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Functions
Obszar zmiennoéci logf'(¢) w pewnych podklasach funkeji prawie wypuklych

O6aacTs wimenenHs 10gf’(z) B HEKOTOPWX MOAKIACCAX MOYTH BHINYKABIX GYHKUHI
1. Introduction

Let P, be the class of functions p(z) = a,+ a,2™+ a,,2*™+... re-
gular in the unit disk K, which satisfy the conditions

1p(0)] = |ap] = 1, rep(z) >0 for zeK,.

Let 8" be the class of functions f(z) = a,z+ a,2?+ ... regular and
univalent in K, such that |f'(0)] = |a,| = 1.

Let C, be the subclass of 8’ consisting of all convex k-symmetric
functions with the power series expansion

f(2) = ay24 ap & + @y 244 L

We say that f belongs to the class L of close-to-convex functions if
there exists geC; such that

re{f' (2)/¢'(2)} >0, zeK,.
In other words feL, iff there exists peC; and peP; such that

(1) (@) =¢'(2)p(2).

We can also define the subclasses L,,, of L consisting of all f satisfying
(1) with ¢ and p ranging over C, and P,, resp.

The aim of this paper is to investigate the derivative of fe L,,,. Moreover,
we show that the class L, coincides with class L, of k-symmetric close-
-to-convex functions. Hence the region of variability of f* for feL, can
be determined.
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2. The region of variability of logf’(z)

Let D(z, k, m) be the set of all possible values of logf’(z) for a fixed
z¢K, and f ranging over L,,. Due to rotational symmetry of I, we
have D(|z|, k, m) = D(z, k, m), hence we may restrict ourselves to the
case of real and positive z.

Theorem 1. The set D(r, k, m), 0 < r < 1, i8 a closed and convex region.

Proof. The set D(r, k, m) is closed which follows from the compactness
of L,,.. We now easily verify what follows:
(i) if p, geP,,, then the function

P'(2)¢ =), 0<1<1,
also belongs to P, ;
(ii) if G, HeC,, then the function

[ OO e, o0<i<i,
0

also belongs to C,.

In view of (1) we realize that for any f, geL,,, and any 1¢{0,1) the
function

(2) p(z) = [ [f(OPg (O de

also belongs to I,,. Suppose now that w, = logf’ (r)eD(r, k, m),
w, = logg'(r)eD(r, k, m) and A2e<0,1). If p is determined by (2), then
obviously logy’(r) = Aw,+ (1— A)wyeD(r, k, m) and this proves the
convexity of D(r, k, m).

We now describe the set D(r, k, m) more precisely.

Theorem 2. The boundary of D (r, k,m) consists of an arc I" with the equation

1 gm eiﬂzlm(ﬂ)

(3) w = log (1 7 g [ — y* O e ? 0<B<Lm,
where

(4) 6,,(8) = B— arcsin(r*sinp)

(5) 0,,(8) = @+ f+ arcsin(r’sing)

and its reflection I'* in the real axis.
The extremal functions corresponding to the boundary points of D(r, k, m)
have either the form

2 ; C‘m eiﬁz,m(ﬂ)
(6) F(2) =f m 0 B) % 0] p(B) 12/
d (1— M 1mB)[1—Fe 1]

dg

where 0,,() are given by (4) and (5), or the form
G(z) = F(3).
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Proof. To any pair ¢, p of functions belonging to C,, P,,, resp., there
corresponds a function feL,, such that

logf'(r) = logg’(r)+logp(r).
Hence in order to find D(r, k, m) we have to determine the regions of
variability of loge’(r) and logp(r) for fixed 7.

Let C, and P, be the subclasses of €, and P,, corresponding to the
normalizations ¢'(0) =1, p(0) = 1, resp. Suppose that D,(r, k) is the
region of variability of log¢’(r) for geC,, r¢(0, 1) being fixed. Let D, (r, m)
be an analogous set for log{e **p(r)cosa-+ isina} where a and p range
over {—=xn/2,n/2) and P,,, Tesp.

Then the set D(r, k, m) can he determined as follows

(7) D(ryk,m) = {w: w = w,+wy, w,eDy(r, k), wy e Dy(r, m)}.

We need only to find D,(r, k) and D,(r, m). Obviously with each geC,
2

we can associate a function yeC, such that y(z) = [[¢’(¢*)]"*d.. Hence
0

D,(r, k) arises from D,(*, 1) by a homothety with ratio 1/k since

logy' (r) = (1/k)loge’ ().
Hence D,(r, k) is a convex region with the real axis Ox and the line
u = —(1/k)log(1—7**) being the axes of symmetry, cf. e.g. [1], [2].

The functions corresponding to the boundary points of D,(r, k) have
the form

(8) p(2) = [ (1—t*e™)~2*dg

yy is real.

Similarly with each p e P,, we can associate p e P, such that p(z) = p (™).
Hence D,(r, m) = D,(r™,1). The region D,(r, m) is symmetric with
respect to the both axes, cf. [1], [2], and its boundary points correspond
to the functions

1—2™g"
(9) 12) = 7=
with suitably chosen real y,, y;. It follows from the symmetry of D,(r, k)
and D,(r, m) that D(r, k, m) is symmetric with respect to the real axis Ou

1
and the line u = — log(1— r*).
K

Now by (7), (8), (9) the boundary points of D(r, k, m) are associated
with F such that
] 1— 262
! - . B ty1\—2/k
F'(2) = (1—2¥6™M) —am
with suitably chosen real y;.
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Due to the convexity of D(r, k, m), the supporting line subtending
an angle g with the imaginary axis becomes after a rotation by an angle
— B perpendicular to the real axis and therefore the relevant values of y,
correspond to the maximal value of the expression

H (yyy y2y v3) =Te {e_iﬂlogF'(")} =
= re{6 ¥ [log(1— r™e"2)—log (1 —r™6"3)— (2/k)log (L —r*¢"1)]}.
We first investigate the extremal values of

H(y) = ree ¥log(1—re").
Since
—ir‘a“‘l ~ r’[sing+sin(y—B)]
1—r6f [1—re”]? g

H'(y) =re {e'“’
we see that H'(y) vanishes at
y' = 0,,(8) = f—arcsin(r’sinpg)
y"" = 0, ,(p) = =+ p+arcsin(’sinp).

Moreover, H'(y) >0 in (y’,y’’), whereas H'(y) <0 otherwise. Hence
H(y) has a maximum at y = 0,,(8) and a minimum at y = 0, ,(f).
Consequently, H (y,, y2, ¥s) has a maximum at

(Y1y Y2y ¥3) = (gl.k(ﬁ)! 02,m(13): ol,m(ﬂ))

the maximum being expond to
1— ™ g"2mlP)
[1— % 1.uP)2ik ] y™ g ml)]

H(0, x5 02,m) 01,m) = ree'iﬂlog

This is just the equation of the boundary of D(r, k, m) as given by the
formula (3).

The derivative of F as fiven by the formula (6) has the value F'(r)
corresponding to the boundary point D(r, k, m) determined by (3). This
completes the proof of Theorem 2 in view of symmetry property.

As a corollary of Theorem 2 we obtain

Theorem 3. If feL,,, then

10 o 1—r™ < 11'(0)] < 1+om
o Crmarropr < VS grma
(11) largf’ (2)| < 2arcsinr”‘+—i—arcsinr",

where |z| = 7.
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The signs of equality in (10) are attained for a fumction F as given by
(6) with 8 = = and f = 0, resp. z being real, positive. The sign of equality
in (11) i8 attained for real positive z and a funotion F as given by (6) with
f = n|2 and also for G(z) = F(Z).

Proof. It follows from symmetry and convexity of D(r, k, m) that
the real value of weD(r, k, m) has extreme values corresponding to ver-
tical supporting lines (8 = 0, 8 = =). This gives 6, ,(0) =0, 0, ,(C) = =,
0,4(n) = =, 0, (%) = 2z and (10) readily follows.

On the other hand maximal value of imw, weD(r, k, m) corresponds
to B = x/2 which gives 0,,(n/2) = 3n/2+ arcsins’, 0, ,(%/2) = n[2—
—arcsiny®. Using (6) and putting 2 = r we obtain as the maximal value
of argf’(r)

1+ ir™ g~ tercsinr™

2
— 7 m Ry N k
" [1—dr™ otarestnr™ 11— ket&rcslnr"]zlk = 2aresinr™ + % arcsinz

from follows the estimate (11).

3. Some particular cases

Let L, be the class of k-symmetric close-to-convex functions with
the power series expansion

J(2) = 24 ap ' +ag P4 L
We first show that L, = L.
If feL,,, then there exist g eC; and Pe P, such that
() = ¢'(2)P(2) = 1+ b, 2"+ by 2+ ...
which means that felL,.

Let us now assume that feL,. Then there exist peC;, peP; such that
f(2) = ¢'(2)p(2). If feLy,n = 6™ and 7y =7, then

(12) ' (m2)f (na2) - ' (me2) ] = [f' (@)1 = f'(2).
Moreover

(13) (@' (1.2)9" (122) -.. ¢ (m2)]V* = h(2)

is the derivative of some ypeC}, whereas

(14) [P(m2)P (M22) ... p(ne2)]V* = q(2) e Py

From (12), (13) and (14) it follows that

' (2) =9'(2)q(2)
with peC,, geP,. This proves that feL,, and consequently L, = L,,.

4 — Annales
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Using this relation we obtain

Theorem 4. The region D(r, k) of variability of logf’ (z) for a fized z,
z2eK,, and f ranging over the class L, of k-symmetric close-to-convexr functions
18 a closed, convexr domain symmelric with respéct to the real axis Ou and
the straight line w = — (1/k)log(1—r*). Its boundary consists of an arc I’
with the equation

w = log (1 — r* e 2xP)) [1 — 1% gi0,k(P) |~ (k2K

0 < B <m0y, 0, being given by (4), (5) and its reflection I'* with respect
to the real awis.

The boundary points of D(r, k) are associated with functions of the form

(15) F(z) = [ (1— Lk art?)[1— gkoupth - (k+2Mk gy
and .
(16) G(2) = F(z).

Proof. As shown previously, L, = L,, and this implies that
D(r,k) = D(r, k, k).
We now only need to apply Theorem 2.
As a counterpart of Theorem 3 we obtain
Theorem 5. If feL,, then
1—o* g gl 147
RERCE P& < e
largf’(z)| < (2+2/k)arcsinr®.
The signs of equality are attained for functions of the form (15) and (16),
resp. which correspond to the same values of B as in Theorem 3.

Putting ¥ = 1 we obtain the region of variability and rotation theorem
for the class L as obtained by J. Krzyz [2].
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Streszczenie

Niech L,, bedzie podklasy funkeji prawie wypuklych, takich, ze
pochodna da sie przedstawi¢ w postaci iloczynu

f'(2) = ¢'(2)p(2), f(0) =1
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gdzie ¢(2) = ay2+ a7+ @y, 2T+ .. |6y = 1, odwzorowuje kolo
jednostkowe K; na obszar wypukly o k-krotnej symetrii, a funkeja p(2) =
= dg+ ap 2™+ a3, @™+ ... spelnia warunki |ao| = 1,rep(z) >0 dla z¢K,.

Niech L, oznacza klase funkeji prawie wypuklych k-symetrycznych
klasycznie unormowanych.

W pracy tej okreslamy dokladnie obszar zmiennoéci logf’(2) w klasach
L, (Twierdzenie 2) oraz oszacowania |f'(z)| oraz |argf’(2)| (Twierdzenie 3).

Okazuje si¢, ze klasa L, jest identyczna z klasg L. W oparciu o ten
fakt znaleziony zostal obszar zmiennosci logf’'(2) w klasie L, oraz oszaco-
wania |f'(2)| i|argf’'(z)| w tej klasie.

Jezeli przyjmiemy k = m =1 otrzymujemy wyniki z pracy J.
Krzyza [2].

Pesome

Iycts I, OGymer MOXKIACCOM IIOYTH BHIMYKIBX (YHKUMI, TaKHX,
YTO NMPOM3BONHYI0 MO}KHO NPENCTABUTh B BHUJle ITPOM3BENEHHA

(@) =¢'(2)'p(2), f(0) =1,

ree ¢(2) = a,2+4 a, 7 a2+ ..., |ay| = 1, oToGpakaeT exMHMY-
HEA Kpyr K, Ha BRIIYKIY10 06J1aCTh O K-KPATHOH CMMMeTpUH, a PyHKUUA
P(2) = ag+ @ 2"+ 0 @™+ ...  YHOBIETBOPAET  YCIOBUAM |a,| = 1,
rep(z) >0 muAa zeK,.

IMycte L, 060o3HayaeT KiIacC MOYTH BHIMYKIHX K-CUMMETPHYECKHUX
QYHKIMI KIacCHYeCKH HOPMHUPOBAHHEIX.

B paGoTe TouHo ompenensercA o6macTh uaMeHeHud logf’(z) B Kiaaccax
L,,. (teopema 2) u ouenkn |f'(z)|, |argf'(z)| (reopema 3).

OxasaniBaeTcH, YTo KiaaccH L, u L, ToxnecrBeHHu. Ha ocHoBaHuu aroro
dakTa HalineHa obnacte uameHeHud logf’(z) B kmacce L, u ouenkn |f’'(2)|,
largf’ ()| B aTtom kKmacce. Ecaum npuuate k = m =1, To noayyaworcA
peaynbratht pabot M. Koamka [2].






