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1. Notation

Throughout this paper we are always concerned with points and sets
on the closed plane &. The difference of two sets £ and E’ is denoted
by EN\E’, the closure of E by clE, the interior of E by int E, and the
boundary of E by frE. We assume that 2/0 = oo for ze £\ {0}, and
z[oo = 0 for ze &\ {oc}. Next let

A, ={z: 1< |2|<1}, 4] = {z: t<|z|<1/t} for 0<t< 1.

Under Jordan curve we mean a homeomorphic image of a circle, under
Jordan arc — a homeomorphic image of an interval, i.e. of a connected
subset of the open straight line, which does not reduce to a point.

If f is a function defined on E, and E' c E, then f[E’] denotes the
image of E’' under f. If, in particular, f is an elementary function: exp,
arg etc., and z¢E, we write fz instead of f(z) in case where it does not
lead to misunderstanding. We say that f, defined on E, satisfies a pro-
perty, if this property is satisfied for all zeE. If f and g are functions
defined on E and E’, respectively, where E’' > f[E], then the composite
function defined on E is denoted by gof, and for z¢E we write gof(2)
instead of (gof)(z). Further, f: E — E' means that f is a mapping of E
onto E’, and f denotes the inverse of f, if it exists, while f~' = 1/f. The
notation f for the inverse of f is used e.g. in [4] and is much more con-
venient for our purpose than f~'. Finally, if f is a function of a complex
variable z = x4 {y, we denote its partial derivatives, if they exist, by
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f. and f,, while f, = }(f.—if,) and f; = }(f.+1f,) are the formal complex
derivatives of f. In particular, we denote f, by f' when f has the total
differential and f; = 0 (cf. e.g. [14], p. 59). Symbols f,, f, etc. denote
functions depending on some parameters 7, k etc.

The expression if and only if is abbreviated by iff, while the expression
almost everywhere by a.e.

2. Introduction

Let h be an arbitrary fixed homography (synonyms: homographic
transformation, bilinear transformation, (fractional) linear transfor-
mation, Mo6bius transformation) which is not loxodromic, and let a be
an arbitrary fixed antigraphy (a synonym: anti-homography). For defi-
nitions and properties of these transformations we refer to [4] and [15].
Throughout the paper we assume that h is not the identity mapping,
and a is not a Mobius involution. It is well known that aoa is a homo-
graphy which is not loxodromic, and that given h there is an antigraphy d
such that @od = h.

Let n,n +# 1, be a positive integer. Consider a homography that is
not loxodromic and generates an n-cyclic group (of homographies) with
respect to composition. It is well known (cf. e.g. [14], pp. 86-87) that A
must be elliptic and that, given g, different from the invariant points
of h, the points 8, = h(8,_,), 8_ = h(8_x11), k = 1,2, ..., and s, satisfy
8tin = 8 for £ =0,1, —1,2, —2,..., and lie either on a circle or on
a straight line. In case where % is elliptic and does not generate a cyclic
group with respect to composition, the points 8;, ¥ = 0,1, —1,2, —2, ...,
form a dense subset of either a circle or a straight line. Thus, being inter-
ested in the cyclic cases, we shall consider problems formulated below in
case of an arbitrary elliptic homography or antigraphy and show that
we have either an n-cyclic case or a limit case.

After these preliminary remarks we are able to formulate the problems
to be discussed in this paper. Given an elliptic homography %» and an
elliptic antigraphy e we are concerned with studying homeomorphic
solutions of the functional equation

(1) goh(s) = hog(s)
and homeomorphic solutions of
(2) goa(s) = aog(s),

which map some D onto D’, where D is a given domain or the closure of
a domain, both bounded by disjoint Jordan curves. In particular, we
are concerned with Q-quasiconformal solutions of (1) and (2), subject
to suitable conditions in order to assure that two @Q-quasiconformal map-
pings which satisfy the same equation, are identical. Here 1 < @ < + oc.
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For a definition and properties of quasiconformal mappings we refer
to [8]. We notice that under a @-quasiconformal mapping of the closure
of a domain bounded by disjoint Jordan curves we understand any homeo-
morphism which is a @-quasiconformal mapping of int D.

It is clear that in case of (1) we have to assume that D = h[D].
Hence fr D is the union of some sets being connected subsets of straight
lines or circles, which do not reduce to a point. Consequently (cf. [8],
p. 44), any @-quasiconformal solution of (1), determined in intD, can
be continued to a @-quasiconformal mapping of clD. Thus we confine
ourselves to closed domains. A closed domain bounded by disjoint Jordan
curves is said to be a nmatural domain with respect to a homography &
if D =h[D].

Similarly, a closed domain D bounded by disjoint Jordan curves is
said to be a natural domain with respect to an antigraphy aif D = aoa[D],
Dna[D]<cfrD, and D ua[D] is a closed domain. Clearly, we may
confine ourselves to consider homeoinorphic solutions of (2) determined
on sets of the form D = D u a[D], where D is natural. It can easily be
verified that if a homeomorphic solution of (2), defined on D, satisfies
g[D] = D', then ¢g[D] = D' v a[D'].

The problems discussed in this paper were posed in [12], where there
was also introduced the notion of natural domain (in [12], p. 344, line

18, it should be assumed that D is invariant under w = hoh(z)).

We begin our considerations with obtaining relations between homeo-
morphic solutions of (1) and (2) (Lemma 1), and then reduce the problems
in question to analogous problems with some normalized % and a (Lemma 2).
Then, according to suggestions given in [12], we distinguish the cyclic
case and the limit case, and consider them separately. In each case we
extend Lemma 2 (Lemmas 3 and 4, respectively), and then strengthen
Lemma 1 (Theorems 1 and 4, respectively, which include also results
formulated in the lemmas). Next we confine ourselves to quasiconformal
mappings, normalize them as suggested in [12] (pp. 344-345), and obtain
some relations between the normalized classes (Theorems 2 and 5). Finally
we characterize the classes under consideration in terms of complex
dilatation (Theorems 3 and 6). This is a generalization of some results
obtained in [12].

The results of this paper were announced in [5] and [6].

3. Relations between homeomorphic solutions of (1) and (2) in the general
case

In this section we obtain a generalization of Lemma 3 and Remark 7,
both given in [12] (p. 336). Consider an elliptic homography:

(3) h(8) = Foh*or(s),
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where
(4) h*(z) = 6“2, —co < a< + oo, 6" #1,
5) oW (8—8,)/(8—8;) for 8,,8, 7% oo,

8—s8, for 8 # oco,8; = oo.
Assume that the natural domain is of the form
D = {8: 71,< [r(8)| < 7}, where 0 < 7, <7< + oo.
Suppose first that © #* 4 oo and denote by D’ any domain of the form
D' = {v: 7,< |r(v)| < 7}, where 0 <17,< 7,

and 7, = 0 iff 7, = 0. Consider the antigraphy

(6) a.(8) = Fo0a*or.(s),
where

(7) a*(z2) = o'z,
(8) r(s) = 7'r(s),

and equation (2) with a, substituted for a:
(9) goa.(8) = a,0g(s).

Lemma 1. (7) If a homeomorphism g: D — D' is a solution of (1), and
(9) holds for g|D n a.[D], then g*, defined by

(10) g*|D =g,

(11) g‘lar[D]\D — arogodrlar[D]\D,
18 a homeomorphic solution of (1), and

(12) ¢*|D v a,[D]| = D' ua,[D].

(¢¢) If a homeomorphism g: Du a.[D] - D' v a,[D'] 18 a solution
of (9), then

(13) 9. = 9| D, g. = gla,[D]

are homeomorphic solutions of (1). If, in addition, |[rog(s)| = t* for
8eD N a,[D], then t* = 1, 1.6. either

(14) 9:[D] = D, g;0a,[D] = a,[D']
or

(15) 9:[D] = a.[D’], g;0a,[D] = D'.
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Proof. We start with proving (i). Let g: D — D’ be a homeomorphic
solution of (1). If seD\a, [D] then, clearly, a,(s)ea,[D]\D. Thus, by
(11), for seDN\a,[D] we have g*ca.(8) = a,0g(8). Applying now (10)
we get g*oa,(8) = a,09*(8) for seD\a,[D]. Next, if sea,[D]\D then,
clearly, a.(8)eD\a,[D]. Hence, by (10), for sea,[D]\D we have g*oa,(s)
= goa,(s). But a, = a,0a,0d,. Applying the relations a,ca, = h and (1)
we get g*oa.(8) = a,0a,0g0d,.(s). Therefore, by (11), for sea,[D]\D
we obtain g*oa,(8) = a,0¢*(s) as well. Finally, if we assume that (9)
holds for seD N a,[D] then, by (10), ¢g* is a solution of (9).

We claim that ¢g* is a homeomorphism. Indeed, by (10), g*| D is a homeo-
morphism. Therefore, since g* is a solution of (9), and a, is a homeo-
morphism, g*|a,[D] is a homeomorphism as well and, by (10),

(16) 9*a.,[D] = a,0g04d]a,[D].

Hence we obtain two conclusions. At first, g* is continuous. Since it
is defined on D U a,[D] which is closed, we have only to prove that g*
is one-one. At second, since, by (10),

(17) 9*[D] =D,
and, by (16),
(18) g*oa,[D] = a,[D'],

then in order to prove that g* is one-one it is enough to show that
9*|D na,[D]] = D' na,l[D].
But this follows from the relation
g9*[D N a.[D]] = g*[DP]Nng*oa,[D] = D' na,[D],

which is itself a consequence of (17) and (18), and from the fact that
any homeomorphism maps connected sets onto connected sets. Thus g*
is a homeomorphism, as desired. Besides, (17) and (18) imply (12).

We proceed to prove (ii). Let g: DU a,[D] — D’ U a,[D’] be a homeo-
morphic solution of (9). Next let seD. Clearly, also h(s)eD. Hence, by
(13) and h = a,ca,, we have g,0h(8) = goa,oa,(8). Applying now re-
lation (9) twice, we obtain g,0h(8) = a,c a,c g(8). Using again a,0a, = h
and (13), we get g,0h(s8) = hog,(8). Thus g, is a homeomorphic solution
of (1), as desired. Since ¢ is a homeomorphism, so is g, = g|D. Analo-
gously we prove that g, is a homeomorphic solution of (1) as well.

Suppose now, in addition, that [rog(s)] = t* for seD n a,[D]. Take
an arbitrary seD N a.[D], i.e. an arbitrary s satisfying |r(8)| = 7. By (6),
(8) and (7) we have

lroa,(s)| = |[ro#0a*or,(8)] = |ra*(v7'r(s))| = [72/r(8)] = .

3 — Annales
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Hence, according to the additional assumption,

[rogoa.(8)] = *.
On the other hand, by (6), (8), (7) and the additional assumption, we have
[roa,0g(s)| = Irof,0a*or,0g(s)| = [ra*(x~*rog(s))] = [t*rog(s)| = v*/z*.

Consequently, by (9), we obtain 7* = t2/7* i.e. v* = 7. Since ¢ is a homeo-
morphism, and g,, g, are defined by (13), this means that we have either
(14) or (15). The proof of Lemma 1 is completed.

If D' is of the form D’ = {v: < [r(v)| < 7,}, where 7 < 71, < + oo,
and 7, = + oo iff 7, = 0, then statements analogous to that of Lemma 1
hold.

In Lemma 1 we have assumed that 7 + 4 oo. Now, let us replace

this condition with 7, + 0. Then, clearly, statements analogous to that
of Lemma 1 hold.

Finally suppose that r, =0 and 7 = + oc, i.e. D = &. Since we

consider homeomorphic solutions of (1), D' = & as well. Let 21', = {2:
|2] <t} for 0 < t< + oco. We have:

Remark. (i) If a homeomorphism g: & — & is a solution of (1),
gof[A,] = f[A,] for some ¢, 0 < t < + oo, and (9) with T = ¢ holds for
q|r[frA,], then we can apply Lemma 1 (i) to g]f[A,] An analogous
statement holds for g[f[é’\lntA,], and in case where the condition
gor[A,] = ¥[. l,] is replaced with go f[A,] = f[é’\mtA,]

(ii) If a homeomorphism g: & — & is a solution of (9) with v = ¢,
where 0 < 7 < + oo, then we can apply Lemma 1 (ii) with D = 1"’[A~,]
to g. An analogous statement holds for D = #[ &\int A",].

4. The problems with normalized » and o

Lemma 1 shows that the problems of finding homeomorphic solutions
of (1) and (2) are, in general, not equivalent. In Section 6 it will be shown
that they are not equivalent even in case of quasiconformal solutions.
In order to give further details concerning the problem in question, we
transform (1) and (2) to a normalized form. This is given by the following
obvious lemma:

Lemma 2. (i) The problem of solving (1) in a natural domain D i3 equi-
valent to the problem of solving

(19) foh*(z) = h*of(2)
in r,[D], where f = r,ogo¥, and z =r.(8) for seD.
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(#¢) The problem of solving (9) in D v a,[D], where D i8 a natural
domain, 18 equivalent to the problem of solving

(20) foa*(z) = a*of(2)

mn r,[D v a,[D]], where f = r,ogo¥, and 2 = r,(8) for seD v a,[D].

In Lemma 2 we have considered (9) instead of (2) since every elliptic
antigraphy can be written in the form (6).

Owing to Lemma 2 and reasons given in Section 2 (also in [12], pp.
344-345), we shall consider, separately, the cases:

(I) h = h* and a = a*, a/n rational, ¢ + 1,

(II) h = h* and a = a*, a/n irrational,
called the cyclic case and the limit case, respectively. In both cases we
shall distinguish two particular cases:

(a) D = 4,, where 0 <t< 1,

(b) D = ¢.
The particular cases corresponding to (b) are called continued for the

reasons explained by the Remark (also by Lemma 3 and Remark in [12],
p. 336).

I. The cyclic case

5. Homeomorphic solutions

In the case under consideration the problems in question can bhe
simplified again.

Let #, n +# 1, be a positive integer. Further let ¥ be an integer such
that ¥ and n are relatively prime.

Lemma 3. (i) A homeomorphism f: A, ~ A, (or f: & - &) 18 a solution
of (19) with a = 2kx/n iff it is a solution of (19) with a = 2n/n.

(#1) A homoeomorphism f: A} — A} is a solution of (20) with a = 4kxn/n
iff it is a solution of (20) with a = 4x|n.

Proof. Clearly, if a homeomorphism f: 4, > 4, (or f: & - &) is
a solution of (19) with a = 2x/n, then it is a solution of (19) with a = 2kn/n.

Conversely, suppose that a homeomorphism f: 4, — 4, (or f: & — &)
is a solution of (19) with a = 2kzn/n. Since k and n are relatively prime,
there exists a pair of integers k, and %, such that k,k+n,n = 1, i.e.
kok/n = —ne+ 1/n. Hence f is a solution of (19) with a = 2x/n.

Suppose now that a homeomorphism f: 4} — Ay is a solution of (20)
with « = 4n/n. If k is odd the assertion is obvious, 50 we may assume
that k is even. This implies that f|4, satisfies (19) with a = 2kn/n and
a = 4kn/n. On the other hand |f(z)] = 1 whenever |2|] = 1. Consequently
fi{z: |2| = 1} satisfies (20) with a = 4kn/n and, by Lemma 1(i), f is
a solution of (20) with a = 4kn/n as well.
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Finally suppose that a homeomorphism f: A4 — A} is a solution
of (20) with a = 4k=n/n. Since k¥ and n are relatively prime, there exists
a pair of integers k, and n, such that k,k+non = 1,i.e. kgk/n = —n,+ 1/n.
If k, is odd the assertion is obvious, so we may assume that k, is even.
This implies that f|4, satisfies (19) with a = 2ax/n and a = 4x/n. On the
other hand |f(z)] =1 whenever [z = 1. Consequently f|{z: [¢| =1}
satisfies (20) with a = 4n/n and, by Lemma 1 (i), f is a solution of (20)
with a = 4x/n as well. This completes the proof.

Now we shall formulate our final result on homeomorphic solutions
of (1) and (2), where we consider (9) instead of (2) since every elliptic
antigraphy can be written in the form (6).

Theorem 1. (i) In the elliptic case with a = a,, ao/n rational €0 + 1,
the problem of finding homeomorphic solutions of (1) with a = a, in a natural
domain D 18 equivalent to the problem of finding homeomorphic solutions
of (19) with a = 2x/n in r,[D], where f = r.ogo¥,, z=1r.(8) for seD,
7,0 < < + oo, i8 chosen so that r .[fr D] o {2: |2| = 1} for D +# &, while
Tt =1 for D = &, and n, n # 1, i3 a positive integer uniquely determined
by the requirement for an|2n to be an integer, and for n, an/2x to be relatively
prime. Besides, if a homeomorphism f: A, > A, is a solution of (19) with
a = 27/n, then f*, defined by

(21) 14, = f, f14i\4, = a*ofod*|4i\ 4,

where a = 4x|n, 18 a homeomorphic solution of (20) with a = 4n/n, and
frran = 4.

(1) Im the elliptic case with a = a,, a,/n rational, 6% # 1, the problem
of finding homeomorphic solutions of (9) with a = ay in D U a,[D], where D
18 a natural domain, i8 equivalent to the problem of finding homeomorphic
solutions of (20) with a = 4n/n in r.|Du a,[D]], where f =r,0g0of,,
2 =1r.(8) for seD U a,[D], and n, n # 1, i3 a positive integer uniquely
determined by the requirement for an/4m to be an integer, and for m, an/4n
to be relatively prime. Besides, if a homeomorphism f: A; — A} i8 a solution
of (20) with a = 4x[n, then

(22) fr =fl4y, fa = fla*[4,],

where a = 4z[n, are homeomorphic solutions of (19) with a = 4n/n. If,
in partioular, n i8 odd, f, and f, are also solutions of (19) with a = 2n/n.
For any m, if, in addition, |f(2)| = t* whenever 2| = 1, then t* = 1, i.6.

(23) [f1(2)] = fa2(2)] = 1 whenever [2| = 1.

Proof. The equivalence of the problem with a = a, and the problem
with @ = 2x/n in the case of a homography, and a = 4x/n in the case of
an antigraphy, is a straightforward consequence of Lemmas 2 and 3.



On homeomorphisms and quasiconformal mappings ... 37

Now, if a homeomorphism f: 4, — 4, is a solution of (19) with a = 2n/n,
then it also satisfies (19) with a = 4x/n. On the other hand [f(2)] =1
whenever |z| = 1. Consequently f|{z: |2] = 1} satisfies (20) with a = 4x/n
and, by Lemma 1 (i), f* is a homeomorphic solution of (20) with a = 4x/n,
such that f*[4;] = 4;. This completes the proof of (i).

Finally, if a homeomorphism f: A4} — 4; is a solution of (20) with
a = 4z/n, then, either directly or by Lemma 1 (ii), we conclude that f,
and f, satisfy (19) with a = 4x/n. If, in particular, » is odd, then, by
Lemma 3 (i), f, and f, are also solutions of (19) with @ = 2x/n. For any f,
if, in addition, |f(2)| = t* whenever |2| = 1, then, either using directly
the fact that f is a solution of (20), or applying Lemma 1 (ii), we conclude
that ¢* = 1, i.e. (23) holds. This completes the proof of (ii).

6. Normalized Q-quasiconformal solutions

Now we confine ourselves to @-quasiconformal solutions of (19) and
(20). We remark that now, for ¢ s+ 0, ¢’ is restricted by the condition
(cf. e.g. [8], p. 40)

(24) o<t <o,

According to [12] (pp. 344-345) we introduce the following normalized
classes.

Definition 1. feE§™, where 1 < Q < + o0, 0 <t <1, and n, n # 1,
is a positive integer, iff it is a @-quasiconformal solution of (19) in the
elliptic case with a = 2x/n, and maps 4, onto some 4, so that f(1) = 1.

Definition 2. feEY™), where 1< Q< + oo, 0 <t<1, and n, n # 1,
is a positive integer, iff f = f*|4,, where f* is a @-quasiconformal solution
of (20) in the elliptic case with a = 4z/n, and maps A; onto some A;
so that |f*(1) < [f*(1/)], f*(1) = 1.

Definition 3. fe Ey™, where 1<Q < + oo, and n, n # 1, is a positive
integer, iff it is a @-quasiconformal solution of (19) in the elliptic case
with @ = 2n/n, defined on &, and such that f(0) 5 oo, f(1) = 1.

Definitions 1—3 imply directly: (a) if feE§™ u B§" then ¢’ =0
and f(0) = 0, (b) if feEJ™ then f[4,] = 4, (c) if feEZ® then f*(co)
= oo, (d) if feEy™ then f(0) = 0 and f(oco) = oo.

It seems natural to ask for relations between the classes H§™ and
E$. The complete answer is given in the following

Theorem 2. For n even,

(25) E4™ c B < B,
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where the indices n and 3n in the extreme terms cannot be improved for any
Q,1l<@Q< + oo, and t, 0<t< 1. For n odd,

(26) Eg0 = B™,

Proof. Relations (25) and (26) follow immediately from Theorem 1.
In order to show that the indices » and 4n in the extreme terms of (25)

cannot be improved for any @, 1 < @ < + oo, and ¢, 0 < ¢t < 1, we consider
functions

I |2|9*expi(argz-- gsin (3 nargz)) for ¢t < |2| <
J(2) = | limf(¢) for |2] =t,

{—2
161>t

|z|aexpi(argz+"q(1— |2/*)sin (3 narge)) for t < [2| <1,

i - | imfc pls
181>t
a*-tnr‘i/f(euﬂ"fﬁ] for 1< |2| <1/t

where ¢, q, Q*, é are supposed to be positive, and will be specified below.
It is clear that f satisfies (19) with a = 4x/n but it cannot be continued

to a function satisfying (20) with a = 4x/n, and f satisfies (20) with
a = 4z[n but f]A, satisfies (19) with a -27z/k with no k = 1}%+1
in+2,... Also f{4,] = 4y, f(1) = 1, and fla) = 4, If('}I < Ifaml,
f(1) =1, where t' = t°*, " = %, It remains to choose ¢, g, @*, Q so that f
and f be @-quasiconformal.

First of all we see that f and f are sense-preserving homeomorphisms
whenever ¢ < 2/n and q< 2/n(1— "), respectively. Moreover, by (24)
we have Q7' <Q*<Q and Q' < <@ for t #0. Unfortunately these
restrictions are necessary but not sufficient, so we have to apply another

argument. Obviously f|int 4,\{0} and f|int 4,\{0} are continously differen-
tiable, and

(2-;] fi(z) _egl‘m-x, Q‘——l—%%q(}OS(%nng)
falzy Q*+ 1+ jngeos(dnargz) ’
(28) i®) _ siurge @—1— Ingcos(inargz)+ jng
fi(2) Q+ 1+ }ngcos(jnargz)— jngt"

Suppose now that 0 < q <2n '(Q?—1)/(Q2+1), and calculate the
east upper bound of (27) taken over zeint 4,\{0}. It equals either

(@ —1+1ng) /(@ +1—ing) <1
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or

—(Q*—1—ing)/(Q"+1+ing) < 1.

Choosing Q* = Q(1— }nq) in the first case, and Q* = @~'(14 3ng) in
the second, we see that in both cases this bound is exactly (@ —1)/(Q+1).
Therefore f|int 4,\ {0} is @-quasiconformal (cf. [8], p. 19) and so is f|int 4,
(cf. [8], p- 43). Applying now the definition of @-quasiconformality for
mappings defined in closed domains bounded by disjoint Jordan curves
(cf. Section 2) we see that f is @-quasiconformal, as desired.

Finally suppose that 0 < ¢< % '(Q*—1)/[Q*+ }(1—")], and esti-
mate the least upper bound M({Q, q) of (28) taken over zeint4,\{0}.
It does not exceed either

(@—1+n9)/(Q+1—ng) <1
—(@—1—jng+ Ingt™) /(@ + 1+ Ing— ingth") < 1.

Choosing any pair of Q,q so that M({, q) < (Q—1)/(Q+1) we obtain
that flint 4\{0} is @-quasiconformal. Clearly flint(4}\4,)\{co} is
also Q-quasiconformal. Therefore f|int 4;\{0, co} must be @-quasi-
conformal as well (cf. [8], p. 47). Consequently, as in the case of f, we
conclude that f is @-quasiconformal, and this completes the proof.

According to [12] (p. 315) we call mappings of E$™ and EJH —
n-cyclic elliptic, and mappings of Eg™ — n-cyclic continued elliptio. As
remarked in Section 2, we use the adjective ‘‘cyclic’’ since the set of all
homographies A* with a = 2kxz/n, where = is fixed and k ranges over all
integers, forms an n-cyclic group with respect to composition. Mappings
of the classes in question may also be called n-symmetric since they are
a natural extension of the classes of n-symmetric conformal mappings,

among others investigated by Littlewood and Paley [9], Basilevich [2, 3],
Aleksandrov [1], Jakubowski [7], and Mikolajezyk [13].

or

7. Characterization of the normalized @-quasiconformal solutions in terms
of complex dilatation

It is essential to characterize the classes in question in terms of complex
dilatation.

Theorem 3. (i) In the definitions of Ey™ and E)™ we may replace (19)
with
(29) p(2) = e~ ¥oEAYE) 6 p*(2) ae. in D,
where u denotes the complex dilatation of f, f(0) = 0 when 0D, and f(oo)

= oo when ocoeD. Here D = A, in the case of ES™, and D = € in the
case of Ep™
, /il
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(i%) In the definition of EG™ we may replace (20) with
(30) put(z) = 288V yeoae(2) ae in A,

where p* denotes the complex dilatation of f*, f*(0) = 0 when 0e4], and
f*(00) = oo when ocoe ;.

Proof. The proof is similar to that given in the case of an analogous
result for the class Ey introduced in [12] (see [12], pp. 312-313). We
confine ourselves to the case of E{'™ since the same method works also
for E;™ and EGH.

Definition 1 implies that f,, f; exist a.e. in 4, (see e.g. [8], p- 172),
and that

fa(2) = 672" fo (€™ 2) = [f1(0)],_ amiings

fi(e) = a2z (6 g) = 6~ [f(0)],_ amitm,

Hence (29) follows.

Conversely, suppose that f: 4, - 4, satisfies the conditions given
in Theorem 3 (i). By the well known theorem on existence and uniqueness
(see e.g. [8], p. 204, in the case where ¢ = 0, and [10], p. 26 in the case
where 0 <t<1) if f*: A, - 4, is @-quasiconformal, f*(1) =1 (also
f*(0) = 0 in the case where ¢ = 0), and f* has u as its complex dilatation
a.e. in 4,, then f* = f. On the other hand the mapping f**: 4, — 4,
defined by the formula f**(2) = ¢ *"/*f(¢*""2) for ze4,, is also Q-quasi-
conformal, satisfies f**(1) = 1 (also f**(0) = 0 in the case where ¢ = 0),
and its complex dilatation ux** is determined by the formula ux**(2)
= ¢4y (#™/"2) a.e. in 4,. Since, by (29), u**(2) = u(z) a.e. in 4,,
then f** = f. Hence f is a solution of (19) and, consequently, feE&™.

II. The limit case

8. Homeomorphic solutions

In the case under consideration the problems in question can be
simplified again. p

Lemma 4. () A homeomorphism f: A, > A, (or f: & — &) i3 a solution
of (19) with a = a,, a,/n being irrational, iff it is a solution of (19) with
any a, a/n being irrational.

(i1) A homeomorphism f: A — A} is a solution of (20) with e = a,,
ao/n being irrational, iff it is a solution of (20) with any a, a/n being irra-
tional.
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The proof is omitted since it is completely analogous to that given
in [12] (pp. 311-312) in the case of @-quasiconformal solutions f: 4; — 4,
of (20) with. a/n irrational, normalized by the conditions f*(0) = 0 and
f*(1) =1 (also by f*(oo) = oo, but this is a consequence of (20) and our
convention z/0 = oo for ze £\{0}; cf. Section 1).

Now we shall formulate our final result on homeomorphic solutions
of (1) and (2), where we consider (9) instead of (2) since every elliptic
homography can be written in the form (6).

Theorem 4. (¢) In the elliptic case with a = a,, a,/x irrational, the
problem of finding homeomorphic solutions of (1) with a = a, in a natural
domain D 18 equivalent to the problem of finding homeomorphic solutions
of (19) with any a, a/x irrational, in r . [D], where f = r,0go¥,., 2 = r(3)
for seD, and T, 0 < T < + o0, 18 chosen so that r [frD] o {z: |2| = 1} for
D # &, while T = 1 for D = &. Besides, if a homeomorphism f: A, - A4,
i8 a solution of (19) with a = a,, then f*. defined by (21) with a = 0, is
a homeomorphic solution of (20) with any real a, and f*[4]] = 4;.

(¢3) In the elliptic case with a = agy, ay/n irrational, the problem of finding
homeomorphic solutions of (9) with a = ay tn D U a,[D], where D is a na-
tural domain, i3 equivalent to the problem of finding homeomorphic solutions
of (20) with any a, a/n irrational, in r,IDua,[D]], where f =r.ogo¥,
and z = r,(8) for 8eD U a,[D]. Besides, if a homeomorphism f: A; — A}
8 a solution of (20) with a = a,, then (22), where a = 0, are homeomorphic
solutions of (19) with any real a, and (23) holds.

Theorem 4 is a straightforward consequence of Lemmas 2, 4 and 1.

Corollary 1. (i) In the elliptic case with a|x srrational a homeomorphism f
i3 a solution of (19) in D iff it satisfies f(z) = 6'2®° f(|2|) for ze D\{0, co}.

(i) In the elliptic case with a|n irrational a homeomorphism f i8 a so-
lution of (20) in D U a*[D] iff it satisfies f(z) = '™ **f(|2]) and f(1/|2|)
=1/f(|2]) for zeD v a*[D]\{0, oo}.

Corollary 1 is an easy generalization of two results obtained in [12]
(pp. 311-312 and 335-336).

9. Normalized Q-quasiconformal solutions

Now we confine ourselves to @-quasiconformal solutions of (19) and
(20). We remark that now, for ¢ s 0, t' is restricted by (24). According

to [12] (pp. 311, 336 and 344-345) we introduce the following normalized
classes.

Definition 4. feE$>), where 1 <@ < + oo and 0<1t<1, iff it is
a @-quasiconformal solution of (19) in the elliptic case with an a, a/n
irrational, defined on 4,, and such that [f(t)] < 1, f(1) = 1.



42 Jacek Chadzyfiski and Julian Lawrynowioz

Definition 5. fe E{*", where 1 < @ < +oo and 0 < t< 1, iff f = f*|4,,
where f* is a @-quasiconformal solution of (20) in the elliptic case with
an a, a/n irrational, defined on 4;, and such that |f*()| < |f*(1/t),
ffa) =1

Definition 6. f ¢ E5), where 1< @ < +oo, iff it is a @-quasiconformal
solution of (19) in the elliptic case with an a, a/n irrational, defined on &,
and such that f(0) # oo, f(1) = 1.

Definitions 4—6 imply directly: (a) if feES™ u ES™® then ¢’ =0
and f(0) = 0, (b) if feES™) then f[4,] = 4y, (¢) if feES™ then f*(oco)
= oo, (d) if feEy™ then f(0) = 0 and f(co) = oo.

The following analogue of Theorem 2 is an immediate consequence
of Theorem 4:

Theorem 5. E{) — ﬂE‘“"’ E§™ = ﬂF“ ™ and EQ™ = ﬂEg").

Some of these relatlons were esta.bllshed in [12] (p. 345).
Corollary 1 yields (cf. [12], pp. 311-313 and 335-336):

Corollary 2. In the definitions of E§>), EY™ and ESY we may replace
(19) and (20) with f(2) = €*®°f(|2]) for ze D\{0, oo}, f(0) = O when 0D,
and f(oo) = oo when oceD. Here D = A, for feES&™ U ES™, and D = &
Jor feE ™.

According to [12] (p. 345) we call mappings of E$*™ = E§0—
limit elliptic, and mappings of Eg™ — limit continued elliptic. The adjec-
tive “limit” is fully justified by the relations given in Theorem 5. The
classes E, = E§>? and Ej = E)™ were studied in detail by Lawry-
nowicz [12]. On the other hand, E, is a subclass of a class introduced
by Lawrynowicz in [11] (pp. 161-163).

10. Characterization of the normalized Q-quasiconformal solutions in terms
of complex dilatation

It is essential to characterize the classes in question in terms of complex
dilatation.

Theorem 6. (i) In the definitions of E&™ and Ey™ we may replace (19)
with (29), where u denotes the complex dilatation of f, f(0) = 0 when 0eD,
and f(oo) = oo when coeD. Here D = A, in the case of E&™), and D =
in the case of EJ™.

() In the definition of ES™" we may replace (20) with (30), where u*
denotes the complex dilatation of f*, f*(0) = 0 when 0 4], and f*(oo0) = oo
when oo e Ay .

In the case of Ej = Ep™ and E, = E§™? this result was obtained
in [12] (pp. 335-336 and 311-313). The proof in the general case may be
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omitted since it is analogous to that given in [12] (pp. 312-313), and to
the proof of Theorem 3.
Finally, Theorem 6 and Corollary 2 imply (cf. [12], p. 313 and 336):

Corollary 3. In the definitions of E&>), Ey™ and ES*" we may replace
(19) and (20) with u(z) = 6*°™®°u(|2|) a.e. in D, where u denotes the complex
dilatation of f, f(0) = 0 when 0eD, and f(oco) = oo when ooeD. Here D
has the same meaning as in Corollary 2.

In conclusion it should be remarked that, by Theorems 3 and 6, all
the introduced classes of normalized @-quasiconformal mappings can be
defined with the help of (29) and (30), as suggested in [12] (p. 344).
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Streszczenie

Autorzy zajmujg sie rozwigzaniami homeomorficznymi réwnan funk-
cyjnych postaci gok = hogoraz goa = aog, gdzie h jest dowolng ustalong
homografia eliptyczng, za$ a — dowolna ustalona antygrafia eliptyczng
(antygrafia jest to zlozenie odbicia wzgledem osi rzeczywistej z homo-
grafig). Zagadnienie to wigze sie z grupami cyklicznymi homografii i anty-
grafii. W szczegélnofei autorzy rozpatruja rozwigzania @-quasikonforemne
tych réwnan, wprowadzaja pewne znormalizowane klasy rozwigzan
@)-quasi-konforemnych, uzyskujg dla nich pewne warunki konieczne
i dostateczne oraz badaja zwiazki miedzy tymi klasami. Wprowadzone
klasy daja m.in. naturalne rozszerzenie znanych klas odwzorowan kon-
foremnych n-symetrycznych.

PesoMme

ABTOpH 3aHMMAalOTCA TFOMeOMOPPHHIMU pewleHUAMU QYHKUMOHAIBHBIX
ypaBHeHuit BUga goh = hog u goa = aog, rae h-npon3BoibHaA UKCH-
poBaHHas romorpadusa (T.e. XpoOHO-IMHelHOe MpeoGpa3oBaHue) ILIUITH-
4YEeCKOro THMA, TOrAa KaK a — IMPOU3BOJIbHAA QMKCUpPOBaHHAsA aHTUrpadus
(T.e. cymepmo3uuMA CHMMMETPUM OTHOCHUTENIbHO MeiiCTBUTENbLHON ocH Ko-
opaMHAT M romorpaduu) a;anuntTHdeckoro tuma. [IpoGiema 3Ta cBA3aHa
C UMKIMYECKMMM rpynmnamm romorpagum um anturpaguum. B uacTHocTh
aBTOPHl PacCMaTpHMBAIOT ()-KBAa3MKOH(POPMHLIE pellleHMA 3TUX YPaBHEHMIt,
BBOAT HEKOTOpPhle HOPMAIM3MPOBAHHBIE Kiacchl ()-KBa3UKOHPOPMHEIX
pelleHUil, Moy4yaloT A HUX HECKOJIbKO HEOOXOMMMBIX M JOCTATOYHBIX
YCIIOBMIif, a TaKde M3y4alOT COOTHOLIEHMA MEHNy 3THMMHU KiaccamMu. Bse-
JEHHbIE KJIAaCcChl [alOT eCTeCTBEHHOe paClIMpeHNe HN3BECTHBIX KIIacCoB
N-CUMMETPUYECKMX KOHQOPMHHIX OTOOpareHUM.



