VOL. XX, 4

SECTIO A

196 6

Z Katedry Matematyki Wydziału Ekonomicznego UMCS Kierownik: doc. dr Zdzisław Lewandowski

ZDZISŁAW LEWANDOWSKI and JAN STANKIEWICZ

On the Region of Variability of $\log f'(z)$ for some Classes of Close-to-convex Functions

Obszar zmienności $\log f'(z)$ w pewnych podklasach funkcji prawie wypukłych Область изменения $\log f'(z)$ в некоторых подклассах почти выпуклых функций

1. Introduction

Let P'_m be the class of functions $p(z) = a_0 + a_m z^m + a_{2m} z^{2m} + \dots$ regular in the unit disk K_1 which satisfy the conditions

$$|p(0)| = |a_0| = 1$$
, re $p(z) > 0$ for $z \in K_1$.

Let S' be the class of functions $f(z) = a_1z + a_2z^2 + \ldots$ regular and univalent in K_1 such that $|f'(0)| = |a_1| = 1$.

Let C'_k be the subclass of S' consisting of all convex k-symmetric functions with the power series expansion

$$f(z) = a_1 z + a_{k+1} z^{k+1} + a_{2k+1} z^{2k+1} + \dots$$

We say that f belongs to the class L of close-to-convex functions if there exists $\varphi \in C_1'$ such that

$$\operatorname{re}\left\{f'(z)/\varphi'(z)\right\} > 0, \quad z \in K_1.$$

In other words $f \in L$, iff there exists $\varphi \in C'_1$ and $p \in P'_1$ such that

$$f'(z) = \varphi'(z) p(z).$$

We can also define the subclasses L_{km} of L consisting of all f satisfying

(1) with φ and p ranging over C'_k and P'_m resp.

The aim of this paper is to investigate the derivative of $f \in L_{km}$. Moreover, we show that the class L_{kk} coincides with class L_k of k-symmetric close-to-convex functions. Hence the region of variability of f' for $f \in L_k$ can be determined.

2. The region of variability of $\log f'(z)$

Let D(z, k, m) be the set of all possible values of $\log f'(z)$ for a fixed $z \in K_1$ and f ranging over L_{km} . Due to rotational symmetry of L_{km} we have D(|z|, k, m) = D(z, k, m), hence we may restrict ourselves to the case of real and positive z.

Theorem 1. The set D(r, k, m), 0 < r < 1, is a closed and convex region.

Proof. The set D(r, k, m) is closed which follows from the compactness of L_{km} . We now easily verify what follows:

(i) if p, $q \in P'_m$, then the function

$$p^{\lambda}(z)q^{1-\lambda}(z), \quad 0 \leqslant \lambda \leqslant 1,$$

also belongs to P'_m ;

(ii) if $G, H \in C'_k$, then the function

$$\int\limits_0^z \left[H'(\zeta)
ight]^{\lambda} [G'(\zeta)]^{1-\lambda} d\zeta, \quad 0\leqslant \lambda\leqslant 1,$$

also belongs to C'_k .

In view of (1) we realize that for any $f, g \in L_{km}$ and any $\lambda \in \langle 0, 1 \rangle$ the function

(2)
$$\psi(z) = \int_{0}^{z} [f'(\zeta)]^{\lambda} [g'(\zeta)]^{1-\lambda} d\zeta$$

also belongs to L_{km} . Suppose now that $w_1 = \log f'(r) \, \epsilon \, D(r, \, k, \, m)$, $w_2 = \log g'(r) \, \epsilon \, D(r, \, k, \, m)$ and $\lambda \, \epsilon \, \langle 0, \, 1 \rangle$. If ψ is determined by (2), then obviously $\log \psi'(r) = \lambda w_1 + (1-\lambda) w_2 \, \epsilon \, D(r, \, k, \, m)$ and this proves the convexity of $D(r, \, k, \, m)$.

We now describe the set D(r, k, m) more precisely.

Theorem 2. The boundary of D(r, k, m) consists of an arc Γ with the equation

(3)
$$w = \log \frac{\frac{1}{1 - r^m} e^{i\theta_{1,m}(\beta)}}{(1 - r^m e^{i\theta_{1,m}(\beta)}) \lceil 1 - r^k e^{i\theta_{1,k}(\beta)} \rceil^{2/k}}, \quad 0 \leqslant \beta \leqslant \pi,$$

where

(4)
$$\theta_{1,s}(\beta) = \beta - \arcsin(r^s \sin \beta)$$

(5)
$$\theta_{2,\beta}(\beta) = \pi + \beta + \arcsin(r^{\beta}\sin\beta)$$

and its reflection Γ^* in the real axis.

The extremal functions corresponding to the boundary points of D(r, k, m) have either the form

(6)
$$F(z) = \int_{0}^{z} \frac{1 - \zeta^{m} e^{i\theta_{2}, m(\beta)}}{(1 - \zeta^{m} e^{i\theta_{1}, m(\beta)}) [1 - \zeta^{k} e^{i\theta_{1}, k(\beta)}]^{2/k}} d\zeta$$

where $\theta_{j,s}(\beta)$ are given by (4) and (5), or the form

$$G(z) = \overline{F}(\overline{z}).$$

Proof. To any pair φ , p of functions belonging to C'_k , P'_m , resp., there corresponds a function $f \in L_{km}$ such that

$$\log f'(r) = \log \varphi'(r) + \log p(r).$$

Hence in order to find D(r, k, m) we have to determine the regions of variability of $\log \varphi'(r)$ and $\log p(r)$ for fixed r.

Let C_k and P_m be the subclasses of C_k' and P_m' corresponding to the normalizations $\varphi'(0)=1$, p(0)=1, resp. Suppose that $D_1(r,k)$ is the region of variability of $\log \varphi'(r)$ for $\varphi \in C_k$, $r \in (0,1)$ being fixed. Let $D_2(r,m)$ be an analogous set for $\log \{e^{-ia}p(r)\cos a+i\sin a\}$ where a and p range over $\langle -\pi/2, \pi/2 \rangle$ and P_m , resp.

Then the set D(r, k, m) can be determined as follows

(7)
$$D(r, k, m) = \{w \colon w = w_1 + w_2, w_1 \in D_1(r, k), w_2 \in D_2(r, m)\}.$$

We need only to find $D_1(r,k)$ and $D_2(r,m)$. Obviously with each $\varphi \in C_1$ we can associate a function $\psi \in C_k$ such that $\psi(z) = \int\limits_0^z [\varphi'(\zeta^k)]^{1/k} d\zeta$. Hence $D_1(r,k)$ arises from $D_1(r^k,1)$ by a homothety with ratio 1/k since

$$\log \psi'(r) = (1/k) \log \varphi'(r^k).$$

Hence $D_1(r, k)$ is a convex region with the real axis 0u and the line $u = -(1/k)\log(1-r^{2k})$ being the axes of symmetry, cf. e.g. [1], [2]. The functions corresponding to the boundary points of $D_1(r, k)$ have the form

(8)
$$\varphi(z) = \int_{0}^{z} (1 - \zeta^{k} e^{iy_{1}})^{-2/k} d\zeta$$

y, is real.

Similarly with each $\tilde{p} \in P_m$ we can associate $p \in P_1$ such that $\tilde{p}(z) = p(z^m)$. Hence $D_2(r, m) = D_2(r^m, 1)$. The region $D_2(r, m)$ is symmetric with respect to the both axes, cf. [1], [2], and its boundary points correspond to the functions

(9)
$$q(z) = \frac{1 - z^m e^{i\gamma_2}}{1 - z^m e^{i\gamma_3}}$$

with suitably chosen real γ_2 , γ_3 . It follows from the symmetry of $D_1(r, k)$ and $D_2(r, m)$ that D(r, k, m) is symmetric with respect to the real axis 0u and the line $u = \frac{1}{k} \log(1 - r^{2k})$.

Now by (7), (8), (9) the boundary points of D(r, k, m) are associated with F such that

$$F'(z) = (1 - z^k e^{i\gamma_1})^{-2/k} \frac{1 - z^m e^{i\gamma_2}}{1 - z^m e^{i\gamma_3}}$$

with suitably chosen real γ_i .

Due to the convexity of D(r, k, m), the supporting line subtending an angle β with the imaginary axis becomes after a rotation by an angle $-\beta$ perpendicular to the real axis and therefore the relevant values of γ_f correspond to the maximal value of the expression

$$egin{aligned} H\left(\gamma_{1},\,\gamma_{2},\,\gamma_{3}
ight) &= \mathrm{re}\,\{e^{-ieta}\!\log F'(r)\} &= \\ &= \mathrm{re}\,\{e^{-ieta}[\log(1\!-r^{m}\,e^{i\gamma_{2}})\!-\!\log(1\!-r^{m}\,e^{i\gamma_{3}})\!-\!(2/k)\log(1\!-r^{k}\,e^{i\gamma_{1}})]\}. \end{aligned}$$

We first investigate the extremal values of

$$H(\gamma) = \operatorname{re} e^{-i\beta} \log (1 - r^{s} e^{i\gamma}).$$

Since

$$H'(\gamma) = \operatorname{re}\left\{e^{-i\beta}\frac{-ir^se^{i\gamma}}{1-r^se^{i\gamma}}\right\} = \frac{r^s[r^s\sin\beta + \sin(\gamma-\beta)]}{|1-r^se^{i\gamma}|^2},$$

we see that $H'(\gamma)$ vanishes at

$$\gamma' = \theta_{1,s}(\beta) = \beta - \arcsin(r^s \sin \beta)$$
$$\gamma'' = \theta_{2,s}(\beta) = \pi + \beta + \arcsin(r^s \sin \beta).$$

Moreover, $H'(\gamma) > 0$ in (γ', γ'') , whereas $H'(\gamma) \leq 0$ otherwise. Hence $H(\gamma)$ has a maximum at $\gamma = \theta_{2,s}(\beta)$ and a minimum at $\gamma = \theta_{1,s}(\beta)$. Consequently, $H(\gamma_1, \gamma_2, \gamma_3)$ has a maximum at

$$(\gamma_1, \gamma_2, \gamma_3) = (\theta_{1,k}(\beta), \theta_{2,m}(\beta), \theta_{1,m}(\beta))$$

the maximum being expond to

$$H(\theta_{1,k},\,\theta_{2,m},\,\theta_{1,m}) = \mathrm{re}\,e^{-i\beta}\mathrm{log}\,\frac{1-r^m \,e^{i\theta_{2,m}(\beta)}}{[1-r^k e^{i\theta_{1,k}(\beta)}]^{2/k}[1-r^m e^{i\theta_{1,m}(\beta)}]}\,.$$

This is just the equation of the boundary of D(r, k, m) as given by the formula (3).

The derivative of F as fiven by the formula (6) has the value F'(r) corresponding to the boundary point D(r, k, m) determined by (3). This completes the proof of Theorem 2 in view of symmetry property.

As a corollary of Theorem 2 we obtain

Theorem 3. If $f \in L_{km}$, then

$$\frac{1-r^m}{(1+r^m)(1+r^k)^{2/k}} \leqslant |f'(z)| \leqslant \frac{1+r^m}{(1-r^m)(1-r^k)^{2/k}},$$

$$|\arg f'(z)| \leqslant 2 \arcsin r^m + \frac{2}{k} \arcsin r^k,$$

where |z|=r.

The signs of equality in (10) are attained for a function F as given by (6) with $\beta = \pi$ and $\beta = 0$, resp. z being real, positive. The sign of equality in (11) is attained for real positive z and a function F as given by (6) with $\beta = \pi/2$ and also for $G(z) = \overline{F(\overline{z})}$.

Proof. It follows from symmetry and convexity of D(r, k, m) that the real value of $w \in D(r, k, m)$ has extreme values corresponding to vertical supporting lines $(\beta = 0, \beta = \pi)$. This gives $\theta_{1,s}(0) = 0$, $\theta_{2,s}(0) = \pi$, $\theta_{1,s}(\pi) = \pi$, $\theta_{2,s}(\pi) = 2\pi$ and (10) readily follows.

On the other hand maximal value of $\operatorname{im} w, w \in D(r, k, m)$ corresponds to $\beta = \pi/2$ which gives $\theta_{2,s}(\pi/2) = 3\pi/2 + \arcsin r^s$, $\theta_{1,s}(\pi/2) = \pi/2 - \arcsin r^s$. Using (6) and putting z = r we obtain as the maximal value of $\operatorname{arg} f'(r)$

$$\left| \arg \frac{1 + i r^m e^{-i \arcsin r^m}}{[1 - i r^m e^{i \arcsin r^m}] \left[1 - i r^k e^{i \arcsin r^k} \right]^{2/k}} \right| = 2 \arcsin r^m + \frac{2}{k} \arcsin r^k$$

from follows the estimate (11).

3. Some particular cases

Let L_k be the class of k-symmetric close-to-convex functions with the power series expansion

$$f(z) = z + a_{k+1}z^{k+1} + a_{2k+1}z^{2k+1} + \dots$$

We first show that $L_k = L_{kk}$.

If $f \in L_{kk}$, then there exist $\varphi \in C'_k$ and $\tilde{p} \in P'_k$ such that

$$f'(z) = \varphi'(z)\tilde{p}(z) = 1 + b_{\nu}z^{k} + b_{\nu}z^{2k} + \dots$$

which means that $f \in L_k$.

Let us now assume that $f \in L_k$. Then there exist $\varphi \in C_1'$, $p \in P_1'$ such that $f'(z) = \varphi'(z) p(z)$. If $f \in L_k$, $\eta = e^{2\pi i/k}$ and $\eta_j = \eta^j$, then

(12)
$$[f'(\eta_1 z)f'(\eta_2 z) \dots f'(\eta_k z)]^{1/k} = [f'(z)^k]^{1/k} = f'(z).$$

Moreover

$$[\varphi'(\eta_1 z)\varphi'(\eta_2 z)\ldots\varphi'(\eta_k z)]^{1/k}=h(z)$$

is the derivative of some $\psi \in C'_k$, whereas

(14)
$$[p(\eta_1 z) p(\eta_2 z) \dots p(\eta_k z)]^{1/k} = q(z) \epsilon P'_k.$$

From (12), (13) and (14) it follows that

$$f'(z) = \psi'(z) q(z)$$

with $\psi \, \epsilon \, C_k'$, $q \, \epsilon \, P_k'$. This proves that $f \, \epsilon \, L_{kk}$ and consequently $L_k = L_{kk}$.

Using this relation we obtain

Theorem 4. The region D(r, k) of variability of $\log f'(z)$ for a fixed z, $z \in K_1$, and f ranging over the class L_k of k-symmetric close-to-convex functions is a closed, convex domain symmetric with respect to the real axis Ou and the straight line $u = -(1/k)\log(1-r^{2k})$. Its boundary consists of an arc I' with the equation

$$w = \log(1 - r^k e^{i\theta_{2,k}(\beta)}) [1 - r^k e^{i\theta_{1,k}(\beta)}]^{-(k+2)/k},$$

 $0 \leqslant \beta \leqslant \pi$, $\theta_{1,k}$, $\theta_{2,k}$ being given by (4), (5) and its reflection Γ^* with respect to the real axis.

The boundary points of D(r, k) are associated with functions of the form

(15)
$$F(z) = \int_{0}^{z} (1 - \zeta^{k} e^{i\theta_{2},k(\beta)}) [1 - \zeta^{k} e^{i\theta_{1},k(\beta)}]^{-(k+2)/k} d\zeta,$$

and

(16)
$$G(z) = \overline{F(\bar{z})}.$$

Proof. As shown previously, $L_k = L_{kk}$ and this implies that

$$D(r, k) = D(r, k, k).$$

We now only need to apply Theorem 2.

As a counterpart of Theorem 3 we obtain

Theorem 5. If $f \in L_k$, then

$$rac{1-r^k}{(1+r^k)^{(k+2)/k}} \leqslant |f'(z)| \leqslant rac{1+r^k}{(1-r^k)^{(k+2)/k}},$$
 $|\arg f'(z)| \leqslant (2+2/k) \arcsin r^k.$

The signs of equality are attained for functions of the form (15) and (16), resp. which correspond to the same values of β as in Theorem 3.

Putting k = 1 we obtain the region of variability and rotation theorem for the class L as obtained by J. Krzyż [2].

REFERENCES

- [1] Krzyż, J., On the Derivative of Close-to-convex Functions, Coll. Math, 10 (1963), p 143-146
- [2] Krzyż, J, Some Remarks on Close-to-convex Functions, Bull. Acad. Polon. Sci., Serie sci. math., astr., phys., 12 (1964), p. 25-28.

Streszczenie

Niech L_{km} będzie podklasą funkcji prawie wypukłych, takich, że pochodna da się przedstawić w postaci iloczynu

$$f'(z) = \varphi'(z) \cdot p(z), f'(0) = 1$$

gdzie $\varphi(z) = a_1 z + a_{k+1} z^{k+1} + a_{2k+1} z^{2k+1} + \ldots$, $|a_1| = 1$, odwzorowuje koło jednostkowe K_1 na obszar wypukły o k-krotnej symetrii, a funkcja $p(z) = a_0 + a_m z^m + a_{2m} z^{2m} + \ldots$ spełnia warunki $|a_0| = 1$, rep(z) > 0 dla $z \in K_1$.

Niech L_k oznacza klasę funkcji prawie wypukłych k-symetrycznych klasycznie unormowanych.

W pracy tej określamy dokładnie obszar zmienności $\log f'(z)$ w klasach L_{km} (Twierdzenie 2) oraz oszacowania |f'(z)| oraz $|\arg f'(z)|$ (Twierdzenie 3).

Okazuje się, że klasa L_k jest identyczna z klasą L_{kk} . W oparciu o ten fakt znaleziony został obszar zmienności $\log f'(z)$ w klasie L_k oraz oszacowania |f'(z)| $i | \arg f'(z)|$ w tej klasie.

Jeżeli przyjmiemy k=m=1 otrzymujemy wyniki z pracy J. Krzyża [2].

Резюме

Пусть L_{km} будет подклассом почти выпуклых функций, таких, что производную можно представить в виде произведения

$$f'(z) = \varphi'(z) \cdot p(z), f'(0) = 1,$$

где $\varphi(z)=a_1z+a_{k+1}z^{k+1}+a_{2k+1}z^{2k+1}+\ldots, |a_1|=1,$ отображает единичный круг K_1 на выпуклую область о к-кратной симметрии, а функция $p(z)=a_0+a_mz^m+a_{2m}z^{2m}+\ldots$ удовлетворяет условиям $|a_0|=1,$ ге p(z)>0 для $z\,\epsilon\,K_1.$

Пусть L_k обозначает класс почти выпуклых к-симметрических функций классически нормированных.

В работе точно определяется область изменения $\log f'(z)$ в классах L_{km} (теорема 2) и оценки |f'(z)|, $|\arg f'(z)|$ (теорема 3).

Оказывается, что классы L_k и L_{kk} тождественны. На основании этого факта найдена область изменения $\log f'(z)$ в классе L_k и оценки |f'(z)|, $|\arg f'(z)|$ в этом классе. Если принять k=m=1, то получаются результаты работы Й. Кжижа [2].