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ELIGIUSZ ZLOTKIEWICZ
Some Remarks Concerning Close-to-Convex Functions
Pewne uwagi o funkejach prawie wypukiych

HekoTophle BaMeTKM O MOYTH BHINYKJIHNX QYHKIUAX

1. Let S denote the class of functions of the form f(z) = 2+ ... analytic
and univalent in the unit disc 4 and let 8¢, 8%, L be its subclasses consisting
of functions mapping 4 onto domains convex, starshaped w.r.t. the origin
and close-to-convex, respectively.

Let P be the family of functions analytic in 4 and satisfying the
conditions

p(0) =1, @&{p(2)}=>0.

It is well-known that the following statements hold:

| P
(i) feS =1+ @) e P,
o o, 2f' (2)

(if) feS" == @) eP,

(iii)  fe L iff there exist a function ge §* and a real number a, |a| < 7/2

such that
9?{6"" 7 (zl} >0
9(2)
in the unit dise.
Our aim is an investigation of the class G ¢ L defined as follows.

Def. 1. A function f(2) =z+a,2?+... is said to be an element of the
class @ if there exist an odd starlike function ¢ and a real number a,
la| < =/2 such that

(1) R {e‘“ M} >0
®(2)
holds in the unit disc.
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In this note we determine the region of variability of the expression
logf’(2z), the radius of convexity of the class ¢ and we consider some
problems of univalence.

It is my pleasure to express my thanks to Professors J. G. Krzyz
and Z. Lewandowski for their helpful remarks.

2. Let M be the family of non-decreasing functions x on the interval
0, 27) subject to the condition [{*du = 1.

Lemma. fe G iff there exist functions u, yeM such that f has the
representation

e L TR e AT \
@)  fe) = f{(J —1%,— au(o)] exp |~ flog(l—uze-")dv) du
0 ! 0

for ze A and ae (0, m/2).
A proof of Lemma follows immediately from (1) and the well-known
Herglotz formula and hence will be omitted.
Let z be a fixed point of 4, and let the region of variability of logf’(z)
be the set D = {w: w = logf’'(z), fe G}.
Theorem 1. The set D is a closed and convex set bounded by the curve
w(t) = log(1+ra(t)(l—rB() (1 —r2y)~!
where
a(t) = exp (t+ aresin(rsint)),
(3) B(t) = exp(t—aresin(rsint)),
(1) = exp(t—aresin(r2sint))
and te (0, 27), |2 = 7.

Proof. First we prove the convexity of D. If ¢ and y are odd starlike
functions, then for each Ae (0,1), the function

s =+(2) (2
< ?

is also odd and starlike. If ¢ and h are elements of @, chosen so that

ge(zg') >0 and gz(z;"(z)) >0

4 Y
and if f,(z) is defined by f;(2) = (¢’ (2)1'[#’'(2)]" % f(0) = 0, then we have
’ ’ hl
argz—f‘l < Ajarg— L l—{-(1 A)la z (z) < m/2
W, ' ¥

Hence f,e@ for each 1e¢<0,1) and w; = Alogg’(z)+ (1 —A)logh’e D
Thus the convexity of D has been proved.
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In view of this fact, in order to determine D it is sufficient to solve
the following extremal problem: For a given ze 4 and te {0, 2z) find
a function fe G for which

F(f) = #{e "logf'(2)}
is a maximum.
To do this we shall use a variational technique. Since the functions
4, v in (2) can be varied independently of each other we are in a position
to apply Golusin’s variational formulas [2] for both integrals in (2). After
routine considerations, we conclude that the extremal functions have
the form
fe) = (1—e ) (1—e 2y (1 — e "22) !,
where t,¢<0,2x),k =1, 2, 3.
In view of the convexity of D, we have the relations
it
Q{e“"—— og _1.+re l — }=0
o, (L—re ") (1L —r2e %)
k =1,2,3. for the boundary points of D. The proof of the theorem is
complete.

Theorem 1 is an analogue of Krzyz’s theorem for the class L [3]
(cf. also [1]).

Corollary. If feG then

(i) largf’(2)| < 2(aresinr + aresinr?),
(ii) A+’ <If@I<(1-7r72,
(iii) r(l+7)' < |f(2)| <r(1—7)"t.

These estimates are sharp.
Theorem 2. Each function fe G maps the disc 2| < r.,r, = 1}(1+V'5—
—V2 1 +l/5)) onto a convex domain. The constant r. i8 the best possible.
Proof. In order to prove Theorem 2 we shall estimate the expression
glb. 9?{1 g WY
1eG f, (Z) J
According to the Lemma, we have

of"(2) b R P 2q’ ()

14— =] — Tt v ]
TFe T et T g
where ¢(z) = cosap(z)+isina, p(z)e P. Hence

p 24’ (2) - 27
q(2) A3
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and

2f" (z) r—2r3 2r2 —2r +1
B g st sl i et
e 1=

both hold. Moreover, K (f) > 0 iff 2| < r, where 7, is the smallest positive
root of the equation z*-—2x®—222—2x-+1 = 0. The value 7, holds for
the function f(z) = log(1 +2)(1-22)~""?

Theorem 3. If f(2) =2+ a,2*+...¢G, then

(5.1) Hf(e)—f(—2) e @
(5.2) la,| <1, = =2,3,...
Proof. It follows from (1) that we have

ﬂ{e‘“;—f’ (z}} >0 and JP{ " fl— }
?(2) ¢(2)

i ?
# {Gm —.‘)‘ ‘f(fv’} —f(_ — 3})’} >0
and (5.1) has been established.
Let; f(2) =2+ a,22+...,9(2) =2+ Zb,k 2 1e 8% and p(2) =1+
+ Z ¢,? e P. 1t is well-known that
|bge_n] <1, lewl <2, k=1,2,..

= K(f)

Thus

According to (1) we have now

n—1
\ |

[na,| < k) [Bp_r]y b2 = 0.

Thus

laa] < 1

It is clear that G contains all odd close-to-convex functions so that
(56.2) is a well-known result for these functions [4].

Theorem 4. If fe L and if h = [u™" f(u)du then
0
;(h(z)—h(-—z))eG
Proof. Suppose that fe L and ¢eS8° is such that :i?{e"“f—,} > 0.

'
Then we have

2[h(2) —h(—2)] = f(2) —f(—2).



Some remarks concerning close-to-convex functions bl

I w,w,ep(4) and if set F(w) = fop ' (w), a = ¢(w,), b = p(w,),
then we obtain

Flwo) —F(w) _ o () =f(@) _

0< R e o o) —p(a) 99_! ¢ F' (w, + t(w, —w,))
If we let 2 = a,b = —=z then we have
[h(z) —h(—2)T f&)—f(-2)
R fa = R ) gia 0
* o) —p(—2) o) —p(—2)

Now, it is well-known that if fe8° then }(f(2)—f(—2))eS8* thus
1{(h(2)—h(—2))< 6.
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STRESZCZENIE

W pracy tej rozpatruje pewna podklase funkeji prawie wypuklych.
Znaleziono obszar warto$ci funkcjonatu logf’'(z) i dokladng wartoéé pro-
mienia wypukloSei.

PE3IOME

B paGore n3yyaercsa HEKOTOPHIi MMOIKIACC MOYTH BRIMYKILIX QYHKUMM.
Haitnena o6.aactb 3HauyeHuit @yHkumoHana log f'(2) m TouyHoe 3HAuyeHHe
pamuyca BHINYKJIOCTH.






