphere, so that in one its big circle we obtain
our original plane mapping and in every other direction the mapping
is repeated, again on every level of the horn. So, composing two quasi-
conformal mappings, we obtain a quasiconformal mapping of the semi-
sphere onto the space spiral, such that in the planes of symmetry the map-
ping coincides with already considered plane mappings. Thus, we have
a sequence of points with norms 7,p»'*? on which there exists the limit,
but about the limit in a cone we can not speak. This proves that the
obtained bound for density of points is the best possible.
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STRESZCZENIE

Opierajgc si¢ na wynikach F. W. Gehringa o odpowiedniosci punktow
brzegowych przy odwzorowaniach quasi-konforemnych w przestrzeni
autor dowodzi, ze dla istnienia granicy przy zblizaniu si¢ wewnatrz stozka
wystarczy, by istniala granica dla ciggu punktéw wewnatrz stozka kto-
rych normy tworza ciag podobny do postepu geometrycznego. Autor
wykazuje na przykladzie, ze otrzymane ograniczenie na ,,gesto§é” punktéw
jest mozliwie najlepsze.

PE3IOME

Onupascy na peayiabratht @. B. I'epunra o cooTBeTCTBUM TpaHHUI
IJIA KBa3sHKOH(GOPMHBIX OTOOpaKeHMii B IIpOCTPAHCTBE, aBTOpP MROKa3aul,
YTO MJIA CYLIeCTBOBAHMA Ipejiesia IIPM CTpeMIIEHHH BHYTPb KOHYCa IOCTa-
TOYHO, YTOOB CYIECTBOBAJl Npefges A HEKOTOPHIX CICHUAJBHBIX [O-
CJIeOBaTeJIbHOCTEH TOYeK.

ABTOp NOKa3ajJ Ha NpHMepe, YTO MOJyYeHHbIE YCJIOBNH ,,INIOTHOCTH'
TO9eK MOKHO CYMTATb HAMIYYILHNMH.
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