## ANNALES

UNIVERSITATIS MARIAE CURIE-SKEOIOWSKA LUIBIIN-POLONIA

VOL. XIX, 2
SECTIO A
1965

Z Katedry Funkeji Analitycznych Wydz. Mat. Fiz. Chem. UMCS
Kierownik: prof. dr Jan Krzyż

## ZBIGNIEW BOGUCKI and JOZEF WANIURSKI

# On a Theorem of M. Biernacki Concerning Convex Majorants 

O twierdzeniu M. Biernackiego dotyczącym majorant wypuklych
О теоремс М. Вернаикого, относящейся к выпуклым мажорантам

## 1. Introduction. Notations

Let $S$ be the class of functions $\boldsymbol{F}^{\prime}(z)=z+A_{2} z^{2}+\ldots$ regular and univalent in the unit disk $K_{1}=\{z:|z|<1\}$ and let $\mathbb{S}_{c}$ be the corresponding subclass of convex functions. In [2], also cf. [3], M. Biernacki proved the following theorem: Suppose $f(z)=a_{1} z+a_{2} z^{2}+\ldots, a_{1}>0$, is regular and univalent in $K_{1}$ and maps $K_{1}$ onto a convex domain d. Suppose, moreover, that $F^{\prime} \in \mathbb{S}_{c}$ and $d \subset D=F^{\prime}\left(K_{1}\right), F^{\prime}(0)=f(0)=0$, Then $|f(z)|$ $<\left|H^{\prime}(z)\right|$ for any $z$ satisfying $0<|z|<r_{c}$, where $r_{c}=0, \dot{0} 43 \ldots$, is the root of the equation: 2 aresini $r_{c}+4$ aretann $r_{c}-\pi=0$. The constant $r_{c}$ cannot be replaced by any greater number. An analogotas result for $F^{\prime}$ belonging to the subclass $S^{*}$ of functions starlike w.r.t. the origin was also given in [2] and [3]. A few years ago A. Bielecki and //. Lewandowski [1] have found a general method which enabled them to find the radius of the disk where a function $f$ subordinate to $F^{\prime}$ is dominated by $F^{\prime}$ in absolute value. Also the assumption of univalence of the subordinate function $f$ could be rejected and was replaced by the weaker assumption $f(z) \neq 0$ for $0<|z|<1$. In this paper we ohtain by an entirely different method an analogous result for a still wider class of subordinate functions. The only restriction on $f$ is that $f^{\prime}(0)=a_{1} \geqslant 0$, whereas we assume $F$ to be convex, or, more generally $\frac{1}{2}$-starlike. The function $\boldsymbol{F}^{\prime}(z)=z+$ $+\boldsymbol{A}_{2} z^{2}+\ldots$, regular in $K_{1}$ and such that $\boldsymbol{F}^{\prime}(z) \neq 0$ for $0<|z|<1$ is called $a$-starlike $(0) \leqslant \alpha<1)$ if re $\left\{z F^{\prime \prime}(z) / F^{\prime}(z)\right\}>a$ in $K_{1}$. The class of $u$-staulike functions will be denoted $\mathbb{S}^{*}(u)$. Obviously $\mathbb{S}^{*}(u) \subset \mathbb{S}^{*}(0)$ $=S^{*} \subset S^{*}$. Moreover, ly a well known result of $\Lambda$. Marx [ 6 ], $S_{c} \subset \mathbb{S}^{*}(1 / 2)$.

## 2. Main result

The main result of this paper is the following:
Theorem 1. Suppose $f(z)=a_{1} z+a_{2} z^{2}+\ldots, a_{1} \geqslant 0$, is regular in $K_{1}$ and $f$ is subordinate to $F^{\prime}$ in $K_{1}$ with $F^{\prime} \in S^{*}(1 / 2)$. Then $|f(z)|<\left|F^{\prime}(z)\right|$ for any $z$ with $0<|z|<1 / 2$. The constant $1 / 2$ cannot be replaced by any greater number.

We shall need for the proof two results, one due to the former author and another one due to E. Złotkiewicz, which are quoted here as Lemma 1 and Lemma 2.

In Lemma 1 we use the notion of Rogosinski's region $H\left(z_{1}\right)$ associated with the point $z_{1} \in K_{1}$ and defined as follows: $H\left(z_{1}\right)$ is a convex domain containing the disk $|z|<\left|z_{1}\right|^{2}$ whose boundary consists of an are of the circle $|z|=\left|z_{1}\right|^{2}$ and two circular ares through $z_{1}$ which are tangent to $|z|=\left|z_{1}\right|^{2}, z_{1} \epsilon \bar{H}\left(z_{1}\right)$. According to a well known result of Rogosinski, cf. [5], p. 327, $H\left(z_{1}\right)$ is the region of variability of $\varphi\left(z_{1}\right)$ for fixed $z_{1}$ and $\varphi$ ranging over the class of all regular $\varphi$ which satisfy the following conditions:

$$
|\varphi(z)| \leqslant 1 \quad \text { in } K_{1}, \quad \varphi(0)=0, \quad \varphi^{\prime}(0) \geqslant 0 .
$$

Lemma 1, [4]. Suppose $S_{0}$ is a fixed subclass of S. Let $Q\left(z_{1}\right)$ be the set $\left\{w: w=\Phi\left(z_{2}\right) / \Phi\left(z_{1}\right)\right\}$, where $z_{1} \in K_{1}$ is fixed and $z_{2}, \Phi$ range over $H\left(z_{1}\right)$ and $S_{0}$ resp. S'uppose $f(z)=a_{1} z+a_{2} z^{2}+\ldots, a_{1} \geqslant 0$, is regular in $K_{1}$, $F \in S_{0}$ and $f$ is subordinate to $F$ in $K_{1}, f \not \equiv F$. Under these assumptions we have $|f(z)|<\left|F^{\prime}(z)\right|$ in $0<|z|<r_{0}\left(0<r_{0}<1\right)$ if and only if for any $z_{1}$ with $\left|z_{1}\right|<r_{0}$ the intersection of $Q\left(z_{1}\right)$ and $\partial K_{1} \backslash\{1\}$ is empty.

Lemma 2, [7]. If $z_{1}, z_{2}$ are fixed points of the unit disk $K_{1}$ and $F^{\prime}$ ranges over $S^{*}(1 / 2)$, then the set $\left\{w: w=F^{\prime}\left(z_{2}\right) / F^{\prime}\left(z_{1}\right)\right\}=D\left(z_{2}, z_{1}\right)$ is identical with the closed disk whose boundary has the equation

$$
\begin{equation*}
w(\theta)=z_{2}\left(1-e^{-i \theta} z_{1}\right)\left[z_{1}\left(1-e^{-i \theta} z_{2}\right)\right]^{-1},-\pi \leqslant 0 \leqslant \pi . \tag{2.1}
\end{equation*}
$$

In other words

$$
\begin{equation*}
D\left(z_{2}, z_{1}\right)=\left\{w:\left|\left(w-z_{2} \mid z_{1}\right)(w-1)^{-1}\right| \leqslant\left|z_{2}\right|\right\} . \tag{2.2}
\end{equation*}
$$

Suppose now $Q\left(z_{1}\right)$ is the set defined in Lemma 2 with $S_{0}=S^{*}(1 / 2)$. We first give some obvious properties of $Q\left(z_{1}\right)$ and $D\left(z_{2}, z_{1}\right)$.
(i) From (2.2) we easily see that $|\eta|=1$ implies

$$
D\left(\eta z_{2}, \eta z_{1}\right)=D\left(z_{2}, z_{1}\right) .
$$

(ii) We now show that $Q\left(z_{1}\right)=Q\left(\left|z_{1}\right|\right)$. We have : $Q\left(z_{1}\right)=\bigcup_{z_{2} H\left(s_{1}\right)} D\left(z_{2}, z_{1}\right)$. By (i) we can replace each $D\left(z_{2}, z_{1}\right)$ by $D\left(\eta z_{2}, \eta z_{1}\right)=D\left(\eta z_{2}, r_{1}\right)$ where
$r_{1}=\left|z_{1}\right|=\eta z_{1}$. Hence

$$
Q\left(z_{1}\right)=\bigcup_{\xi_{2} H H\left(0 \nabla_{1}\right)} D\left(\xi_{2}, r_{1}\right)=Q\left(r_{1}\right)
$$

(iii) If $0<r<R<1$ then $Q(r) \subset Q(R)$. Suppose $R=\lambda r, \lambda>1$. From the definition of $H(r)$ it follows easily that $\lambda H(r) \subset H(\lambda r)=H(R)$; here $\lambda H(r)$ is the set obtained from $H(r)$ by similarity with ratio $\lambda$. Since $H(r)$ is starlike w.r.t. the origin, $H(r) \subset \lambda H(r)$. Hence $H(r) \subset H(R)$. Suppose now $z_{2} \in H(r)$. Then $\lambda z_{2} \in \lambda H(r) \subset H(R)$ and by (2.2)
$D)\left(z_{2}, r\right) \subset D\left(\lambda z_{2}, \lambda r\right)=D\left(\xi_{2}, R\right)$ with $\xi_{2} \in H(R)$. Hence

$$
\left.Q(r)=\bigcup_{z_{2} * H(r)} I\right)\left(z_{2}, r\right) \subset \bigcup_{\xi_{2} \in H(R)} I\left(\xi_{2}, R\right)=Q(R)
$$

Proof of Theorem 1. We first prove that for any $r \in(0,1 / 2)$ we have

$$
\begin{equation*}
(\ell(r) \cap(\partial K \backslash\{1\})=\varnothing \tag{2.3}
\end{equation*}
$$

where $?(r)$ is defined as in Lemma 1 with $S_{0}=S^{*}(1 / 2)$. It is sufficient to show that if $w \in Q(r), w \neq 1$, then $|w|<1$. Now the region $H(r)$ is swept out lyy three families of ares

$$
\begin{gather*}
z=z_{1}(\tau)=\varrho^{2} e^{i \tau}, \quad \pi / 2 \leqslant \tau \leqslant 3 \pi / 2 ;  \tag{2.4}\\
z=z_{2}(t)=(t+i \varrho)[1+i t \varrho)^{-1} \cdot \varrho, \quad 0 \leqslant t \leqslant 1 ;  \tag{2.5}\\
z=z_{3}(t)=(t-i \varrho)[1-i t \varrho)^{-1} \cdot \varrho, \quad 0 \leqslant t \leqslant 1 ; \tag{2.6}
\end{gather*}
$$

In (2.4)-(2.6) we have $0 \leqslant \varrho \leqslant r$.
Suppose $z_{2}$ is situated on an are given by (2.4). Then by (2.1) for any $w \in \partial D\left(z_{2}, r^{r}\right)$ we have:

$$
\begin{aligned}
|w|=r^{-1} \varrho^{2}\left|1-e^{-i \theta} r\right| & \left|1-e^{-i(\theta-\tau)} \varrho^{2}\right|^{-1} \leq r^{-1} \varrho^{2}(1+r)\left(1-\varrho^{2}\right)^{-1} \\
& \leqslant r(1-r)^{-1}<1 \quad \text { if } \quad r \in(0,1 / 2) \text { and } \varrho \leqslant r .
\end{aligned}
$$

This shows that all the disks $D\left(z_{2}, r\right)$ with $z_{2}$ situated on curves (2.4) lie inside $K_{1}$.

Suppose now the point $z_{2}$ is situated on an are given by (2.5) or (2.6). We show that for any such $z_{2} \neq r$ and any $w \in D\left(z_{2}, r\right)$ we also have $|\boldsymbol{w}|<1$ in case $\boldsymbol{r} \epsilon(0,1 / 2)$.

It is sufficient to consider $w \in \partial D\left(z_{2}, r\right)$. By (2.1) we have then

$$
\begin{equation*}
w=z_{2} r^{-1}\left(1-e^{-i \theta} r\right)\left(1-e^{-i \theta} z_{2}\right)^{-1} \tag{2.7}
\end{equation*}
$$

We have to show that for any real 0 :

$$
\begin{equation*}
|w|^{2}=\frac{\left|z_{2}\right|^{2}}{r^{2}} \frac{1-2 \mathrm{re}\left(r e^{i \theta}\right)+r^{2}}{1-2 \operatorname{re}\left(\bar{z}_{2} e^{i \theta}\right)+\left|z_{2}\right|^{2}}<1 \tag{2.8}
\end{equation*}
$$

if $z_{2}=z_{2}(t), 0 \leqslant t<1,0<r<1 / 2$.

Now, (2.8) can be written as follows:

$$
\left|z_{2}\right|^{2}-r^{2}+2 \operatorname{re}\left\{e^{i \theta} r \bar{z}_{2}\left(r-z_{2}\right)\right\}<0 .
$$

Hence it is sufficient to show that

$$
\begin{equation*}
\left|z_{2}\right|^{2}-r^{2}+2 r\left|z_{2}\right|\left|r-z_{2}\right|<0 . \tag{2.9}
\end{equation*}
$$

Using (2.5), resp. (2.6), we bring (2.9) to the form

$$
\begin{gather*}
2 r(1-t)\left[\left(r^{2}+t^{2}\right)\left(1+r^{2}\right)\right]^{1 / 2}<\left(1-t^{2}\right)\left(1-r^{2}\right), \text { or } \\
2 r^{[ }\left[\left(r^{2}+t^{2}\right)\left(1+r^{2}\right)\right]^{1 / 2}<(1+t)\left(1-r^{2}\right) . \tag{2.10}
\end{gather*}
$$

The left hand side in (2.10) increases strictly as a function of $r, t$ being fixed, whereas the right hand side decreases. Hence it is sufficient to prove (2.10) with $r=1 / 2$ and $t \in(0,1)$. Then (2.10) takes the form: $11 t^{2}-18 t-4$ $<0, t_{\epsilon}\langle 0,1$ ), which is olbviously true. This proves that (2.3) is satisfied for any $r \in(0,1 / 2)$. From the property (ii) of $Q\left(z_{1}\right)$ it follows that the assumptions of Lemmal 1 are satisfied. Hence for cach $f$ subordinate to $F^{\prime} \in \mathbb{S}^{*}(1 / 2)$ in $K_{1}$ we have $|f(z)|<|F(z)|$ for $0<|z|<1 / 2$. The number $1 / 2$ cannot be replaced by any greater number since $F^{\prime}(z)=z(1+z)^{-1}$ belongs to $S^{*}(1 / 2), f(z)=F\left(-z^{2}\right)$ is obviousiy subordinate to $F$ and satisfies $f^{\prime}(\mathbf{0}) \geqslant 0$, whereas $|f(1 / \mathcal{Z})|=|F(1 / \mathcal{Z})|=1 / 3$.

Corollary. If $F \in S_{c}, f(z)=a_{1} z+a_{2} z^{2}+\ldots, a_{1} \geqslant 0$, is subordinate to $F$ in $K_{1}$ then $|f(z)|<|F(z)|$ for $0<|z|<1 / 2$. The number $1 / 2$ cannot be replaced by any greater number.

## REFERENCES

[1] Bielocki, A. et Lowandowski, Z., Sur une généralization de quelques théorc̀mes de M. Biernacki sur les fonctions analytiques, Ann. Polon. Math. 12 (1962), 05-70.
[2] Biernacki, M., Sur quelques majorantes de la théorie des fonctions univalentes, C. R. Acad. Sci. Paris 201 (1935), 256-258.
[3] -, Sur les fonctions univalentes, Mathematica 12 (1936), 49-64.
[4] Bogucki, Z., On a Theorem of M. Biernacki Concerning Subordinate Functions, Ann. Univ. Mariae Curio-Sklodowska, Sectio A, 19(1965), 5-10.
[5] Golusin, G. M., Geometrische Funktionentheorie, Borlin 1957.
[6] Marx, A., Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1933), 40-67.
[7] Zlotkiowicz, E., Subordination and Convex Majorants, Folia Societatis Scientiarum Lublinensis 2 (1962), 97-99.

## Streszczenie

W pracy tej dowodzi się następującego twierdzenia: Niech $f(z)=$ $=a_{1} z+a_{2} z^{2}+\ldots, a_{1} \geqslant 0$, będzie funkcja regularna dla $|z|<1$ i niech
$f\lrcorner_{1} F$, gdzie $F \in S^{*}(1 / 2)$, lub $F \in S_{c}$. Wówezas $|f(z)|<|F(z)|$, dla $0<|z|<$ $<1 / 2$. Stała $1 / 2$ nie może byé zastąpiona przez liczbę większą.

## Резюме

В работе доказывается следующая теорема:
пусть $f(z)=a_{1} z+a_{2} z^{2}+\ldots, a_{1} \geqslant 0$ будет голоморфиой функцией в круге $|z|<1$, a $f \jmath_{1} F^{\prime}$, где $F^{\prime} \in S^{*}(1 / 2)$ или $F \in S_{c}$.

При этих условиях $|f(z)|<|F(z)|$, если $0<|z|<1 / 2$. Констаита 1/2 вляется паилуишей.

