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Introduction

Conformal mappings of Riemannian manifolds were investigated
by several authors in the local and global formulation as well (cf. e.g. [3],
[8], and [10]), and some results were also obtained in the case of pseudo-
riemannian manifolds, however, in the local formulation only (cf. e.g.
[3), [9], and [7]). Quasiconformal mappings of Riemannian manifolds
were introduced and investigated in [13].

In the present paper we are concerned with conformal mappings
of pseudo-riemannian manifolds in the global formulation.

We begin our study with preliminaries. We introduce first some
notation and terminology, in particular the notion of an essentially
pseudo-riemannian manifold, develop measurability and integration
(Theorems 1 and 2), introduce the notion of an angle, and define its
inner measure. We deal then with curves, especially we distinguish some
kinds of curves: space-like, time-like, regular, and rectifiable, define the
length of a regular curve, introduce some kinds of mappings: type-preser-
ving and type-reversing, and give a basic theorem on these mappings
(Theorem 3). Next we introduce the notion of the p-modulus of a family
of regular curves and study basic properties of these moduli (Theorems 4-8).

In the second part of the paper (Section 6) we are concerned with
conformal mappings of essentially pseudo-riemannian 1manifolds. We
introduce the notion of conformality that, roughly speaking, means that
the isotropic cone is preserved at each point of the manifold in question.
We give then a necessary and sufficient condition for conformality in
terms of quadratic forms determined by the metrics of the manifolds
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in question (Theorem 9). Now we give a characterization of conformal
mappings in terms of angles and their inner measure (Theorems 10 and 11),
and, finally, in terms of families of regular curves and their moduli (The-
oremns 12 and 13).

In the last section we define regular quasiconformal mappings and
conclude the paper with the result that in the case of essentially pseudo-
riemannian manifolds there is no analogue of regular quasiconformal
mappings other than conformal. Here we mention that the problem of
the existence of some irregular quasiconformal mappings remains open.
We also pose some other natural problems, some of them being planned
to be discussed in a subsequent paper.

The authors are deeply indebted to Dr Kalevi Suominen for helpful
discussions and suggestions during their research in the subject in question.

The detailed version of this paper will appear in the Mathematica
Seandinavica 28 (1971).

1. Notation and terminology

Throughout this paper the set of all points (resp. vectors) of a manifold
(resp. vector space) X is denoted by supp X. If f is a mapping from a set
(resp. manifold or a vector space) X into a set (resp. manifold or vector
space) Y, we write f: X — ¥, and denote the image of any subset E
of X (resp. suppX) by f[FE]. If, in particular, f is a homeomorphism,
— means ‘‘onto”, i.e. ¥ = f[A] (resp. supp Y = f[suppX)).

The n-dimensional Euclidean space is denoted by R", and its subspace
that consists of points with the last component positive — by R . In the
case where n = 1 we drop out the index n.

Under a pseudo-riemannian manifold we mean a (™-differentiable
paracompact connected manifold endowed with a pseudo-riemannian
metric, i.e. a symmetric C* tensor field of type (0, 2) which is nondege-
nerate and has the same index at each point. Let ¢ be the metric in question.
Denote by » and p its dimension and index, respectively. Clearly, there
is no loss of generality if we assume that p < {=, i.e. if we replace, if
convenient, ¢ by —¢g. We say that a pseudo-riemannian manifold is
essentially pseudo-riemannian if 1 < p < }n. For the definition and pro-
perties of O -differentiable manifolds as well as tensor fields we refer
to [1].

Given a pseudo-riemannian manifold M and an zesupp M, T M
denotes the tangent space to M at z, while

I2 M = {vesuppT,M: g(v,v) = 0},
1M = {wesuppT, M: g(v,v) > 0},
IDM = {vesupp? . M: g(v,v) < 0}.
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In other words ISM is the collection of vectors of all isotropy sub-
spaces of T M, while I M and I; M are the collections of vectors of all
positive and negative definite subspaces of 7,.M, respectively. KFurther,
TM denotes the tangent bundle of M. Finally, if N is another pseudo-
riemannian manifold and f: M - N a diffeomorphism, then Df: TM
— TN denotes the derivative of f.

2. Measurability and integration

Suppose that X and Y are C*-differentiable paracompact connected
manifolds, while M and N are pseudo-riemannian manifolds with metrics
g and ¢, respectively. Under a Borel measure on X we mean a measure
which is defined on the collection of Borel subsets of suppX. A mapping
f: X — Y is said to be a Borel function if the preimage f '[E] of each
open set K < supp Y is a Borel set.

As in [13], p. 8, weo say that a set £ < suppX is a null get if for each
coordinate neighbourhood U < suppX and each coordinate C*-mapping
u: U — suppR" the set u[ENTU] has Lebesgue measure zero. A condition
is said to hold for almost every xesuppX, or almost everywhere on X, if
it holds everywhere except perhaps for a null set. In our considerations as
derivatives of functions are differentiable almost everywhere we shall
meet functions which are not defined on a Borel null set. 1f such a function
is Borel on its set of definition, then its extension by a constant value
will also be Borel. We will carry out always such an extension by the
value 0. Hence we may regard all functions as defined everywhere.

Theorem 1. Suppose that f: M — N 8 continuous and differentiable
almost everywhere. For any xesupp M consider arbitrary coordinate C*-
-mappings p = (') on M at x and v = (v') on N at f(z) whose dimensions
are equal to the dimensions of the corresponding manifolds. Then

(1) the quantities
IDf (@) = sup g’ (Df(z)(v), Df(@)(v))["*, z¢ supp M,
where the supremum is taken over all ve T, M such that |g(v,v)| < 1, and

Ry Jitms 3F ( )Idetg;"ovof(:c) b
S p— ! r ——— —
(det.Df) (@) = det(v’o fou )o@ =goc s
where |; denotes partial differentiation with respect to 4y do mot depend on
the choice of u and v,

(ii) the functions |Df|j: M — R and detDf: M — K are Borel.

\We introduce then the notion of jacobian. If f: M — N is a C'-diffe-
omorphism, then, by Theorem 1, detDf is a real-valued Borel function

, &esuppd,
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of zesupp M, i.e. det Df: M — R. Moreover, as it is easily seen, it is con-
tinuous. The function
J; = |det Df|
is called the jacobian of f.
The following theorem enables us to define the Lebesgue measure
on a pseudo-riemannian manifold.

Theorem 2. With each M we can associate a unique Borel measure
©(M) so that the following conditions are satisfied:

(i) if N 18 an open pseudo-riemannian submanifold of M, then
1(M)(E) = ©(N)(FE) for all Borel sets E — suppN,

(i) if f: M — N is a C'-diffeomorphism, then
©(N)(f[E) = [J,de(M)
E

for all Borel sets E — supp M,

(iii) ¢f M =R™ or RT, m =1,2,..., then t(M) is the Lebesgue
measure.

Now we define the Lebesgue measure on a pseudo-riemannian manifold
M as the measure 7(M) determined in Theorem 2.

We conclude this section by a corollary.

Corollary 1. If f: M — N 48 a C'-diffeomorphism, then a Borel
function o: N — R i8 v(N)-integrable if and only if (oof)d, is =(M)-
integrable and

[ odr(N) = [(eof)d,dr(M).
N a

The proofs are analogous to that given in [13], p. 9-12, in the case

of Riemannian manifolds.

3. Angles and their inner measure

Let M be an essentially pseudo-riemannian manifold with metric g.
For a real number a,a +# 0, let

I M = {vesuppT . M: g(v,v) = a}.

We say that a set E forms an ordinary angle arg(x, E) at a point « of M
if E is a Borel subset of some IZM,a # 0. We say that a set E forms
a topological angle arg(x, E) at a point z of M if E is a Borel subset of
either I; M or I M.

Let x ¢ supp M. Given a set E that forms a topological angle at x, let

IE = {bv: ve E,0 < b < 1/ig(v, v)|V}.
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It is easily seen that I E is Lebesgue-measurable on 7, M. According
to Section 2, we denote its Lebesgue measure by z(7,M)(I,E) and the
volume element by dr(7T, M). We then define the inner measure A(z, E)
of arg(z, E) by

A(z, E) = (T, M)(IE).

4. Curves and arc length

Let M be an essentially pseudo-riemannian manifold with metric g.
Under a curve on M we understand a continuous mapping ¢ from a closed
interval [a; b], a << b, to M. If ¢ is differentiable, we identify the deriva-
tive Dc(t), te [a; b], with a tangent vector to M at c¢(t). This determines
a curve Dec in the tangent bundle T M.

A curve c is called space-like (resp. time-like) if it is absolutely con-
tinuous and Dc(t) is a vector of a positive (resp. negative) definite subspace
of Toy) M at every point of differentiability. If ¢ is either space-like orl
time-like, it is called regular.

The length of a regular curve ¢ is defined by

Ue) = [ Ig(De(t), De(t)|V2dt.
[a: 8]
If I(c) is finite, ¢ is 8aid to be rectifiable. Now let p: M — R be a Bore
function, ¢, — the parametrization of ¢ by arc length, and ds — the arc
length element. The integral of o along ¢ is defined by

Ye)
[ds = [ gocyds,
c 1]

provided that the latter integral exists. Otherwise the integral of ¢ along ¢
is undefined.

Finally, suppose that N is an essentially pseudo-riemannian manifold
and f: M — N a C'-diffeomorphism. Then f is said to be type-preserving
(resp. type-reversing) if it transforms space-like curves onto space-like
(resp. space-like) curves. Here we confine ourselves to one theorem needed
later on:

Theorem 3. Suppose that f: M — N is either type-preserving or type-
-reversing, c¢: [a; b] — M is rectifiable, while o: N — R is Borel and non-
negative. Then f(c) 18 rectifiable and

[ eds < [ (eof)|Df |l ds.
J(¢) c

The proof is analogous to that given in [13], p. 14, in the case of Rie-
mannian manifolds.
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5. Moduli

Here we give an analogue of the p-moduli discussed in [13], p. 15-20.
Our composition and proofs, however, follow rather [4] or [11]. Through-
out the whole section M is an essentially pseudo-riemannian manifold,
while C, Cy, C,, C,, ... are families of regular curves on .

Denote by admC the class of all nonnegative Borel functions ¢ on i
which satisfy

fods=1

for all rectifiable ce C. Here we do not assume that the integrals in
question are finite. If pe adiC, p is said to be an admissible metric for C.
For each positive number p we define the p-modulus mod,C of C by

mod,, C = inf j o’dr,
it

where the infimum is taken over all ge admC. If admC is empty, we put
mod,C = oo. The quantity 1/mod,C is called the p-extremal length of C.
If in adinC there is a metric g, such that

mod,C = J oldr,
by

then p, is called p-extremal. It has the following important property:

Theorem 4. (uniqueness of an extremal metric). If, for some positive
integer p, mod,C is finite and o,, oy are p-exiremal, then % = 0, almost
everywhere on M.

Now we formulate other basic properties of p-moduli. Thereafter
P i8 a positive number and X, U denote summation over all positive
integers k.

Theorem 5 (monotoneity of moduli). If C, = C, or, more generally,
each ¢, of C, containg a ¢, of Cy, then

mod, C, < mod,C,.
Theorem 6 (the principle of composition for extremal lengths).
Suppose that C,,k =1,2,..., consist of curves lying in disjoint Borel

subsets E, of supp M, respectively, and that any ¢ of C contains some curve
of C, for each k. Then

1

1
E 1/mod?~' € < 1/mod?~'C,p > 1,

El/mod,,Ck <1/mod,C, p > 2.
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Theorem 7 (subadditivity of moduli). If C = (J €., then
mod,, ¢ < \ mod, C;..

Theorem 8 (superadditivity of moduli). (i) Suppose that ) C, < ¢
and that all C,, consist of curves lying in disjoint Borel subsets I, of supp M,
respectively. Then

(1) 2,; mod,C, < mod,C.

(ii) Estimate (1) remains valid if the condition () C, = C is veplaced
by the requirement for each ¢, of Cp., k = 1,2, ..., to contain some curve of C.

Theorems 4-8 are valid also in the case where M is pseudo-riemannian
but not essentially. If the index p of M equals 1, i.e. in the riemannian
cage, C, C,,C,, C,y, ... denote just families of curves on M (cf. [13],
p. 15-20). If }n < p < n, we can establish the same results as those given
above on replacing the metric g of M by -—g.

6. Conformality

Thereafter we always assume that M and N are essentially pseudo-
-riemannian manifolds with metrics g and ¢’, repsectively, while f: M - N
is a C'-diffeomorphism.

A ('-diffeomorphism f: M — N is said to be conformal if

(2) Df () [I3M]) = I}, N, wesupp M,
in the case where the index of ¢ is less than }n, while
(3) Df(z)[IF M) = I, N, zesupp M,

in the case where the index of g equnals }n, n being the dimension of g.
We begin with a theorem that gives a necessary and sufficient con-
dition for conformality. This condition agrees with the usual definition
applied in the case of Riemannian manifolds (cf. [8], p. 106, [10], vol. I,
p. 309, and [13], p. 16) as well as in the local formulation in the case of
pseudo-riemannian manifolds (cf. [3], p. 89, and [9], p. 5).

Theorem 9. A C'-diffeomorphism f: M — N is conformal if and only if
g'(Df (z)(v), Df(z)(v)) = a(@)g(v, »),
a(x) > 0, vesupp M, vesupp?, M,

where a does not depend on v.
Theorem 9 implies:

Corollary 2. Conditions (3) and
Df(z)[I; M) = I; N, xesupp M,
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are both necessary and sufficient for a C'-diffeomorphism f: M — N
to be conformal.

Next we give a characterization of conformal mappings in terms of
the inner measure of angles.

Theorem 10. If f: M — N is conformal and E forms a topological
angle at xesupp M, then

(i) Df(x)[E] forms a topological angle at f(x) and
A(f(.’l)), Df(w)[-E], = A(z, E),

(ii) the relation E < I7 M implies Df(x)[E]< I}, N, while E c I; M
imples Df(x)[E] < I;,N.

If, in particular, E forms an ordinary angle at x, then Df(x)[E] forms
an ordinary angle at f(x).

Theorem 11. Suppose that f: M > N s a C'-diffeomorphism and
that if E forms an ordinary angle at xe supp M, then

(i) Df(x)[E] forms a topological angle at f(x),

(ii) the relation E < I7 M implies Df(x)[E] < I}, N, while E <« I; M
implies Df(z)[E] < I;,N.

Then f i8 conformal.

Finally we give a characterization of conformal mappings in terms
of moduli.

Theorem 12. If f is conformal, then it is type-preserving. Furthermore,
if C is a family of regular curves on M, then

(4) mod,, f(C) = mod,C.
If, in particular,
0 < k< |Df(a)| < K < o, z¢supp M,
then
K* ?mod,C < mod, f(C) < k" "mod,C for p>n
and
k"~?mod,C < mod,f(C) < K" "mod,C for p <m.

Theorem 13. If f: M —~ N is type-preserving, then it is conformal.

7. Conclusions

Suppose that f: M — N is type-preserving and that there is a constant
@,1<Q < oo, such that
(5) (1/@)mod, € < mod,f(C) < Qmod, C

for some family C of regular curves. Then, by Theorem 13, f is conformal
and consequently, by Theorem 12, we get (4). Hence we conclude that
in the case of essentially pseudo-riemannian manifolds there is no analogue
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of regular quasiconformal mappings other than conformal (cf. [12], p. 18,
179, and 222 (Theorems 3.2 and 4.2), for the plane case; [14], p. 18-19,
for the euclidean case; and [13], p. 24-25, for the riemannian case).
Nevertheless, it is quite possible that if we properly weaken the hypotheses
of Theorem 13 in the sense that we allow some less smooth mappings
and assume, in addition, that f preserves the n-moduli, we will still be
able to prove that f is conformal (cf. [5], p. 388-390). Then it will be
natural to consider also the case where the preservation of the n-moduli
is replaced by a quasi-preservation in the sense of (5) with some fixed Q,
where C ranges over the class of all families of regular curves on M.

Other important problems that seem to be very natural are the
convergence properties of sequences of conformal mappings, in particular,
the problem of finding some conditions under which the limit mapping
is conformal. These questions, including the problem of obtaining some
analogue of the Carathéodory convergence theorem (cf. [2] and [6]),
are essential for physical applications. They were not solved even in the
riemannian case.

The authors plan to discuss at least some of these problems in a sub-
sequent paper.
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STRESZCZENIE

Praca dotyezy odwzorowan konforemnyeh rozmaitoéei pseudorie-
mannowskich rozpatrywanych globalnie.

WV ezesel przygotowaweze] wprowadzamy pewne oznaczenia i pojecia,
w szezegllnosei pojecie rozmaitosei pseudoriemannowskiej, dyskutujemy
zagadnienia mierzalnodei i calkowalnosei, wprowadzamy pojecie kata
i definiujemy jego miare wewnetrzng. 7Z kolei zajmujemy sie krzywymi,
w szczegllnodei wyrozniamy pewne ich rodziny: przestrzenne, czasowe,
regularne i prostowalne, defininjemy dlugo$é krzywej regularnej, wpro-
wadzamy pewne klasy odwzorowal: zgodne i niezgodne oraz uzyskujemy
podstawowe twierdzenie o tych odwzorowaniach, ktore daje pewng nie-
rownos¢ istotng dla dalszych badan. Nastepnie wprowadzamy pojecie
modutu rzedu p rodziny krzywych regularnych oraz badamy podstawowe
wlasnodei tych modulow.

W drugiej czedci pracy zajmujemy sie odwzorowaniami konforemnymi
rozmaitosei istotnie pseudoriemannowskich. Wprowadzone pojecie kon-
foremnosei oznaeza, z grubsza biorge, zachowanie stozka izotropowego
w kazdym punkecie rozpatrywanej rozmaitodei. Z kolei uzyskujemy wa-
runek konieczny i dostateczny konforemnosei w terminach form kwadra-
towych okreslonych przez metryki rozpatry wanych rozmaitosei. Podajemy
charakteryzacje odwzorowan konforemnych w terminach katéw i ich
miary wewnetrznej, & w korncu, w terminach krzywych regularnych i ich
moduléw.

Wreszcie, definiujemy odwzorowania quasi-konforemne regularne
i podsumowujemy prace wynikiem orzekajacym, iz w przypadku rozmai-
toéci istotnie pseudoriemannowskich nie ma odpowiednika odwzorowai
quasi-konforemnych regularnych i niekonforemnych jednoczegnie. Prag-
niemy tu zaznaczyé, ze problem istnienia stosownie okreslonyeh odwzo-
rowali quasi-konforemnych nieregularnych pozostaje otwarty. W zakon-
czeniu stawiamy takze pewne inne naturalne problemny.

PE3IOME

PaGora xacaercsi kondopMHLIX 0TOOpaMEHMil IICEBOPIMAHOBRIX MHO-
roo6pa3uii, paccMaTpMBaeMLIX B LieJIOM.

B npensaputenbioii yacTi BBeJeHBl HEKOTOpbie 0003HAYeHMs M Tep-
MHHOJIOTMA, B YaCTHOCTH IOHATHE [CEBAOPUMAHOBOro MHOrooGpasm,
PaccMOTpeHbl BONPOCH M3MEPUMOCTH M MHTETPUPOBAaHMA, BBEJEHO IIOHATHE
yria M ompejeiieHa ero BHYTpeHHaA Mepa. [lamee paccMoTpeHB! KpHBLIE
¢ 0cOOEHHBIM BhIiesleHiteM HeCKOJIbKUX ceMeiCTB KPUBBIX: MPOCTPaHCTBEH-
HBIX, BpPeMEeHHBIX, PeryJfApHhHX U CIPAMIAEMHX; olipeleseHa I1HUHA
peryJjiapHoii KpUBOii, BBeJIeHO HECKOJILKO BUIOB OTOOpaKeHuii: corilacHnie
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H Hecor.IacHble 1 110JIy4cHa OCHOBHAsl TeopeMa 00 JTHX OTOOPAIKCHMIIX,
Ia1UIaH HEKOTOPOe HepaBeHCTBO CYHICCTBEHHOE NIA RAJbLHEHINX Hcce-
noBanuii. 13Beneno 1HOHATHE p-MONYJH ceMelicTBA PCry.IfIPHBIX KPHBRIX
I HM3y4alTcH OCHOBHBIE CBoOlicTBa 3THX MONYJICHA.

Bo Bropoi#t uyactu paboThl paccMOTpPeHBl KoH(popMHbLIE OTOOpaiiicHiH,
TI0 CYIIECTRY IICeBJOPMMAHOBLIX MHoOrooGpasiii. Bpejeno noHsatue xonu-
(opmHocTH, KOTOpOC o0o03Hauaer, HPHOJNM3HTEIILHO, COXpaHeHue M|3o-
TPOMIIOr0 KOHYca B Kammoil Toyke paccMaTpHBacMOro MHoroo4pasiisi.
IloiryyeHo mneo0GXojnMOC I JOCTAaTOYHOE YCIOBHe JUIH KOHPOPMHOCTI
B TEPMIHAX KBagpaTtHHX (OpM, KOTOpBIe ONpecjeleHbl MeTPHKaMHM pac-
cMaTpHBaeMnIX Mioroo6pasiii. /laHa XapakrepucTiiiia KOHPOPMHLIX OTO-
OpaskeHHit B TepMIIHAX YIJIOB M MX BHellHeil Mepbl, a TaKiKe B TepMiliax
PCryJIApHBIX KPHBBIX H HX MOJYJIei.

B KoHile paGoThl olipejeneHhl peryJjsapHbie IKBa3auloH(OpMIikie OTO-
OpaskeHHnA 11 cleiiall BHIBOJ, YTO B Ci[yYae II0 CYLIECTRY IIC€BAOPMMAaNOBLIX
MHoroo0Opa3uii HeT COBMECTHOTrO aHaJiora JJIA KBa3WKOH(POPMHBIX M pe-
ry:spHeix otobpameHuit. Ciaexyer oTMeTHTh, 4TO lipol.leMa CYleCTBO-
BaHMsl COOTBETCTBEHHO OINpPeNelCHHBIX HePeryJdpPHRIX KBAa3HKOH(OPMHBIX
orobpa:kenuit ocraercA OTKpHTOii. [IpencraBieHnl Tak#e 1 Apyrue ecrecr-
BeHHble MpOoOICMBlL.






