AN NALES

UNIVERSITATIS MARIAE CURIE-SKEODOWSKA LUBLIN-POLONIA

VOL. XXII/XXII/XXIV, 7
SECTIO A
1968/1969/1970

Instytut Matematyki, Politechnika Lódzka, Lodz

KRYSTYNA DOBROWOLSKA

On Meromorphic Quasi-starlike Functions

O funkcjach quasi-gwiazdzistych meromorficznych О квази-ввездннх мөроморфных функциях

Let Σ^{*} denote the class of functions

$$
\begin{equation*}
F(z)=\frac{1}{z}+A_{0}+A_{1} z+\ldots \tag{1}
\end{equation*}
$$

which are univalent and holomorphic in $|z|<1$, except for a pole at $z=0$, and map $|z|<1$ onto a domain whose complement is starlike with respect to the origin.

The class of functions $f(z)$ determined by the equation

$$
\begin{equation*}
F\left(\frac{1}{f(z)}\right)=M F^{\prime}(z) \tag{2}
\end{equation*}
$$

where $F \in \Sigma^{*}$ and M is fixed, $(1<M<\infty)$, will be called the class of meromorphic quasi-starlike functions and denoted by Σ^{M}.

Let us introduce the following notations

$$
\begin{equation*}
f(z)=\frac{a_{-1}}{z}+a_{0}+a_{1} z+\ldots,|z|<1 \tag{3}
\end{equation*}
$$

where $a_{-1}=M$, and

$$
\begin{equation*}
\left(\frac{1}{f(z)}\right)^{k}=a_{k}^{(k)} z^{k}+a_{k+1}^{(k)} z^{k+1}+\ldots, \quad k=1,2, \ldots \tag{4}
\end{equation*}
$$

Further, let $\Sigma_{(m)}^{M}$ denote the subclass of Σ^{M} of meromorphic quasistarlike functions determined by the equation

$$
\begin{equation*}
\frac{1}{f(z)} \prod_{k=1}^{m}\left(f(z)-\sigma_{k}\right)^{\beta_{k}}=\frac{M}{z} \prod_{k=1}^{m}\left(1-\sigma_{k} z\right)^{\beta_{k}} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{k}=e^{i \varphi_{k}}, \varphi_{k}-\text { real }, \sigma_{i} \neq \sigma_{k} \text { for } i \neq k, i, k=1, \ldots, m \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{m} \beta_{k}=2, \quad \beta_{k}>0, \quad k=1,2, \ldots, m \tag{7}
\end{equation*}
$$

Suppose that

$$
\begin{equation*}
\boldsymbol{H}=\boldsymbol{H}\left(z_{0}, z_{1}, \ldots, z_{N}, \bar{z}_{0}, \bar{z}_{1}, \ldots, \bar{z}_{N}\right) \tag{8}
\end{equation*}
$$

is a real-valued function of $2 N+2$ complex variables, defined in an open and sufficiently large set V and suppose that grad $H \neq 0$ at every point of V.

Given a function $f(z)$ of the form (3), let

$$
\begin{equation*}
\boldsymbol{H}_{\boldsymbol{f}}=\boldsymbol{H}\left(a_{0}, a_{1}, \ldots, a_{N}, \bar{a}_{0}, \bar{a}_{1}, \ldots, \bar{a}_{N}\right) \tag{9}
\end{equation*}
$$

One can prove the following
Theorem 1. If the functional (9) attains its extremal value for a function $f(z)$ of the class $\Sigma_{(m)}^{\mathrm{M}}$, then this function satisfies the following equations:

$$
\frac{f^{\prime}(z) \mathscr{L}\left(\frac{1}{f(z)}\right)}{f(z) \mathscr{R}\left(\frac{1}{f(z)}\right)}+\frac{1}{z} \frac{\mathscr{L}(z)}{\mathscr{R}(z)}=0
$$

and

$$
\frac{f^{\prime}(z)}{f(z)} \frac{\tilde{\mathscr{L}}\left(\frac{1}{f(z)}\right)}{\tilde{\mathscr{R}}\left(\frac{1}{f(z)}\right)}+\frac{1}{z} \frac{\tilde{\mathscr{L}}(z)}{\tilde{\mathscr{R}}(z)}=0
$$

where

$$
\begin{aligned}
& \mathscr{L}(z)=\sum_{k=1}^{N+1}\left(\frac{C_{k}}{z^{k}}+\bar{C}_{k} z^{k}\right)+C_{0} \\
& \mathscr{R}(z)=\sum_{k=1}^{N+1}\left(\frac{D_{k}}{z_{k}}-\bar{D}_{k} z^{k}\right) \\
& \tilde{\mathscr{L}}(z)=\sum_{k=1}^{N+1}\left(\frac{E_{k}}{z^{k}}-\bar{E}_{k} z^{k}\right)+E_{0} \\
& \tilde{\mathscr{R}}(z)=\sum_{k=1}^{N+1} \frac{1}{k}\left(\frac{D_{k}}{z^{k}}+\bar{D}_{k} z^{z^{k}}\right)+D_{0}
\end{aligned}
$$

$$
\begin{equation*}
D_{k}=\sum_{l=k-1}^{N} H_{l} \sum_{n=0}^{l-k+1} B_{l-k-n+1}\left((n-1) a_{n-1}-a_{l}^{l-n)}\right), \quad k=1, \ldots, N+1 \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& D_{0}=-\frac{1}{2} \sum_{k=1}^{\cdot v+1} \frac{1}{k}\left(D_{k} d_{k}+\bar{D}_{k} \bar{d}_{k}\right) \tag{12}\\
& C_{k}=\sum_{l=k}^{N+1} D_{l} d_{l-k}, \quad k=1, \ldots, N+1 \\
& C_{0}=\sum_{l=1}^{N+1} D_{l} d_{l} \quad \text { and } \quad C_{0}=\bar{C}_{0} \\
& E_{k}=\sum_{l=k}^{N+1} \frac{1}{l} D_{l} d_{l-k}, \quad k=1, \ldots, N+1 \\
& E_{0}=\frac{1}{2} \sum_{k=1}^{N+1} \frac{1}{k}\left(D_{k} d_{k}-\bar{D}_{k} \bar{d}_{k}\right)
\end{align*}
$$

$$
\begin{equation*}
H_{k}=\frac{\partial H}{\partial a_{k}}+\left(\overline{\frac{\partial H}{\partial \bar{a}_{k}}}\right), \quad k=0,1, \ldots, N \tag{13}
\end{equation*}
$$

$$
d_{k}=\sum_{l=1}^{m} \beta_{l} \sigma_{l}^{k}, \quad k=1,2, \ldots, d_{0}=1
$$

$$
B_{k}=(-1)^{k}\left|\begin{array}{ccccc}
d_{1} & d_{0} & 0 & \ldots & 0 \\
d_{2} & d_{1} & d_{0} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & . \\
d_{k} & d_{k-1} & d_{k-2} & \ldots & d_{1}
\end{array}\right|, k=1,2, \ldots, B_{0}=1
$$

Moreover, the numbers $\vec{\sigma}_{t}, t=1, \ldots, m$, which appear in (5) and (6) are roots of $\mathscr{R}(z)$ and double roots of $\mathscr{P}(z)$.

The proof is based on the method of Lagrange's multipliers for the functions of complex variables [1].

Theorem 2. The extremal value of the functional H_{f} is attained in the class Σ^{M}, for a function which belongs to the class $\bigcup_{m=1}^{N+1} \Sigma_{(m)}^{M}$.

Proof. Let H^{*} denote e.g. maximum of the functional H_{ρ} in Σ^{M} and let H_{k}^{*} denote an analogous maximum in $\bigcup_{m=1}^{k} \sum_{(m)}^{M} . k=1,2, \ldots$

Let us observe first, that $\boldsymbol{H}_{k}^{*}=\boldsymbol{H}_{N+1}^{*}$ for $k>N+1$ and consequently

$$
\begin{equation*}
\sup _{k} \boldsymbol{H}_{k}^{*}=\boldsymbol{H}_{N+1}^{*} \tag{16}
\end{equation*}
$$

In fact, because the class $\bigcup_{m=1}^{k} \Sigma_{(m)}^{M}, k=1,2, \ldots$, is compact and H is continuous, we can find a function $f \in \Sigma_{i}^{M}, i \leqslant k$, realizing the mentioned extremum. Then from Theorem 1 it follows that the function $\tilde{\mathscr{G}}(z)$ of the form (10) has double roots at points $z=\bar{\sigma}_{t}, t=1, \ldots, i$. This implies $i \leqslant N+1$ and, as consequently, inequality (16) follows.

Next, we prove that

$$
\begin{equation*}
\boldsymbol{H}^{*} \leqslant \boldsymbol{H}_{N+1}^{*} \tag{17}
\end{equation*}
$$

It is not difficult to observe that we can approximate any meromorphic quasi-starlike function by the functions of the classes $\sum_{(m)}^{B M}(m=1,2, \ldots)$. Therefore, the assumption $H_{f_{0}}>H_{N+1}^{*}$ with $f_{0} \in \Sigma^{M}$ contradicts (16) and this implies the inequality (17).

Finally, we can observe using the definitions of meromorphic quasistarlike functions $f(z)$ and quasi-starlike functions that the function $g(z)$ of the form $g(z)=1 / f(z)$ is quasi-starlike. From this and from a result obtained by I. Dziubiński [3] the following result easily follows.

Theorem 3. The necessary and sufficient condition for a function $F(z)=\frac{1}{M} f(z), f \in \Sigma_{(m)}^{M}$, to belong to the class Σ^{*} is that the following conditions are satisfied: $\beta_{k}=2 / m, k=1,2, \ldots, m$,
$\sigma_{k}=e^{i \frac{2 k \pi}{m}}$, when m is an odd number, $k=1,2, \ldots, m$,
(19) $\sigma_{k}=e^{i\left(\frac{4 \pi}{m}\left[\frac{k-1}{2}\right]+(-1)^{k-1}\right)}$, when m is an even number, $k=1,2, \ldots, m$, where φ is an arbitrary real number, $0<\varphi<2 \pi / m$, and the numbers σ_{k} are determined by (18), (19) up to a rotation.

In the next part of this paper we shall give sharp estimates of coefficients a_{0}, a_{1}, a_{2} of a meromorphic quasi-starlike function.

Let us consider the functional H_{f} of the form

$$
\begin{equation*}
H_{f}=\operatorname{re} a_{n}=\frac{1}{2}\left(a_{n}+\bar{a}_{n}\right), \quad n=0,1,2, \tag{20}
\end{equation*}
$$

and suppose, that

$$
\begin{equation*}
\mathrm{re} a_{n}=a_{n}>0, \quad n=0,1,2, \tag{21}
\end{equation*}
$$

for the function $f^{*}(z)$ realizing an extremum of the functional (20).
1°. Let $n=0$. From Theorem 2 it follows immediately that the functional (20) attains its extremal value for a function $f^{*}(z)$ belonging to the class $\sum_{(1)}^{M}$. Hence, $f^{*}(z)$ is determined by the equation (5) ($m=1$) and the coefficient a_{0} of $f^{*}(z)$, in view of (21), has the form

$$
a_{0}=2 M\left(1-\frac{1}{M}\right) .
$$

Therefore, for every function $f \in \Sigma^{M}$ we have

$$
\begin{equation*}
\left|a_{0}\right| \leqslant 2 M\left(1-\frac{1}{M}\right) . \tag{22}
\end{equation*}
$$

2°. Let $n=1$. Then $f^{*}(z)$ realizing an extremum of H_{f} belongs to the class $\bigcup_{k=1}^{2} \Sigma_{(k)}^{M}$.
a) At first we suppose, that $f^{*} \in \Sigma_{(1)}^{M}$. Then $f^{*}(z)$ is determined by the equation (5) $(m=1)$ and its coefficient $a_{1(1)}$, in view of (21), has the form

$$
\begin{equation*}
a_{1(1)}=M\left(1-\frac{1}{M^{2}}\right) \tag{23}
\end{equation*}
$$

b) Next, we suppose that $f^{*} \in \sum_{(2)}^{M}$. Then $f^{*}(z)$ is given by the equation (5), ($m=2$), and its coefficient $a_{1(2)}$ is of the form

$$
\begin{equation*}
a_{1(2)}=\frac{M^{2}-1}{M}\left[\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}\right)^{2}-\left(\beta_{1} \sigma_{1}^{2}+\beta_{2} \sigma_{2}^{2}\right)\right] . \tag{24}
\end{equation*}
$$

From Theorem 1 it follows that the numbers $\bar{\sigma}_{t}(t=1,2)$ are double roots of the function $\tilde{\mathscr{R}}(z)$ determined by (10)-(15). Hence, the numbers σ_{1}, σ_{2}, β_{1}, β_{2} associated with $f^{*}(z)$ by the formula (5) satisfy the following system of the equations

$$
\left\{\begin{array}{l}
\sigma_{1}^{2} \sigma_{1}^{2}=1 \\
\sigma_{1}\left(1-\beta_{1}\right)+\sigma_{2}\left(1-\beta_{2}\right)=0 \\
\beta_{1}+\beta_{2}=2
\end{array}\right.
$$

Hence, we obtain

$$
\begin{equation*}
\sigma_{1}=e^{i \varphi}, \quad \sigma_{2}=e^{-i \varphi}, \quad \beta_{1}=\beta_{2}=1 \tag{25}
\end{equation*}
$$

or

$$
\begin{equation*}
\sigma_{1}=e^{i \varphi}, \quad \sigma_{2}=-e^{-i \varphi}, \quad \beta_{1}=\beta_{2}=1 . \tag{26}
\end{equation*}
$$

Further, from (24)-(26) and (21) it follows that the coefficient $a_{1(2)}$ of $f^{*}(z)$ is of the form

$$
\begin{equation*}
a_{1(2)}=M\left(1-\frac{1}{M^{2}}\right) . \tag{27}
\end{equation*}
$$

We conclude from (23) and (27) that:
For every function $f \in \Sigma^{M}$ we have

$$
\begin{equation*}
\left|a_{1}\right| \leqslant M\left(1-\frac{1}{M^{2}}\right) . \tag{28}
\end{equation*}
$$

3°. Let $n=2$. Then $f^{*}(z)$ realizing an extremum of H_{ρ} belongs to the class $\bigcup_{k=1}^{3} \Sigma_{(k)}^{M}$.
a) Suppose first that $f^{*} \in \Sigma_{(1)}^{M}$.

Then the coefficient $a_{2(1)}$ of $f^{*}(z)$ in view of (5), is given by the formula

$$
\begin{equation*}
a_{2(1)}=\frac{2}{M}\left(1-\frac{1}{M}\right) . \tag{29}
\end{equation*}
$$

b) Next, suppose that $f^{*} \in \Sigma_{(2)}^{M}$.

Then, from the equation (5), $(m=2)$, it follows that its coefficient $a_{2(2)}$ is determined by the formula

$$
\begin{align*}
a_{2(2)}= & \frac{1-M}{6 M^{2}}\left[\left(M^{2}+M+4\right)\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}\right)^{3}-\right. \tag{30}\\
& -3\left(M M^{2}+M+2\right)\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}\right)\left(\beta_{1} \sigma_{1}^{2}+\beta_{2} \sigma_{2}^{2}\right)+ \\
& \left.+2\left(M^{2}+M+1\right)\left(\beta_{1} \sigma_{1}^{3}+\beta_{2} \sigma_{2}^{3}\right)\right] .
\end{align*}
$$

From Theorem 1 it follows that the numbers $\bar{\sigma}_{1}, \bar{\sigma}_{2}$ are double roots of $\tilde{\mathscr{x}}(z)$ given by (10) and (11)-(15). Another roots of $\tilde{\mathscr{x}}(z)$ are denoted by $z_{1}=\varrho_{1} \bar{\sigma}, z_{2}=\frac{1}{\varrho_{1}} \bar{\sigma}$, where $|\sigma|=1,0<\varrho_{1} \leqslant 1$. Hence it follows that $\sigma_{1}, \sigma_{2}, \beta_{1}, \beta_{2}$, associated with $f^{*}(z)$ by the formula (5) satisfy the following system of equations

$$
\left\{\begin{array}{l}
\beta_{1}+\beta_{2}=2 \tag{31}\\
\sigma_{1}^{2} \sigma_{2}^{2} \sigma^{2}=1 \\
\sigma_{1}+\sigma_{2}+\varrho \sigma=\frac{3}{4}\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}\right) \frac{M^{2}+M+2}{M^{2}+M+1} \\
\left(\sigma_{1}+\sigma_{2}\right)^{2}+2 \sigma_{1} \sigma_{2}+\sigma^{2}+4 \varrho \sigma\left(\sigma_{1}+\sigma_{2}\right)= \\
=\frac{3}{2} \frac{M^{2}+M+4}{M^{2}+M+1}\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}\right)^{2}-\frac{3}{2} \frac{M^{2}+M+2}{M^{2}+M+1}\left(\beta_{1} \sigma_{1}^{2}+\beta_{2} \sigma_{2}^{2}\right),
\end{array}\right.
$$

where $\varrho=1 / 2\left(\varrho_{1}+1 / \varrho_{1}\right)$.
From system (31) we obtain

$$
\begin{aligned}
\sigma_{1}=e^{-\frac{\pi}{3} i}, \quad \beta_{1}=-\frac{1}{2} \sqrt{\frac{2}{3} \frac{2 M^{2}+2 M+5}{M^{2}+M+4}} \\
\sigma_{2}=-e^{-\frac{\pi}{3} i}, \quad \beta_{2}=1+\frac{1}{2} \sqrt{\frac{2}{3} \frac{2 M^{2}+2 M+5}{M^{2}+M+4}}
\end{aligned}
$$

and, as a consequence of this and the equation (30), we obtain

$$
\begin{equation*}
a_{2(2)}=\frac{2}{9} \frac{(M-1)\left(2 M^{2}+2 M+5\right)}{M^{2}} \sqrt{\frac{2}{3} \frac{2 M^{2}+2 M+5}{M^{2}+M+4}} . \tag{32}
\end{equation*}
$$

The remaining solutions of (31) lead to the same value of $\left|a_{2(2)}\right|$.
c) Finally, suppose that $f^{*} \in \Sigma_{(3)}^{M}$.

Then, from the equation (5), $(m=3)$, it follows that the coefficient $a_{2(3)}$ of $f^{*}(z)$ is given by the formula

$$
\begin{align*}
a_{2(3)}= & \frac{1-M}{6 M^{2}}\left[\left(M^{2}+M+4\right)\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}+\beta_{3} \sigma_{3}\right)^{\frac{2}{2}}\right. \tag{33}\\
& +2\left(M^{2}+M+1\right)\left(\beta_{1} \sigma_{1}^{3}+\beta_{2} \sigma_{2}^{3}+\beta_{3} \sigma_{3}^{3}\right)+ \\
& \left.-3\left(M^{2}+M+2\right)\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}+\beta_{3} \sigma_{3}\right)\left(\beta_{1} \sigma_{1}^{2}+\beta_{3} \sigma_{2}^{2}+\beta_{3} \sigma_{3}^{2}\right)\right]
\end{align*}
$$

Analogously as in b), we verify that the numbers $\sigma_{1}, \sigma_{2}, \sigma_{3}, \beta_{1}, \beta_{2}, \beta_{3}$ associated with $f^{*}(z)$ satisfy the following system of equations:

$$
\left\{\begin{array}{l}
\beta_{1}+\beta_{2}+\beta_{3}=2 \tag{34}\\
\sigma_{1}^{2} \sigma_{2}^{2} \sigma_{3}^{2}=1 \\
\sigma_{1}+\sigma_{2}+\sigma_{3}=\frac{3}{4} \frac{M^{2}+M+2}{M^{2}+M+1}\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}+\beta_{3} \sigma_{3}\right) \\
\left(\sigma_{1}+\sigma_{2}+\sigma_{3}\right)^{2}+2\left(\sigma_{1} \sigma_{2}+\sigma_{1} \sigma_{3}+\sigma_{2} \sigma_{3}\right)= \\
=\frac{3}{2} \frac{M^{2}+M+4}{M^{2}+M+1}\left(\beta_{1} \sigma_{1}+\beta_{2} \sigma_{2}+\beta_{3} \sigma_{3}\right)^{2}+ \\
-\frac{3}{2} \frac{M^{2}+M+2}{M^{2}+M+1}\left(\beta_{1} \sigma_{1}^{2}+\beta_{2} \sigma_{2}^{2}+\beta_{3} \sigma_{3}^{2}\right)
\end{array}\right.
$$

From (34) it follows that

$$
\sigma_{1}=-1, \quad \sigma_{2}=e^{\frac{\pi}{3} i}, \quad \sigma_{3}=e^{-\frac{\pi}{3} i}, \quad \beta_{1}=\beta_{2}=\beta_{3}=\frac{2}{3}
$$

and, by (33)

$$
a_{2(3)}=\frac{2}{3} M\left(1-\frac{1}{M^{3}}\right)
$$

The remaining solutions of (34) lead to the same value of $\left|a_{2(3)}\right|$. Since the inequalities

$$
\frac{2}{M}\left(1-\frac{1}{M}\right)<\frac{2}{9 M}\left(1-\frac{1}{M}\right) \sqrt{\frac{2}{3} \frac{\left(2 M^{2}+2 M+5\right)^{3}}{M^{2}+M+4}}<\frac{2}{3} M\left(1-\frac{1}{M^{3}}\right)
$$

are fulfilled for every $M>1$, we obtain, using (29), (32), (33'), that

$$
a_{2(1)}<a_{2(2)}<a_{2(3)} .
$$

Hence it follows that:
For every function $f \in \Sigma^{M}$ we have

$$
\begin{equation*}
\left|a_{2}\right| \leqslant \frac{2}{3} M\left(1-\frac{1}{M^{3}}\right) \tag{35}
\end{equation*}
$$

From (22), (28) and (35) we obtain
Theorem 4. If a function $f(z)$ belongs to the class Σ^{M}, then

$$
\begin{equation*}
\left|a_{n}\right| \leqslant \frac{2}{n+1} M\left(1-\frac{1}{M^{n+1}}\right) \quad \text { for } n=0,1,2 . \tag{36}
\end{equation*}
$$

The estimation (36) is sharp and the equality in (36) takes place for the function given by the equation

$$
\frac{1}{f(z)}\left(f^{n+1}(z)+1\right)^{\frac{2}{n+1}}=\frac{M}{z}\left(z^{n+1}+1\right)^{\frac{2}{n+1}} .
$$

Finally, let us observe that the above results suggest that the estimation (36) in the class Σ^{M} holds for any natural n. Moreover, it is easy to see, after a suitable normalization of meromorphic quasi-starlike functions ($a_{-1}=1$), that we can obtain from (36) the analogous results for the class Σ^{*} obtained earlier by Clunie [2] and Pommerenke [4].

REFERENCES

[1] Charzyński, Z., Sur les fonctions univalentes algébriques bornées, Rozprawy Matem. 10 (1955).
[2] Clunie, J., On meromorphio schlichl functions, J. London Math. Soc. 34,2 (1959).
[3] Dziubiński, I., Quasi-starlike functions, Ann. Polon. Math. (to appear).
[4] Pommerenke, Ch., Über einige Klassen moromorpher schlichter Funktionen, Math. 78, Hf. 3 (1962).

STRESZCZENIE

Autorka rozpatruje klase Σ^{M} funkeji meromorficznych quasi-gwiazdzistych, określona warunkiem (2) i znajduje postaé ogólną funkcji ekstremalnych dla pewnych funkcjonałów w tej klasie. Jako zastosowanie znajduje dokładne oszacowania współczynników Laurenta $a_{n}(n=0,1,2)$ w rozważanej klasie.

РЕЗЮME

Автор занимается классом Σ^{M} мероморфных квази-звездных функций, который определен условием (2) и получает общий вид экстремальных функций для некоторых функционалов в этом классе. В применении дает точную оценку коэффициентов Јорана a_{n}, ($n=0,1,2$) в этом классе.

