ANNALES

UNIVERSITATIS MARIAE CURIE-SKもODOWSKA
LUBLIN-POLONIA
\qquad

Institut für Reinc Muthematik, Deutache Akademic dor Wissenschaften zu Berliu, DDI

RALF KOMIN

Power Series in z and \bar{z}

Szeregi potegowe względem z i \bar{z}
Степенные ряды относительно z и \bar{z}
In studying non-holomorphic complex-valued functions usually a complex differential-equation is considered. Its solutions show properties which are very similar to the properties of holomorphic functions. Let us mention here the pseudo-analytic functions, introduced by L. Bers and the generalized analytic functions, introduced by I. N. Vekua.

But if we start from power series in order to study nonholomorphic functions without considering any regard to differential-equations we are led to series of the form

$$
P(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n m} z^{n} \bar{z}^{m}
$$

We meet here phenomena which are peculiar for one-dimensional holomorphic theory but also some differences arise.

The problems considered here may be treated in two different ways. First of all some well known methods of one-dimensional holomorphic theory can be transferred to these series, and on the other hand these series may be regarded as a holomorphic function of two complex variables z_{1}, z_{2} in the plane $z_{1}=\bar{z}_{2}$.

We have $\left|z_{j}\right|=\sqrt{x_{j}^{2}+y_{j}^{2}}$, and this is the distance between the point z_{j} and the origin. But $|z|$ is the euclidean distance between the point $\left(z_{1}, \bar{z}_{2}\right)$ and the origin. So we have $|z|=\sqrt{x_{1}^{2}+y_{1}^{2}+x_{1}^{2}+y_{1}^{2}}=\sqrt{2}\left|z_{1}\right|$. Hence we put $z=x+i y$ with $x=\sqrt{2} x_{1}, y=\sqrt{2} y_{1}$. So we have the correspondence

$$
P(z) \rightarrow P\left(z_{1}, z_{2}\right)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n m}(\sqrt{2})^{n+m} z_{1}^{n} z_{2}^{m} .
$$

Using this correspondence a lot of properties can be proved.

1. Convergence. If $P(z)$ is convergent at z_{0} it is absolutely convergent at all the points in the disc $|z|<\left|z_{0}\right|$. This follows from an analogous property of holomorphic series in z_{1} and z_{2} which is called Abel's theorem.

There exists a positive real number r such that $P(z)$ converges absolutely in the disc $|z|<r$ and diverges for $|z|>r$. This number r is called the radius of convergence; r can be found as in one-dimensional holomorphic theory. Consider the sequence $\sqrt[n+m]{\left|a_{n m}\right|}$ and let l be its limit superior. Then $r=1 / l$. And this can be extended, of course, on series in the neighbourhood of a point $a \neq 0$ which can be done by putting $\zeta=z-a$ and also in the neighbourhood of the point $z=\infty$ by putting $\zeta=1 / z$. A series of the form $Q(z)=\sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} a_{n m} z^{n} \bar{z}^{m}$ is called Laurent series. This
expression means

$$
\begin{aligned}
Q(z)=\sum_{n, m=0}^{\infty} a_{n m} z^{n} \bar{z}^{m}+ & \sum_{\substack{n, m=0) \\
(n, m) \neq(0,0)}}^{\infty} a_{-n,-n} \frac{1}{n}+\sum_{\overline{z^{m}}}^{\infty} \sum_{n=1}^{\infty} a_{m=0}^{\infty} a_{-n, m} \frac{\bar{z}}{z^{n}}+ \\
& +\sum_{n=0}^{\infty} \sum_{m=1}^{\infty} a_{n,-m} \frac{z^{n}}{\bar{z}^{m}} \cdot
\end{aligned}
$$

All these four parts of $Q(z)$ must be convergent, if Q should have any sense. The first part converges in a disc, the second part converges outside another disc. It is easy to prove that part three and part four converge in $r_{\text {III }}<|z|<R_{\text {III }}, r_{\text {IV }}<|z|<R_{\text {IV }}$, resp. Only if these four sets of convergence have a non-empty intersection, we can write the above expression for $Q(z)$.

The operations on series such as sum, difference, product, quotient, and the derivative of a power series, can be defined as in the two-dimensional case by restriction to the plane $z_{1}=\bar{z}_{2}$.
2. Coefficient comparison. Next we come to a problem which can be also tackled by two-dimensional theory, that is the theorem of identity or, in other words, the coefficient comparison. At first we can state the following trivial theorem: Let $P_{1}(z)$ and $P_{2}(z)$ be two given convergent power series. If P_{1} and P_{2} coincide at every point of an open subset of the common set of convergence, then P_{1} and P_{2} are identical, and we can equate. coefficients of corresponding powers of z and $\overline{\bar{z}}$.

In one-dimensional holomorphic theory we have the following identity theorem: Two series are identical if they coincide at every point of a convergent sequence of points. We know that such a kind of identity theorem does not take place in two dimensional theory, we can find counter examples e.g. in Osgood's "Funktionentheorie".
H. Hornich (Monatshefte fur Mathematik, vol. 71 (1967), 214-217) gave nocessary and sufficient conditions for convergent point sequences, so that two holomorphic functions $f\left(z_{1}, z_{2}\right)$ and $g\left(z_{1}, z_{2}\right)$ are identical if they coincide at every point of such a sequence. We can transfer this theorem, of course, to our series in z and \bar{z}.

The present author succeeded in proving a sufficient condition, from which it follows that the zeros of a series $P(\approx)$ cannot accumnlate, and this gives us an identity theorem for series in z and \bar{z}, which is similar to the form well known from one-dimensional holomorphic theory.
3. Analytic continuation. In holomorphic theory the identity theorem leads to analytic continuation and the same is true here. Leet us consider the series $P_{a}(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n m}(z-a)^{n}(\bar{z}-\bar{a})^{m}$. Let b be a point in the dise $|z-a|<r$, where r is the convergence radius. If the function P_{a} has another representation, say $P_{b}(z)=\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_{n m}^{\prime}(\tilde{z}-b)^{n}(\bar{z}-\bar{b})^{m}$, where the coefficients $a_{n m}^{\prime}$ can be determined from the original series, it is possible to prove that P_{b} converges at least in $|z-b|<r-|b-a|$.

Like in holomorphic theory we use the following definitions. If the dises of convergence of two power series $P_{a}(z)$ and $P_{b}(z)$ have a non-empty intersection ω and P_{a} and P_{b} coincide in os P_{a} is said to be a direct analytic continuation of P_{b} and conversely, P_{b} is a continuation of P_{a}.

The quantity consisting of all pairs $\left(z_{0}, P_{0}(z)\right)$, where $P_{0}(z)=\sum_{n=0}^{\infty} \sum_{n=m}^{\infty} a_{n m}^{(0)} \times$ $\times\left(z-z_{0}\right)^{n}\left(\bar{z}-\bar{z}_{0}\right)^{m}$ which can be obtained directly or indirectly by an analytic continuation from a given series $P_{a}(z)$, is called a monogenic system of power series or a monogenic function and is denoted by $f(z)$.

The series P_{a} is called a primitive element. Each particular series of such a system $f(z)$ is called an elementary branch and in its of convergence dise K_{0} it represents a single-valued branch of a monogenic function.

Every interior point of K_{0} is called a regular point. A point $s \in \partial K_{0}$ is called regular if there exists a direct continuation $P_{s}(z)$ whose radius of convergence does not vanish. Otherwise it is called singular.

All these definitions are well known from holomorphic theory and they all con be transferred to the series considerel here. Let us mention the following difference. In the holomorphic theory we have the theorem of natural boundary which means that at least one point of the boundary of the dise of convergence K_{0} of an elementary branch P_{0} is singular. This theorem does not take place here.
4. Isolated singularities. We restrict ourselves to isolated singular points. Let us consider a single-valued branch $f(z)$ of a monogenic function
defined in an open connected set G^{\prime}. Let c be an isolated boundary point of G^{\prime} so that the union $G=\left\{G^{\prime} \cup c\right\}$ is also an open connected set, then c is said to be an isolated singularity of $f(z)$.

Like in the holomorphic theory an isolated singular point can be of any one of three types:
i) $f(z)$ is bounded - c is called removable singularity;
ii) $f(z)$ is unbounded but $1 / f$ is bounded $-c$ is said to be a pole;
iii) $f(z)$ is unbounded and $1 / f$ is unbounded, too $-c$ is an essential singularity.
In studying non-holomorphic series in z and \bar{z} we have to distinguish two types of removable points and poles.

Let $f(z)$ be bounded and let $\left\{z_{n}\right\} \rightarrow c$ be any convergent sequence of points. Then it is possible to choose a subsequence so that f tends to a finite value, a finite asynıptotic value. Such a kind of removable singularity is called weak-removable. An isolated singular point c such that $f(z)$ can be defined or redefined in such a way as to be at least continuously at c is said to be strong-removable. And so a pole is said to be a weak one if $1 / f$ is weak-removable and it is said to be a strong pole if $1 / f$ is strong-removable.

The well-known Riemann's theorem on removable singularities can be generalized for strong-removable singularities, if the derivative $\partial_{\bar{z}} f$ is of $L^{p}(G), p>2$.

A generalization of Casorati Weierstrass' theorem on essential singularities takes also place if $\partial_{\bar{z}} f \in L^{p}, p>2$.
5. Examples. At last we give some examples of series-expansion of functions in the neighbourhood of a singular point. We only mention the properties but we do not prove them.

Let $Q(z)=\sum_{n=-\infty} \sum_{m=-\infty} a_{n m} z \bar{z}^{m}$ be convergent in $0<|z|<r ; z=0$, the origin is an isolated singularity. In order to get a better image we arrange the coefficients in a matrix

$$
\left(\begin{array}{c|c}
(-n,-m) & (n,-m) \\
\hline(-n, m) \mid(n, m)
\end{array}\right)
$$

So we have the following types of series:
i) $\quad Q_{1}(z)=\sum_{n=0}^{\infty} \sum_{m=-\infty}^{n} a_{n-m, m} z^{n-m} \bar{z}^{m}$, that is Q_{1} has a weak-removable singularity;
ii) $\quad Q_{2}(z)=\sum_{n=k}^{\infty} \sum_{m=-\infty}^{n} a_{n-m, m} z^{n-m} \bar{z}^{m}$, i.e. Q_{2} has a strong-removable singularity and $Q_{2} \in C^{k-1}$;
iii) $\begin{aligned} & Q_{3}(z)=\sum_{n=-n_{1}}^{\infty} \sum_{m=-n_{2}}^{\infty} a_{n m} z^{n} \bar{z}^{m} \text { with } a_{-n_{1},-n_{2}} \neq 0 \text {, i.e. } Q_{3} \text { has a strong }\end{aligned}$
iv) $Q_{4}(z)=\sum_{n=-n_{0}}^{\infty} \sum_{m=-\infty}^{n} a_{n-m, m} z^{n-m} \bar{z}^{m}$, here all types of singularities are possible. To decide which type of singularity is in question we have to investigate some of so called characteristic functions which are Fourier--series of the form

$$
\chi_{n}(\varphi)=\sum_{m=-\infty}^{\infty} a_{n-m, m} e^{-2\left(m+k_{n}\right) i \varphi} .
$$

More detailed considerations will be given in Mathematische Nachrichten. My works on these subjects will be published in 1971, Vol. 47, 49 , and 51.

STRESZCZENIE

Tematem odczytu jest przedstawienie niektórych podstawowych własności szeregów potegowych postaci $\sum a_{n m} z^{n} \bar{z}^{m}$. W szczególnosci, Autor zwraca uwage na pewne analogie, ale też i na pewne różnice w zachowaniu się tych szeregów w porównaniu z szeregami potęgowymi postaci $\sum a_{n} z^{n}$, bądz $\sum a_{n m} z_{1}^{n} z_{2}^{m}$.

PEЗЮME

Тема работы - представление некоторых главных свойств степенных рядов вида $\sum a_{n m} z^{n} \bar{z}^{m}$. Особенное внимание обращено на некоторые аналогии и некоторые разницы в сохранении этих рядов по сравнению со степенными рядами вида $\sum a_{n} z^{n}, \sum a_{m n} z_{1}^{m} z_{2}^{n}$.

