UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN - POLONIA

VOL. XIX, 6

SECTIO A

1965

Z Katedry Matematyki Wydziału Ekonomicznego UMCS Kierownik: doc. dr Zdzisław Lewandowski

ZDZISŁAW LEWANDOWSKI and JAN STANKIEWICZ

On Mutually Adjoint Close - to - convex Functions

O wzajemnie sprzężonych funkcjach prawie – wypuklych

О взаимно сопряженных почти выпуклых функциях

1. Introduction

Let S be the class of functions $f(z) = z + a_2 z^2 + ...$ regular and univalent in the unit disk $K_1 = \{z : |z| < 1\}$. M. S. Robertson [2] introduced the subclass S^{**} of S of functions defined by the condition

(1)
$$\operatorname{re} \frac{zf'(z)}{f(z) - f(-z)} > 0 \quad \text{for } z \in K_1.$$

The latter author gave in [3] necessary and sufficient conditions that f should belong to S^{**} .

The class S^{**} may be now generalized in the following manner. If $f \in S$ and h(z) = -f(-z), then obviously $h \in S$. Hence the denominator in (1) has the form f + h with f, $h \in S$. On the other hand h also satisfies (1). Suppose now f and g are two functions regular in K_1 , normalized in the usual manner: f(0) = g(0) = 0, f'(0) = g'(0) = 1, and such that

(2)
$$\operatorname{re}\frac{zf'(z)}{f(z)+g(z)}>0 \quad \text{ for } \quad z\,\epsilon\,K_1,$$

(3)
$$\operatorname{re}rac{zg'(z)}{f(z)+g(z)}>0 \quad ext{ for } \quad z\,\epsilon K_{1}.$$

Such functions will be called mutually adjoint and the corresponding class of functions f having a mutual adjoint will be denoted by \mathscr{S} . Let S be the subclass of S consisting of all functions starlike w.r.t. the origin. From (2) and (3) it follows that $\varphi = \frac{1}{2}(f+g) \in S^*$. Since (2) can be written in the form

(2')
$$\operatorname{re} \left\{ z f'(z) / \varphi(z) \right\} > 0 \quad \text{for} \quad z \in K_1,$$

with $\varphi \in S^*$, it means that f is close — to — convex and hence univalent. Obviously the same holds for g. On the other hand any $f \in S^*$ has f itself as a mutual adjoint, i.e. f is self — adjoint.

Let now P be the class of functions $p(z) = 1 + c_1 z + c_2 z^2 + \ldots$ regular and of positive real part in K_1 . In the next chapter we shall find a structural formula for $f \in \mathscr{S}$ in terms of a pair of functions $p, q \in P$.

2. Structural formula for the class \mathcal{S}

We now prove the following

Theorem 1. The functions f, g are two mutually adjoint elements of $\mathscr S$ if and only if there exist two functions $p, q; p, q \in P$ such, that

(4)
$$f(z) = \int_{0}^{z} p(\eta) \left[\exp \int_{0}^{\eta} \frac{p(\zeta) + q(\zeta) - 2}{2\zeta} d\zeta \right] d\eta$$

(5)
$$g(z) = \int_{0}^{z} q(\eta) \left[\exp \int_{0}^{\eta} \frac{p(\zeta) + q(\zeta) - 2}{2\zeta} d\zeta \right] d\eta.$$

Proof. Necessity. Suppose f, g are two mutually adjoint elements of \mathscr{S} . Put

(6)
$$p(z) = \frac{2zf'(z)}{f(z) + g(z)}, q(z) = \frac{2zg'(z)}{f(z) + g(z)}.$$

Hence

(7)
$$f'(z)/g'(z) = p(z)/q(z).$$

From (6) it follows that

$$g(z) = 2zf'(z)/p(z)-f(z)$$

and after differentation we obtain

(8)
$$g'(z) = \frac{2f''(z)p(z) - 2zf''(z)p'(z) - f'(z)p^2(z) + 2zf''(z)p(z)}{p^2(z)}$$
.

This (8) and (7) yield

$$f''(z)/f'(z) = p'(z)/p(z) + [p(z)+q(z)-2]/2z.$$

After a repeated integration we obtain (4) and this proves the necessity. An analogous calculation gives (5). This proves the necessity.

Sufficiency. Suppose the formulae (4) and (5) hold with some $p, q \in P$. The functions f, g are obviously regular and satisfy the conditions: f(0) = g(0) = 0, f'(0) = g'(0) = 1. We first verify by differentiation the

identity

$$\begin{array}{ll} (9) & 2z \exp \int\limits_0^{\tau} \left\{[p(\zeta)+q(\zeta)-2]/2\zeta\right\} d\zeta \\ \\ & = \int\limits_0^{\tau} [p(\eta)+q(\eta)] \{\exp \int\limits_0^{\eta} \left[(p(\zeta)+q(\zeta)-2)/2\zeta\right] d\zeta \} d\eta. \end{array}$$

Moreover, by (4)

(10)
$$f'(z) = p(z) \exp \int_0^z \{ [p(\zeta) + q(\zeta) - 2]/2\zeta \} d\zeta$$

which shows that $f'(z) \neq 0$ in K_1 . Adding both sides of (4) and (5) we obtain

$$f(z)+g(z) = \int_0^z \left[p(\eta)+q(\eta)\right] \left\{\exp\int_0^{\eta} \frac{p(\zeta)+q(\zeta)-2}{2\zeta} d\zeta\right\} d\eta.$$

Using the identity (9) and the formulae (10), (11) we have

$$2zf'(z)/[f(z)+g(z)]=p(z)$$

which yields (2). The condition (3) can be derived in an analogous way. The sufficiency is also proved.

If p=q then the formulae (4) and (5) represent the same starshaped function. Hence $S^* \subset \mathcal{S}$. On the other hand, if q(z) = p(-z) then g(z) = -f(-z) and this gives us a function $f \in S^{**}$. Hence also $S^{**} \subset \mathcal{S}$.

If f is a fixed element of \mathscr{S} , then we can consider a subclass \mathscr{S}_{f} of all $g \in \mathscr{S}$ such that g and f are mutually adjoint.

3. Subordination and the class \mathcal{S}

We now quote Lemma 2 proved in [2] which enables us to define the class $\mathcal S$ in terms of subordination.

Lemma. Suppose F(z,t) is regular in K_1 for each $t \in (0, \delta)$, $F(z,0) \equiv f(z)$, $f \in S$, and F(0,t) = 0 for each $t \in (0, \delta)$. Suppose moreover, that for each $r \in (0, 1)$ there exists $\delta(r) \in (0, \delta)$ such that for any $t \in (0, \delta(r))$ we have $F(z,t) \to_r f(z)$ (F(z,t) subordinate to f(z) in the disk |z| < r), and that the limit

$$\lim_{t\to 0^+}\frac{F(z,t)-f(z)}{zt^\varrho}=F(z)$$

exist for some $\varrho > 0$.

Then $\operatorname{re}\{F(z)/f'(z)\}\leqslant 0$ in K_1 . If F(z) is regular in K_1 and $\operatorname{re}F(0)\neq 0$ then $\operatorname{re}\{F(z)/f'(z)\}< 0$ in K_1 .

Using this lemma we prove

Theorem 2. The functions f, g are two mutually adjoint elements of $\mathscr S$ if and only if for any $r \in (0, 1)$ there exists $\delta(r) > 0$ such that for any $t \in (0, \delta(r))$ we have

(12)
$$F(z,t) = f(z) - t[f(z) + g(z)] \rightarrow f(z)$$

(13)
$$G(z,t) = g(z) - t[f(z) + g(z)] \rightarrow g(z).$$

Proof. Sufficiency. Put $\varrho = 1$ and F(z, t) as in (12) and (13). Then we have

$$\lim_{t\to 0^+}\frac{F(z,t)-f(z)}{zt}=\lim_{t\to 0^+}\frac{G(z,t)-g(z)}{zt}=\frac{f(z)+g(z)}{-z}=F(z).$$

F(z) is regular in K_1 and F(0) = -2. By Lemma we obtain

$$\operatorname{re}\left\{-\frac{f(z)+g(z)}{zg'(z)}\right\}<0\,,\,\operatorname{re}\left\{-\frac{f(z)+g(z)}{zf'(z)}\right\}<0$$

in K_1 . This is equivalent to (2) and (3) and this means that f and g are mutually adjoint.

Necessity. Consider the function F(z, t) = f(z) - t[f(z) + g(z)], where f and g are mutually adjoint elements of \mathcal{S} . We have

$$\operatorname{re}rac{zF_{z}'(z,t)}{F_{t}'(z,t)}igg|_{t=0} = \operatorname{re}rac{zf'(z)-t[f'(z)+g'(z)]}{-f(z)-g(z)}igg|_{t=0} = -\operatorname{re}rac{zf'(z)}{f(z)+g(z)}.$$

The last term is negative in K_1 by (2). By the maximum principle we can find for each $r \in (0, 1)$ a positive $\varepsilon(r)$ so that

$$\operatorname{re}\left\{zF_{z}'(z,t)/F_{t}'(z,t)\right\}<-arepsilon(r)<0 \quad \text{in} \quad K_{r}.$$

In view of continuity we can also find $\delta(r) > 0$ such that

$$\operatorname{re} \{zF'_{z}(z,t)/F'_{t}(z,t)\} < 0$$

for all $z \in K_r$ an all $t \in \langle 0, \delta(r) \rangle$.

Now, from (Lemma 2 in [1]) it follows that the image domains of K_r by F(z, t) shrink with increasing t, i.e.

$$F(K_r, t_1) \subset F(K_r, t_2)$$
 for $0 < t_2 < t_1 < \delta(r)$.

We can also replace F(z, t) by an analogous expresion G(z, t) which arises by interchanging f and g.

For t_2 approaching 0 we obtain the relations (12) and (13). The necessity of (12) and (13) is also proved.

REFERENCES

- [1] Bielecki, A., Lewandowski, Z., Sur certaines familles de fonctions a-étoilées, Ann. Univ. Mariae Curie-Skłodowska, 15 (1961), p. 45-55.
- [2] Robertson, M. S., Applications of the Subordination Principle to Univalent Functions, Pacific Journ. of Math., 11, (1961), p. 315-324.
- [3] Stankiewicz, J., Some Remarks on Functions Starlike with Respect to Symmetric Points, Ann. Univ. Mariae Curie-Skłodowska, 19 (1965), p. 53-59.

Streszczenie

Przez P oznaczmy klasę funkcji $p(z) = 1 + c_1 z + ...$ regularnych w K_1 i takich, że $\operatorname{Re} p(z) > 0$ w K_1 . Funkcje f i g regularne w K_1 nazywać będziemy wzajemnie sprzężonymi, jeżeli spełniają warunki (2) i (3). $f(z)=z+a_2z^2+\ldots\epsilon\mathscr{S}$ jeżeli istnieje funkcja $g(z)=z+b_2z^2+\ldots$ sprzężona z funkcją f.

W pracy tej podajemy wzory strukturalne dla funkcji klasy ${\mathscr S}$ pozwalające, każdej parze p, q funkcji klasy P przyporządkować parę f, gfunkcji klasy \mathcal{S} . Podajemy też pewne warunki konieczne i wystarczające aby funkcje f i g były wzajemnie sprzężone.

Резюме

Обозначим через P класс функций $p(z) = 1 + c_1 z + \dots$ голоморфных в круге K_1 , а также таких, где $\operatorname{Re} p(z) > 0$ b K_1 .

Функции f и g, голоморфные в K_1 , будем называть взаимно сопряженными, если они выполняют условия (2) и (3). $f(z) = z + a_2 z^2 + \dots \epsilon \mathscr{S}$, если существует функция $g(z) = z + b_2 z^2 + \dots$ сопряженная с функцией f.

В работе даются структуральные формулы для класса У, которые позволяют каждой паре функции p, q класса P найти пару f, g функции класса \mathscr{S} .

Даются также некоторые необходимые и достаточные условия для того, чтобы функции f и g были взаимно сопряженные