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Introduction

The idea of parametrization of conformal mappings of the unit dise
was first realized by Lowner [24]. The corresponding results for conformal
mappings of an annulus were obtained by Komatu [16] and Golusin [12].
With the appearance of the theory of quasiconformal mappings which
was initiated in 1928-32 by Grotzsch [13], [14], [15] and Lavrentieff [20],
and contained, in particular, the theory of conformal mappings, there
arose the problem of parametrization for this very general class of map-
pings. In the case of the unit disc the problem has been solved by Shah
Tao-shing [34], while in the case of an annulus by Shah Tao-shing and Fan
Le-le [35] and by the author [25], with different assumptions restricting
the class considered. The aim of the present paper is to parametrize qua-
siconformal mappings of an annulus in the general case (for a dense subelass
of the class of all quasiconformal mappings of an annulus).

There exist several definitions of quasiconformal mappings and it is
necessary to decide which one has to be used. The classical definition
due to Grotzsch was completed in 1937 by Bers [8] who extended this
notion on a considerably wider class of functions. As proved by Gehring
and Lehto [11], the definition of Bers may be considerably simplified with
maintenance of the same class of mappings. Apart from the analytic
definition there exist some other ones. Ahlfors [ 2], Pfluger [32] and Mori
[28] gave the geometric definition, while Lavrentieff [20], [21], [22], Pesin
[31] and Bers [8] presented definitions using mappings of infinitesimal
circles onto infinitesimal ellipses, or using solutions of Beltrami differen-
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tial equation. The problem of equivalence of these definitions was consi-
dered among others by Bers [8)] and Gehring [10]. In the present paper
the following equivalent definitions will be used:

Definition 1 (Grotzsch, Bers and Gehring). A mapping w = f(2) of
a plane domain D onto 4 is said to be @-quasiconformal (1 < @ < oo),
if (i) f is a sense-preserving homeomorphism in D, (ii) f is absolutely con-
tinuous in D on almost all horizontal and vertical lines, (iii) an essential
estimate (1)

(0.1) Ife | <{(@—D)/(Q@+1)}Sl
takes place a.e. in D.

Definition 2 (Lavrentieff and Pesin). A mapping w = f(z) of a plane
domain D onto 4 is said be ¢-quasiconformal (1 < ¢ < oo), if (i) f is
a sense-preserving homeomorphism in D), (ii) the expression
(0.2) H(z) = 1"1(}{|'Slzlp 1f (2) — £ (20) l/ inf If(Z) —f(z)1}

ol=h 2—2gl=h
is bounded for all z,e D, (iii) the essential l.u.b. of H in D is equal to .

A mapping w = f(z) is said to be @-quasiconformal in a closed domain,
if it is @-quasiconformal in its interior and homeomorphic on its closure.
Boundary points of a domain and the convergence to them is under-
stood in the sense of the theory of prime ends due to Carathéodory.

In this place I should like to express my sincere gratitude to Professor
P. P. Belinskii from Novosibirsk who gave me many advices and hints,
and to Professors Z. Charzynski from L6dz and J. Krzyz from Lublin
for their remarks which vastly improved my already accomplished paper.
I also owe very much to discussions with Dr Krushkal from Novosibirsk,
and I profited particularly from Krushkal’s papers [17], [18] and [19].
Moreover, Professor Belingkii and Dr Krushkal kindly made accessible
to me their yet unpublished results.

§ 1. Existential problems

Parametrization of quasiconformal mappings requires the usage of
the theorem on existence and uniqueness of such mappings with given
characteristics. For the case of simply connected domains and continuous

(1) Here f. = §(fz—ify) and f; = }(fz+ ify) where z = z+1iy. A function w = F(z)
is said to be essentially estimated a.e. in D by MG(z), where M is a constant, if

esssup {F(2)/G(2)} = M
2eD

The essential supremum is defined as
inf sup {F(2)/G(2)}
E zeD\E

where the infimum is taken over all sets B with the plane measure equal to zero.
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characteristics it was first formulated and proved by Lavrentieff [21],
and then generalized by Morrey [29], Belingkii [6] and Belinskii and
Pesin [7]:

Theorem 1 (Lavrentieff, Belinskii and Pesin). Let D bhe an arbitrary
simply connected closed domain, different from the whole plane, and let be
given a.e. in D an arbitrary measurable and bounded pair of characteristics
p = p(2), 0 = 0(2), where the essential l.u.b. of p is equal to Q(1 < @ < o).
Then for any simply connected closed domain A, different from the whole
plane, there exists a Q-quasiconformal mapping of 1) onto A, determined
uniquely apart from conformal mappings of A onto itself and having the
characteristics p, 6 a.e. in D.

An analogous theorem for multiply connected domains is an unpu-
blished result of Belinskii which has been placed here together with the
proof with his consent:

Theorem 2 (Belinskii). Let D be an arbitrary closed domain of connec-
tivity n and let be given a.e. in I an arbitrary measurable and bounded pair
of characteristics p = p(z), 6 = 0(2), where the essential l.u.b. of p is equal
o Q (1 <@ < oo). Then there exists a circular canonical closed domain A
of connectivity n and a Q-quasiconformal mapping of D onto A, determined
uniquely apart from conformal mappings of the interior of A onto itself and
having the characteristics p, 0 a.e. in D).

Proof. Let D° be an arbitrary closed simply connected domain which
is different from the whole plane and includes D. Let further p = p*(2),
0 = 0°(z), where p*(z) < (1 < () < oo) for ze D*, be measurable functions
defined a.e. in D* and such that p*(z) = p(2), 0°(2) = 6(2) a.e. in D. Let
finally 4* be an arbitrary simply connected closed domain different
from the whole plane.

In view of Theorem 1 there exists a quasiconformal mapping of D*
onto A* with characteristics p*, 6* a.e. in D*. This mapping transforms,
in particular, the domain D onto a certain domain 4** = A4* Q-quasi-
conformally. Applying now the theorem on mapping of multiply connected
domains onto circular canonical domains, we see that 4** can be homeo-
morphically mapped onto a circular canonical closed domain A4 of connec-
tivity », and that this mapping is conformal inside of A**. However, it
is well-known (see e.g. [8]) that the ()-quasiconformal mapping with
characteristics p, 0, internally or externally composed with a conformal
mapping, gives a Q-quasiconformal mapping with characteristics p, 6.
Thus, there exists a circular canonical closed domain 4 of connectivity »
and a homeomorphical mapping of /) onto A, ¢-quasiconformal with char-
acteristics p, 0 in D. Consequently, this mapping is @-quasiconformal
in the whole domain D.
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We have still to prove that the described mapping of ) onto 4 is de-
termined uniquely apart from a conformal mapping of 4 onto itself. Let
us suppose that there exist two mappings w = f(z) and w = ¢(z2) which
fulfil the conditions of our theorem. Hence the mapping o = F(w)
= g(f '(w)) transforms A onto itself as a sense-preserving homeomor-
phism in such a way that

(1.1) lim{ sup [F(w)— F(w,)|/ inf [F(w)— F(w,)|} =1
hos0 |w-wg|=h [0 —w)|=h
for almost all wye 4.

In fact, in order to show (1.1) we verify that U(w) = 0 a.e. in A,
where F(w) = U(w)F,(w), and this implies (1.1). Let « and » be defined
by the relations f,;'(w) = u(w)f,'(w) and g¢,(z) = v(2)g.(z) a.e. in 4 and
D, respectively. Hence v(z) = — u(w)exp(2iargf,'(w)) a.e. in 4, where
z = f'(w). Consequently,

K, = f/szl 1‘!I={f l}"' = .(l:fwl T g:fu-ly

I"w — yzfilil + .(Iz{f l}w T .(l:flrl4' .(/szl’
that is, by Fg(w) = U(w) F,(w),

.(/s{fwl_fwlex])(ziargfu;‘)}“ =4 ;Lr-l - “ufu'lexl)(zia‘rgfu-l)} &L s

whence U(w) = 0 a.e. in A.

Notice now (cf. [10], p. 13) that Definition 2 implies H(z) to be less
than oo everywhere in A4, except perhaps at points of a set of Z-finite
linear measure. Now, applying Corollary 3 of Gehring’s paper [10] (p. 15)
which is a generalization of a known Menchoff’s thcorem [26] we sce that
the mapping o = F(w) is conformal and this complets the proof.

An immediate consequence of Theorem 2 is the following

Corollary 1. Let be given a.e. in a nondegenerate annulus r < [z < 1
an arbitrary measurable and bounded pair of characteristics p = p(z),
6 = 6(z), where the essential l.u.b. of p is equal to @ (1 < < oo). Then
there exists exactly one number R (0 < R < 1) and a (-quasiconformal
mapping of the annulus r < |z| < 1 onto R < |jw| < 1, determined uniquely
apart from reciprocal and rotations around the origin and having the
characteristics p, 0 a.e. in the annulus » < |2| < 1.

§ 2. Remarks on parametrization in the unit disc

v

We shall use further theorems on parametrization of quasiconformal
mappings of the unit dise¢ onto itself, obtained by Shah Tao-shing [34],
mostly in the sense of application of analogous methods. We quote here
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his results in a more precise form than that given in [34] and the most
of them under slightly weakened assumptions.
We prove first

Lemma 1. Let f map quasiconformally a closed domain 1), contain-
ing a circle lz| =7, onto A 8o that (d/dﬂ)lf(re”’)j = 0 for almost all
$(—n <& <a). In order that the condition (0/de)argf(pe®)l,., =0
be fulfilled for almost all &, it is necessary and sufficient that the cha-
racteristics p, 0, corresponding to f, be such that for almost all ¢

(2.1) either p(re’) = 1, or 0(re’®) = & or O(re'’) = 9+ }x.

Proof. It is known (see e.g. [8]) that the funection f has generalized
partial derivatives of the first order which satisfy a.e. the Beltrami equa-
tion (see e.g. [8])

(2.2) f: = {(1—p) /(A +p)}e’f.,

where (p, 6) denotes the pair of characteristics corresponding to f. More-
over, it is easy to verify that

(2.3)  fo = Hifle+ (1 e)f|(argfle+ i IfI(argf)o— i(1/0) Iflo} X
X expi(argf— ),

(2.4)  f: = ${Ifle—(1]o) Ifi(argf)s + ¢ |fl(argf), + i(1/0) Ifls} ¥
X expe(argf+ 3).

From (2.2), (2.3) and (2.4) the necessity as well as sufficiency of the con-
dition (2.1) follows immediately.
Lemma 1 has an obvious geometrical sense.

Let now Uy denote the class of all functions f which map @-quasicon-
formally the disc |z| < 1 onto itself with f(0) = 0 and f(1) = 1. Let fur-
ther U, denote the class of all measurable and bounded pairs of character-
istics (p, 0) defined a.e. in the dise 2| < 1. Let in turn (8), denote the
subclass of U7, consisting of pairs of functions defined in the disc [z| <1
and belonging to the class €', and by 8, the subclass of (8), consisting
of pairs of functions which have for [z| < 1 partial derivatives of the first
order fulfilling a global llolder condition with a certain exponent o (0
< & < 1). Let finally (8)gand S, denote the subclasses of Uy = | JgecoUge
consisting of all funetions corresponding (by virtue of Theorem 1) to pairs
of charac teristics that belong to the classes (8), and §,, respectively.

As it was remarked in [34] (cf. also Remark in the next paragraph
of the presentpaper), there takes place the following

Lemma 2 (Shah Tao-shing). The subclasses Sy and (8)p are dense
in the class Ug.
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In what follows we consider functions f and the corresponding pairs
of characteristics (p, 0) depending on one real parameter {.

The basic part of Shah Tao-shing’s paper [34] is the proof of the follow-
ing integral lemma, analogous to Golusin’s lemma [12], and presented
here with weakened assumptions, in a slightly different form:

Lemma 3. If a pair of characteristics (p, 6)e(8),, defined in the disc
2] <1 and in an interval 0 < t < 7', fulfils in this disc the conditions

(2.5) A/t)yu(z,t) 2 p(z) for >0+,
(2.6) (1/t) Jus(z, )] < k(z) for O<t<T,

where ¢ and k are bounded and u = ¢*(1—p)/(1 + p), then for the func-
tion fe(S)o which corresponds (by virtue of Theorem 1) to the pair of char-
acteristics (p, 0), the formula

(2.7) (1/)[f (2, )—2] 2 (1m)z(1—2) [[{e(8)/E(1—2)(z—08) +

1<t
LeQEA—O (1 —2)ydedy  for t >0+ (¢ = &+in)

is satisfied in the disc 2] < 1. (?)

Proof. This lemma differs from that given in [34] by the missing assump-
tion that the condition (2.1) holds for all ¢ (—z < & < z). Moreover,
we prove (2.7) in the sense of the footnote (2) only, but this is not essential
for further applications.

If (2.1) is fulfilled, the function 0, continued outside the circle 2| =1
according to the formula 0(z,t) = argz2— 6(1/z, ), is of the class C' and,
consequently, we see in view of Lemma 1 that the function f, continued
outside the cirele |2 =1 by the formula f(z,1) = 1/f—(1/z, t), is of the
class (8)q.

If (2.1) is not fulfilled, the proof runs quite analogously, but we obtain
(2.7) in the sense of the footnote(2) only.(3)

From Lemma 3 the following theorem can be deduced (see Shah Tao-
-shing [34]):

Theorem 3. If for a pair of characteristics (p, 0)eS,, defined in the
disc |z| <1 and in an interval 0 < t < T, the function v = ¢ (1— p)/(1+ p)
has in the disc |z| <1 and in the interval 0 <t < T partial derivatives u,

(3) We use the notation > for an open set D in the sense of the so-called al-
most uniform convergence in I (i. e. the uniform convergence on compact subsets
of D) and the convergence of Re {(1/tz)[fl(z, t)—z]} on its closure.

(®) It seems to the author that in (2.7) we have the uniform convergence for
[2] < 1 also in this case. The problem requires a separate publication. An analogous
remark concerns also L.emma 6.
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and uy, then the function feSg, corresponding to the pair of characteristics
(p, 0), satisfies in the disc |z| < 1 the equation

(2.8) of 0t = (l/n)f(l-f)lc{_ fl (&, 0/e1—O(f— )+

+pE O)E =0 —fE) dedy (& = E+iy),

where the function ¢ 18 defined by the formula

(2.9) @(&, 1) = {1/ (1= 1u(f (&, 0, )2) lf (C, 1), Yexp(—2iargf (2 1)
If, in particular, p(z,t) = [p(2)]' and 0(z,1) = 0(z), then

(2.10) (L, 1) = — Ylogp(f (&, H)exp(2i0(f (¢, 1)) —2targf ' (£, 1))

and the solution w = f(z, t) of the equation
(2.11) dw ot = (1/m)w(1 —w) cff (@)L= ) (w— )+
1<

(L, A=) (1 —wl)ydedy  (E = E+in)

satigfies the initial condition f(z,0) = 2.

The proof is the same as in [34], but the lemma applied there must
be replaced by Lemuma 3 from the present paper.

An application of the above forinulated theorem, instead of the cor-
responding one from [34], permits to avoid the condition (2.1) which
has been tacitly assumed by Shah Tao-shing in his Theorems 3 and
from the same paper. Thus the proofs of the mentioned theorems may
be already taken as complete.

Let us finally mention the results of Krushkal [19]. Basing on Lemma 19
of the paper of Ahlfors and Bers [3] he proved that the assertion of Lemma 3
takes place also under the following assumptions: 1° ¢ is measurable and
bounded in the dise |z| < 1, 2° (1/t)(u—t¢) is measurable and bounded
on compact subsets of the disc |2| <1 by a constant common for all ¢
(0<t<T),3ift -0+, then(1/t)u(z,t) - ¢(z) for almost all z (2] < 1).
He also showed that under these assumptions not only the uniform con-
vergence in (2.7) takes place, but even there exists such a number p* > 2
that for any p from the interval 1 < p < p* there takes place the con-
vergence with respect to the norm in B, (|z] < 1), where B,(|z| < 1) deno-
tes the Banach space of functions f which are defined in the disc |z| <1 with
the norm

(248) If@)lryacy = sup {If(z)—f(z)l [l — 2 "} +

181,139l <1

+1fa(2 “Ip(!z| 1)+||fs “Lp(|z|<l)
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and fulfil the conditions f(0) = 0 and f(1) = 1. Using this lemma Krush-
kal proved further in [19] that the assertion of Theorem 3 takes place
also if u(z,t) = tu(z) for 2| < 1and 0 <t < T, where u is measurable and
bounded by a constant & < 1. Krushkal did not obtain theorems which
correspond to Theorems 3 and 4 of Shah Tao-shing’s paper [34].

§ 3. Dense subclasses of quasiconformal mappings in an annulus

Let fJE,'R denote the class of all functions f which map (-quasiconfor-
mally an annulus r < |2/ <1 onto R < |[w| <1 with f(1) =1 and let

o = Uno-<oUGE. Let further U7 denote the class of all measurable and
bounded pairs of characteristics (p, 0) defined a.e. in the annulus r < |z|
< 1. Let in turn (S), denote the subeclass of U, consisting of pairs of
functions defined in the annulus 7 < [2| < 1 and belonging to the class C!,
and by S, the subclass of (8), consisting of pairs of functions which have
for r < |z| <1 partial derivatives of the first order fulfilling a global
Holder condition with a certain exponent 0 (0 < 6 < 1). Let further (8);
and 8; denote the subclasses of Uf, consisting of all functions correspond-
ing (by virtue of Corollary 1) to pairs of characteristics that belong to
the classes (S), and 87, respectively. Let finally (8)5% and S§G" denote
respectively the subclasses of the classes (S); and 8 which consist of all
funetions mapping the annulus r < [2[ = 1 onto R < [w| < 1. Obviously,
(815 = Ur(8)5" and 85 = UpS;"™

\Ve prove first
Lemma 4. If feUj" then

(3.1) (1/16)° 2, —2,1” < If(2,) —f(22)] < 16]2,—2,)"°
and
(3.2) If(2) — 2| < 18logQ

in the whole annulus r < |z] < 1.

Proof. Let us continue the function f into the inner dise by the for-
mulae

(3.3) ff(z) = R®[f0*[z)  for P <Llzl <™ (v =1,2,..),
(34)  f*(z) = R¥f(zp™) for <l <M =1,2,..0).

Obviously, we admit f*(z) = f(z) for r < |2| <1, and f*(0) = 0. It is
easy to see that f* is (-quasiconformal in the dise [z| < 1. Hence f* satis-
fies here the estimates (1/16)°[2,—2,Y < [f*(21) —f*(25)] < 16|z, —2,""¢
and |f*(z)—z| < 18log® obtained by Mori [27] and Belinskii [6], respec-
tively, and this implies the assertion of our lemma.
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We prove now

Lemma 5. A subclass of the class Uj consisting of all real-analytic
functions is dense in Up; in particular the subelasses S; and (8); are
dense in Uy,.

Proof. The method of our proof is analogous to that used by Bers
in [8].

Let us first note that, in view of Lemma 4, the function f satisfies (3.1)
in the whole considered annulus. On the other hand, f satisfies here a.e.
the Beltrami differential equation (see e.g. [8])

(3.5) fz == “(z)fz

where |u(z)| is sharply estimated by (Q —1)/(Q +1). 1f we define f* as
in the proof of Lemma 4, then the corresponding function »* will be
determined by the formulae

(3.6)  u'(2) = &™) for r<lpl <PV =1,2,..),
(3.7) w*(z) = u(z/r*)y for PP <zl<r¥(v=1,2,..),

and, obviously, «*(z) = w(z) for r < |2| < 1.

Now, let ™ be a sequence of complex valued real-analytic functions
such that [u™(z)] < (Q —1)/(Q+ 1) and u™ — «* a.e. in the dise |z| < 1.
Let further

sup [1W(z)] = (Qu—1)[(Qu t1) (0 =1,2,...).

Obviously, @, > @ as n — oo. According to the theorem on existence
and uniqueness of systems of partial differential equations, any equation

(3.8) w; = M (2)m, (n=1,2,..)

has exactly one solution o = f**)(z) which is a real-analytic sense-
preserving homeomorphism of the dise [z| < 1 onto itself and fulfils the
initial conditions f*™(0) = 0 and f*™(1) = 1.

Applying now Corollary 1 we see that there exists a uniquely deter-
mined sequence of numbers R, (0 < R, < 1) and a uniquely determined
sequence of (,-quasiconformal mappings w = f")(z) of the annulus r < |z|
<1 onto R, < |w| < 1 which have in r < |z|] <1 the characteristics p,,
0., respectively, given by the relations exp(2:6,):(1—p.) /(14 pa) = u,
(ef. (2.2) and (3.5)) while f™(1) = 1. Moreover, Corollary 1 implies also
the existence of a uniquely determined sequence of conformal mappings
W = g,(w) of the domains f*™({z: r < |z| <1}) onto R, < |w| <1,
respectively, such that for any » the relation f™(z) = g,(f*"(s)) holds
forr < j2) <1.
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Thus we see that the functions f'") are real-analytic in the annulus
r < |2/ < 1. On the other hand, in view of Lemma 4, we have here

(3.9) (1/16)%n |2, — 25|19 < |f™) (2,) — f™ (2,)] < 16 |2, — 24",

IHence we may assume, selecting if need be a subsequence, that the sequence
of function f'" converges uniformly to a sense-preserving homoemorphism
) which maps the annulus 7 < [z| <1 onto R < |w| <1 where R is
the limit of R, for n — oo.

It remains to prove that f( is identically equal to f in the annulus
r < |z| < 1. To this end we note first that, by virtue of the condition (iii)
of quasiconformality in Definition 1, we have the estimate [fl"(z2)
<{(Q.—1)/(Q +1)}Iff(2)|. Let 2 =a+iy and f® = ¢™ 4+ iyp™. Then,
squaring both sides of the last inequality, we obtain

@8+ + 9+ 907 — (g 9l — oi" pi)
< [(Qu—1)/(Qu+ 1) T[54 g™ 4 o8 + o — (¢ 9l — i 91,

that is @{% -+ g + 9 4y < (Qu+1/Qn) (P29 —gf"yi"), and con-
sequently, after integration,

(3.10) JJ SO+ 1P dedy < 2(Qut 1/Q4).

From (3.10) we infer that the sequences of functions f{¥ and f{" are,
after selecting if need be subsequences, weakly convergent to certain
functions ¢ and k, measurable and locally integrable with the square in
the annulus r < [2] < 1, and at the same time g = ff* and & = [ almost
everywhere. Hence we infer that the sequence of functions u™ fL"’ is weakly
convergent in r < [z <1 to uff™. Thus w = f*)(2) is one of solutions
of the differential equation

(3.11) w; = u(z)w,

determined for r < |z2] < 1.

But, as proved by Bers [8], if w = f,(2) and w = f,(z) are two solutions
of (3.11) in the same domain, and f, is a homeomorphism, then f, is
a holomorphic function of f,, and thus f*(z) = G(f(z)) where @ is holo-
morphic in 7 < |z| < 1. Since f as well as f) map the annulus r < [2| <1
onto R < |w| <1 and f(1) = f)(1) = 1, then G must be the identity
function in the annulus r < |2| < 1, and thus also on its closure.

In this way we have proved that a subclass of Up consisting of all
real-analytic functions is dense in Ujp. This implies in particular that
the subclasses S and (8)g are also dense in Uj.
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Remark. Similarly as in the previous proof it is easy to verify that
a subclass of the class U, consisting of all real-analytic functions is dense
in Uy and this is a generalization of Lemma 2.

In the follnwing paragraphs we shall consider functions fe UG and the
corresponding pairs of characteristics (p, 0) as functions of a complex varia-
ble z and a real variable t. In these considerations r will be fized, while R
and @ will be functions of the variable 1.

§ 4. Integral Lemma for an annulus

The following lemma on integral representation of quasiconformal
mappings of the class (8)5%, depending on one real parameter, has a basic
importance for the problem of parametrization of quasiconformal mappings
in an annulus. It is in fact a considerable generalization of the correspond-
ing results of [35] and [25] because the uniform convergence in r < [2] <1
instead of the convergence in the sense of the footnote (2) is not essential
for further applications.

Lemma 6. If a pair of characteristics (p, 0)¢(S)%, defined in an annu-
lus » < |2/ <1 and in an interval 0 <t < 7, fulfils in this annulus the
conditions (2.5) and (2.6) where ¢ and % are bounded and u = € x

—p)/(1+p), then for the function fe(8)3" which corresponds (by
virtue of Corollary 1) to the pair of charactenstics (p, 0), the formula

[ 2400 147
@) e, 0—2]= fj L’{"’;f( - o)

¢(C)(1+1-2vz5_1—}-7-2{\}(15{' for t-»0+
B \1—2t. 1| (¢ = ttin)

iy satisfied in the whole annulus » < |2| <1. (2), (4) Moreover,

(4.2) AMRW—r]—>1/27) [[ r{p()/t2+e(0)[i2)dedy  for t >0+,

Proof. The method of our proof is analogous to that used by Shah
Tao-shing in [34] and Shah Tao-shing and Fan Le-le in [35]. For more
clearness the proof is divided into several steps.

Step A. Reduction to a Dirichlei problem. Let us put

flz,t)—2z = B(z, ) +d (2, 1) +Jo(2,1) (r<|2| <1, 0<t<T),
+00

(‘) In the sequel we apply for the sake of simplicity the notation 3 a, instead

¥ = — 00

of a, + \ a,+ a_,) provided the last series converges.
= g
Vea
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where

J(z,t) = (1/m) Jff (z— &) Yu(C, tydédy,
raille

Jolzy ) = (1n) [[ (2= (&, (000 [£(&, ) — L1d&dy.

r<|{I<1

Applying Lemma 4 we prove, analogously as in [34], that (1/t)dJ(z, 1)

=20 and (1/t)[f(z,t)—2] = B(2)+J(2) for t > 0+ in the annulus r < |2]

< 1, where g is holomorphic in the above annulus and continuous on its

closure, and J(2) = (1/x) [f (2—¢) '@(()dEdy. Hence, putting(®)
r<Icissl

el (A—2)e( s

e EA—0E—0) T ta-0a—=0)
we obtain
(4.4) QAM[f(z,t)—2]1328%(2)+2J%(z) fort >04 (r<lzl <1),

where, as it is easily seen, * is holomorphic in the annulus r < |z| < 1
and continuous on its closure.
Since [f(z,t)] = 1 on the cirele |z| = 1, we have

2Re{(1/12)[f(z, ) —2]} = (L}12)[f(z, ) —2P[f(z,8) (o] = 1).
Hence, in view of (4.4),
(4.5) Re{(1/t2)[f(z,t)—=]} -0 for t = 04 (|z| 1).

Similarly, we have [f(z,t)| = R(f) on the circle [2| = r. Hence, in view
of the identity

Re{(1/te)[f(2,0)—2]} = [R()[r|Re{(1/ter ) [f(rar™ ", ) [R(t) —2r~ ']} +

+ (i) [R()—r] (2] =7)
and (4.5), we obtain

(4.6) Re{(1/tz)[f(z,t)—2z]} o for t >0+ (J2| =),
where
(4.7) 0 =l1im {1 /try[R(t)—r]}.

From (4.4), (4.5) and (4.6) we get

Ref*(z) = —Red*(z) (2=
(4.8) . $

Ref™(2) = o—Red7(2) ([z] =7).

(8) The function J* is convenient for further calenlations becaure ReJ*(z) = 0
for |z2| = 1.
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In consequence, we see, by virtne of a well-known theorem, that g*,
being holomorphic in the annulus r < 2| < 1 and continuous on its clo-
sure, can be expressed in it by the values of ReJ"*(2) on the circles |z| = 1
and |z| = r. Thus we have reduced our problem to a certain boundary
problem equivalent in fact to the Dirichlet problem for an annulus. Fur-
ther calculations are analogous to that of the author’s paper [25].

Step B. Solution of the boundary problem and transformations of the
integrals. The solution of the boundary problem formulated above
is given by Villat’s formula (see e.g. [1], p. 226). This formula will be
written in a formn more convenient for our purposes and used in [25]. Put

(4.9) e =(1/27i) [ (1/2)8*(2")dz’,
18wl
(4.10) Fy(2) = (1)270) [ (#—2)"'2Rep*(2)d2',
(4.11) Fy(z) = (1/270) [ (¢ —2)'2Rep’(2)dz’.
|8 | =r

Then, for r < 2| < 1,
(4.12)  B*(2) = e—2Ree- F,(1)2)+
+ Y AR — Fi (7 [5) — Fo(2)r) + Fo (1) 2)}.

=0
Note now that (4.3) yields

(413)  J*(1/z) = —dJ*(2) (z # 0) and Red*(2) = 0 (Jz] = 1).

From (4.9), (4.10) and (4.13) we obtain

(1.14) Ree =0 and F,(z) =0 (]z|=1).

We admit for the elegance of further calculations

(4.15)  c=c"+1/n) [[ @OLA-— o)L A-D)}dsdn;
r<iti<l

it is easily seen that the above integral exists.

In turn we transform the integral (4.11). First, in view of (4.8), it is
possible to write this integral in the form

Fo(2) = (1)270) [ (z—2)[J*(2') + J*(2') —20]d2’

|8°| mP

whence, in view of (4.13), we have

(4.16) Foy(2) = (1/2ni) J‘ (z—2' )V [T (2') — J* (2" Jr2))dz’.
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For the further transformation of (1.16) we congider the difference 4(z, 2’)
= J*(2')—J*(z). By virtue of (4.3) we have

[ (z—2)¢() (z—2")p(8) |
i - o — vdédn,
Az, 2") = (1/) H 1 e —10) | ta—zha—z7) |

and thus we may replace (4.16) by an equivalent formula

(4.17)  Fy(2) = 1/2m)fj’?—z LJ* () —J"(2[r2)]+

¢ (<) r-‘q{ ]'
-r},_':?_l ,[:(3 ~O(F =28 Cl(z—r? £)(2' —r2) oy

2
+ - 7——(’)(&-) Pl 12 t) = ]dEd#Id:' (r < 2] < 1).
(A—20)(1—2'C) L(r2—20)(r*—2'l)

Step C. Integration under the sign of integration by the method of
shifting the contour beyond the singular poinis. The present phase of
transformation of the integral #,(z) we begin with an analysis of the
different terms in the formula (4.17). Let for this end

90(2') = (z—2")1 [J*(2) = J* (2[r?)],
n() = (1n) [[ [@(&)[tz—0)E —0)—¢(0)[E—22)(1—2C)dedy,

r<iti<l
()= (1n) [[ [rg@)jt(z—re0) (' —r2l)—
e —r2g(2) [ (r — 20) (r*— 2'C) 1 dEdy.

It is seen at once that ¢, is holomorphic in the whole dise [2'| < [z], and
so in particular for |2'| < r. Similarly (see e.g. [371, p. 45), g, is holomorphie
in the dise |2'| < r and continuous on its closure. Thus, applying Cauchy’s
integral theorem, we obtain

(4.18) [ @) =0, [ g()d = 0.
12'|=r |

A similar consideration is impossible in the case of g,. One can verify

that the integral of this function over the circle |2'| = r cannot be cal-

culated even by application of the theorem on residues. Therefore an

idea arises to integrate along the circle |2'| = r under the sign of double

integration.

In order to accomplish this idea we note that a known theorem on
inversion of a repeated integral (see e.g. [9], vol. II, p. 753) requires assump-
tions that the integrand is (i) integrable in both variables separately,
and (ii) bounded in the Cartesian product of both integration sets. It i
evident that in our case (ii) is not satisfied.
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The way out of this difficulty can be achieved by a method that may
be called the method of shifting the contour beyond the singular points. The
idea of this method way suggested to the author by a paper of Vekua [36]
who applied it on p. 223 in proving a theorem connected with differential
equations of the elliptic type. It seems to be very useful in the theory
of multiple integrals in general, and in the theory of quasiconformal
mappings, connected with double integrals by a well-known integral
formula of Nevanlinna [30], in particular.

The point of the idea of this method is that we replace the considered
curvilinear integral by a curvilinear integral over another contour in
such a way that the Cartesian product which appears in the formulation
of the above quoted theorem on inversion should satisfy (ii). The choice
of a new curve of integration depends on the particular properties of the
considered integral.

We shall prove that in our case we have

(4.19) f g.(2')d2’ = f g,(2")dz
8| = .".-'| =]

In view of Cauchy’s integral theorem it is sufficient for this end to show
that g, is holomorphie in the annulus r < |2’ <1 and continuous on
its closure. The corresponding reasoning runs quite analogously to the
case of the function ¢, in a disc.

Note that it is now possible to apply the above quoted theorem on
inversion, because for 2| =1 and r < || <1 with fixed 2 (r < |2] < 1)
we have

lr2p(L)[L(z—r2) (' —r2)| < K, [r2e(l)[L(r2—2zL)(r2—2'0)| < K (K < +o0).
Hence
(1/270) Jyz(z')dz'

12°| =7
rig(¢ r2g()
1/x) ] ] (1/2zi) l ' . 7(6) | 2 L asatan,
ritiet AalEz—re) (2 —r) L= 2b) i —20))
whence, after application of Cauchy’s integral formula,
9 Sy [ e e ..
(+26) (1/2m)-:-f,y"'[" A= (l/n),.fl;J.l:zt: 0 " E(ri—zt) | 2

The obtained formulae (4.18), (4.19) and (4.20) permit, in view of
the definitions of ¢,, g, and ¢,, to write (4.17) in the form

(L) re(l) |
L(z—r2l)  Cr(rr—z0) ]

(4.21) F,(2) = —(1/n) fcf{ dédy (r < jz| <1).
r<ifi<l
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Step D. Transformations of the series in the formula for p*. The
considerations of previous steps of the proof enabled us to obtain the
formulae (4.14), (4.15) and (4.21), from which it easily follows that the
formula (4.20) may be replaced by the formula

" o ¢ () g(0) } N ‘
P ;| —s d&d 1
B*(2) = "+ ( /n)Kfch{ A e e /”),JML, x
yfnittell) nolt) ,,,’29@,_- Lk 4L, }dfd
CGIP =) Br—e™) | EAe—10) | B ia |
(r<l2'< 1)
that is
. . (C) (2) }
4.22 =) i ~ — d&d
(4.22) () = "+ /”),ch,g{m—c) 20N aean +
1 i &
+Z iy [c.[{ 3 (i—c/r”fl—z/r”c)‘
w(C) 1 1
= ( 1= m)}dfdn (r < |2l <1).

We shall prove now that the function s* may be, with preserved conti-
nuity, defined by (4.22) also on the circles [2| = 1 and |2{ = r, and that
in this formula it is possible to change the order of integration and summa-
tion for every z such that » < [2| < 1. Let us note for this purpose that
all integrals, appearing in this formula, exist and are continuous with
respect to z in the whole annulus r < |z|] <1 (cf. e.g. [37], p. 45). Next,
we prove that the series of the integrands in (4.22) is uniformly conver-
gent in the whole Cartesian product of the annuli » < |£| < 1and r < [2|]< 1.

To prove the uniform convergence we apply the well-known Weier-
strass’ test. Since r < [£] <1, r < |2/ <1 and 0 <7 < 1, we have

—¢f2l = 1572 —1 > —1 > 7" (1—7),
1—z/rL > IZ/""¢|—1 =7 —1 > (1),
L—2l/r”| = 1P| —1 2P Y —1 > P 1—r),
A—1/r"2L) = 12| —1 =>r*—1>r*1—7),

and, consequently,
/A= 2)—1/(1—2/r {)| S L1 =2+ 1|1 —2fr™ E] < 20771 [(1—7),
/(A —2E ) —=1](1 =17 2)| <11 —2L | +1]1— 12| < 2r 2[(1—r)
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Hence
(1)) A=) — 11 —2p* O} — (18 (D) {1 /(1 —2L r*) —
—1/(L=1/r"20)}| < (1)) {I1/(1—=L[r2)—1/(1—2[r™ )|+
+11/Q =2t ) =1/ —1/r*28)|} < 47*~* max |p(L)]
r<iii<l
which proves the uniform convergence, as desired.

Thus the formula (4.22) holds in the whole annulus r < |z2] <1 and
the order of integration and summation may be changed (seec e.g. [9],
vol. IL, p. 437, 663 and 439). In order to simplify further (4.22), we sub-
tract and add } in each of the parentheses of this formula. In this way,
after introducing the above described sign of summation from — oo to
+ oo (see footnote (4)), we obtain the formula

(0) |

dEdy
T Y

(4.23)  7(z) = "+ (1/m) ff jl.f{'{i‘:}*: :
r<iti<a N

2r- y
1/%)-[ w[q() z2+7 @ (£) 1+7‘zC]

(PP e Lo

—(1/2x)

T EHDe)  +ale
j' i M agay o<1 <.

B(z=0) -2 |

r<ili<l

Step E. An integral formula for the functions f and R. The formula
(4.23) enables us to get the integral formula mentioned in the statement
of our lemma. In fact, from (4.4), (4.23) and (4.3) we obtain

(424) (e, 0—z) 2 et —(1f2m) [ [ (/e —p(0)/Ededn+
r<ill<1

00 a4y

\’ R — AT
-(1/27) |[ ’.la/wsv(c) e~/ s

rejti<le -no

.‘.. \l"'|\

i dé&dn

‘o
fort ~0+ (r< |l <1).

Hence, in view of the initial condition f(1,t) = 1, the formula (4.1) follows.
From the formula (4.1), applied for the values z situated on the circle
|2| = r, we obtain easily (4.2) using (4.6) and (4.7).

§ 5. Basic Theorem on parametrization in an annulus

By means of Lemma 6 presented above we can now prove the following
basic theorem which considerably generalizes the corresponding theorems
of the papers [35] and [25], and which is the main result of this paper:
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Theorem 4. If for a pair of characteristics (p, 0)eSi, defined in an
annulus r < 2| <1 and in an interval 0 <t < T, the function n = e*'% %
X (1—p)/(1+p) has in the annulus r < [2| <1 and in the interval
0 <t < T partial derivatives u, and u., then the function feSy", corres-
ponding to the pair of characteristics (p, 0), satisfies in the annulus r < |z|
< 1 the equation(*)

_ @(Z, R¥ ()¢ 1+ R¥(1)C\
(5.1)  afjat = (1/2x) J ' f \1 {” ({ [ﬁ’zt 1i Rz%f )
¥ ,

R(l)(]('l < ‘oo
1&.n11+Ran 1+R%nﬂ= LR Ak

where R¥(t) = {R(1)}* and the function ¢ is defined by the formula (2.9);
moreover, the function R 8 of the class C' in the interval 0 <t < T, and

(62)  aRjat=pn) [ [ RipE, 0/ e/ ded.

R3ii<a

If, in particular, p(z,t) = [p(2)] and 0(z,t) = 0(2), then (2.9) takes
the from (2.10), and the solution w = f(z,t) of the equation

o N oGy 0) [t R (¢
(5.3)  ow/dt = (1/27) JJ‘“’;J[ e e

RH<PI<l  ve=—o0

3 1+R"(t)c) _&ﬂ_(l%—Rz'(t)wC 1+R2’(t
1—R*()¢ & \1-R"()wl 1-—R*(t

JPM (& = &+in)

satisfies the initial condition f(z,0) = 2.

Proof. The proof runs analogously to the case of the corresponding
theorems of the papers [34], [35] and [25]. As the proof was only out-
lined in the first and the second paper, and omitted in the third one,
we give it here in a detailed form. For clearness it is divided into several
steps.

Step A. Construction of a suitable function satisfying the assump-
tions of Lemma 6. In order to find a differential equation for functions
belonging to the class S and to apply Lemma 6, we construct a suitable
function satisfying the assumptions of this lemma; we denote this function
by F. By a suitable function we understand any function of the variable
w (r‘ (1) < |w| < 1) depending on two real parameters ¢t (0 <t < 7') and
7(0 < r < T*), and fulfilling in the annulus 7*(f) < |w| < 1 the condition

(5.4) (1/7)[F(w,t, 1) —w] 3 Of(g(w, 1), t)/0t for T-—>0+,
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where f is a function of the class 85" corresponding to a pair of charac-
teristics (p, 0)eS,, and ¢ is a certain function chosen in such a way that
Fe(8)ge 1 <Q* < + o0).

The simplest way is to choose the function /' so that the expression
on the left-hand side of (5.4) be a difference quotient corresponding to
the partial derivative df/dt i.e. so that

(5.5) F(w,t,7) = flg(w,1),t+1),

(5.6) w = f(g(w, ), 1).

Since f is invertible as belonging to SZ;R, then (5.6) yields
(5.7) fHw,t) =g(w,t).

In view of (5.5) this means that the most convenient it is to admit r*(¢)
= R(t) and

(5.8) F(w,t, 1) rf(["[n',.f]’g.g 7).

There remains to verify whether the function ¥, defined in the annulus
R(t) < |w| <1 and in the intervals 0 <t < T, 0 <t <T—t by (5.6),
satisfies the assumptions of LLemma 6.

Step B. Evaluation of the functions U and ®. From editirial reasons
let us begin from expressing the functions U and @, defined by

(5.9) U(w,t,1) = Fg(w,t, 7)[Fy(w,t, 1),
(5.10) D(w,t) =lim [(1/7) U(w,t, 7)]
-0+

in the annulus R(¢) < |w| < 1, in dependence on the functions f, p and 6.
The derivatives in (5.9) exist, because, in view of Theorem 7.3 of [38],
the assumption (p, 0)eS, implies that f belongs to €*, and thus, in view
of (5.8), the function F must also be of the class C*.

Note first the identities

(5.11) W, = W5, Wz = W,

which can be easily verified. Since in our case the functions w— f and @ —f,
considered as functions of the variables z, z, w, W, satisfy the assumptions
of a well-known theorem on implicit functions (see e.g. [9], vol. I, p. 454),
then we have

(5.12) fotwtfozw =1,
(5.13) ?5zw+;ééw =0,
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where (5.13) may be, in view of (5.11) replaced by

(5.14) Fitw+Fidw = 0.
The cquations (5.12) and (5.14) yield

(3.15) 2w = f/(12—If31%),
(5.16) 2o = —filUIfs12— If31%),
whence in view of (5.11) we get

(5.17) Za = Fsl(fal*— If31%),
(5.18) %o = —fil(lfsl*— Ifs?).

The relations above obtained permit to accomplish differentiation
in the formula (5.9). In view of (5.8) we have

(5.19) Fylw,t, 1) = f(z,t+ 1)2p + fs(2, t+ T) %,
(5.20) Fy(w,t, 1) = fo(z, t+ 1)251 fi(2, t+1)%5.

Now, applying the relations (5.15) and (5.16) to the formula (5.19), and
the relations (5.17) and (5.18) to the formula (5.20), we obtain

(fs(z, D= Ifs(2, )15 Fuol, 8, 7) = fu(e, 1+ 0)falz, )= filz, t+7) filz, 0),
(Ifa(2, 12— Ifa(2, 1) F(w, t, 1) = —ful2, t+7)f5(2, 1)+ f5(2, U+ T)fs(2, 1).
Hence, after putting to (35.9), we get

—fa(2, t+ 1)fs(2, ) + 2 (2, 1+ 1) fa(2, 1)

[z, t+0)fs(2, t) — filz, t+7)f3(2, 1).

Note finally that in accordance with the notations of our theorem, by
virtue of (2.2), we have

(5-21) fi(z’ t)/f,(;’, t) = “(zy t)

whence

Uqu,t,r) =

et U MG D o BireT e, 1)

(h.22) Uw,t, 1) =
1—u(z,t+1)u(z,t)

Dividing both sides of (5.22) by t and letting v — 0+, in view of (5.10)
and the assumed existence of the derivative u;,, we obtain immediately

(5.23)  D(w, 1) = {1/(1—|u(z, D)} u(z, t)exp(2iargf,(z, 1).

The formulae (5.22) and (5.23) where z = f '(w, t) give the expressions
for U and @, as desired.
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Step C. Verification of some properties of the function F. Note first
that fe(8)g"; this follows immediately from the obvious relation 87" (S)5%.
Thus, by v1rtue of (5.8), the function F belongs to C? and fulfils the condi-
tions (i) and (ii) given in Definition 1 of quasiconformality, and maps
the annulus R(?) < |w| < 1 onto itself so that F(1,t, 1) = 1. Using next
the formulae (0.1) and (5.21), in view of the above proved relation fe(S)?)",
we have

(5.24) < fuz, ) <(Q—1)/(Q41) <1 (@ = Q(1).

Hence, in view of (5.9) and (5.22), we infer that I’ fulfils also the condi-
tion (iii) of quasiconformality; so this function represents a Q*-quasicon-
formal mapping where, as it can be easily verified,

. 11— u(z, H—r)u(z_ 0]+ u(z, t4 1) — u(z, t)
Q* = sup ——mM——
rejsi<t [1—u(2,t+1)u (z t)|—|u(z t+t)—u(z, t)

and z = f'(w, t).

From the above we obtain immediately that Fe(S)g. and that we
may associate to this function a uniquely determined pair of characteris-
tics P = P(w,t, ) and @ = O(w, t, r). Simultaneously from the formula
(5.9) and from the formula (5.21) applied to the function F' we obtain
the relation U = ezi“(l—P)/(l + P). In view of the conditions (2.5) and
(2.6) of Lemma 6 it means that there only remains to verify the existence
of the bounded functions ¢ and & which fulfil the conditions

(5.25) (/1) U(w, 1, 7) 2 p(w,t) for 10+,
(5.26) (1/2) | Up(w, t, 7)| < k(w,t) for 0<v<T—1

in the annulus R2(¢) < |w| <1 and the interval 0 <t < T.
To this end note that (5.10) implies

(5.27) (1/x)U(w, t, 1) > ®(w,t) for t—>0+,

and the limit function is given by (5.23) where z = f !(w, t). Thus, it is
necessary to prove that in (5.27) there takes place the uniform conver-
gence. So, let &, w, t be arbitrary numbers fulfilling the conditions ¢ > 0,
R(t) < w| <1, 0 <t < T, respectively, and let z = f'(w,t). By (5.24)
we have

(5.28) 1/(1— [u(z, 1)) < (Q+1)2/4Q.

Moreover, from the assumption on existence of the derivative u, we easily
infer that for a certain 7 there is

(5.29) /(1 —u(z, t+ T)ul(z, t))— 1[I —|u(z, )F)| < ef2H (0 < T <9).
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On the other hand, it can be easily seen that |u,(z,?)| < M, where
M < + oo, whence, in view of a well-known theorem,

(5.30) lu(z,t+t)—u(z,t)| < Mr (0 <7 <n);

moreover, we have for a certain »*
(3.31)  I(1/7){ulz, t4+1)—n(z, 1))} — u(z, )] < 2Qe(Q+1)* (0 < T < 5°).

IFrom the inequalities (5.28), (5.29), (5.30), (5.31) we obtain immediately
that in the interval 0 < r < min(z, »*) there is

‘(1/1){u(z, t+7)—u(z, )} /{1 —u(z, t+r)i¢(z, 1)} —u, (2, .f)/(l — |u(z, t)|2)}
< (1 /r){u(z, t+1)—u(z, )} |1/(1—u(z, 1+ t)u(z, 1)) —1/(1 — |u(z, t)]zﬂ
+ 11 /) {ulz, t+ 1) —u(z, )} — w2, /1 — [u(z, 1)2) < e.
Hence, by (5.22) and (5.23), in the same interval there is
I(1/z) U(w, t, 7)— P(w, 1)| < &,

that is the uniform convergence takes place in (5.27). Thus, there exists
a funetion ¢ which fulfils (5.25); it is uniquely determined and is expressed
by the formula

(5.32) plw,l) = P(w, t).

In concern with the question of existence of the function & which
fulfils (5.26) let us notice first that the left-hand side of this inequality
exists in view of (5.22) and of the previously shown appertenance of the
function f to C2. There is also an opportunity to notice that only in this
place the above property is used in full, and that with application of the
present method of proving it is not possible to weaken the assumptions
on regularity of characteristics (p, 0). The existence of the function %
fulfilling (5.26) follows from the appertenance of the function f to €2 and
from the assumption that the derivative u, exists. In fact, if forr < |2] <1
and 0 <t < T the derivative u, exists, then, in view of (5.22) and (5.24),
there exists also the derivative 17,,, and we have |Ugy(w,t, 1) < M*
for 0 < v < T—1t, where M* < + oo. Hence we infer, that for R(t) < |w|
<1,0=<t<T,0 <7< T-—1t there takes place an estimate U, (w,t, t)—
— Uyp(w,t,0)| < M*z, where the existence of U,(w,t,7) for v =0
follows immediately from (5.22) and, as it is easily seen, we have
Uy(w,t,0) = 0. Thus we may write the last inequality in the form
[(1/z) Up(w, t, T)| < M*. This means that the estimate (5.26) holds, and
that we may put k(w,t) = M* identically.

In this way we have proved that the function F, constructed in Step A
of our proof, satisfies all assumptions of L.emma 6.
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Step D. The differential equation for the class 8. In the previous
parts of proof we have constructed the function I’ determined by the
formula (5.8) and fulfilling the condition (5.4), and we have verified that
this function satisfies the assumptions of Lemima 6. Therefore, applying
this lemma for the function F we obtain, in view of (5.4) and (5.8), the
differential equation (5.1), as desired.

According to Step C of our proof the function ¢, that appears in
the obtained equation (3.1), is determined by (5.32) and (5.23), where
2z = f1(w, t). For finishing the proof of our theorem there remains to
reduce the formulae obtained for the function ¢ to the form (2.9), and
to derive (5.2). For the first question it is sufficient to verify that if
z = f(w, t), then

argfy(z, 1) = —argf; (w, 1)
that is
(5.33) argw, = —argf,' (w,1).

Applying then a known theorem on implicit functions to the functions

z—f ' and Z—f', considered as functions of the variables v, @, z, z, we
obtain, similarly as in Step B of our proof, the formula

(5.34) w0y = f2' (w, 1) [{If’ (w, t)2— |f=" (w, 1)|2}

which is analogous to (5.135). Since, as it was stated in Step C of our proof.

f belongs to (8)5", then f ! belongs to (S)g", and consequently, by (0.1),
we have

Q+1\ _
e, 0F = £ o, 0F > {055 ) 1] 1" e, 01 = 4010—1)"x

x1f5 (w, O > 0.
Thus, by (5.34), we obtain the formula

argw, = argfy,' (w, 1)
equivalent to (5.33).

The formula (5.2) can be easily obtained in a way analogus to that
applied in the proof of Lemma 6 for obtaining (4.2) from (4.1). Obviously, R
belongs to C!. Similarly, it is casily verified that if in particular p(z, 1)
= [p(2)] anf 0(z,t) = 6(z), then (2.9) takes the from (2.10) and the
solution w = f(z, t) of the equation (5.3) corresponds to the initial condi-
tion f(z, 0) = z. In this way the proof of Theorem 4 is completed.

§ 6. Further theorems on parametrization

Now we obtain two further theorems on parametrization; they corres-
- pond to the theorem on parametrization of conformal mappings and
to its converse, respectively, as obtained by Lowner [21], Komatu [16]
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and Golusin [12]. They also correspond to Theorems 3 and 4 obtained
by Shah Tao-shing [34]. One of the announced theorcms was in a partic-
ular case formulated in [35], but this formulation requires substantial
supplements.

Theorem 5. Let w — f(z) belong to SG". Then there ewists a function
o = @(w,t), defined for (w| <1 and 0 <t<T=1log@), bounded by }, and
such that: (i) the solution o = R(1) of

(6.1) o = (127) [[ ofe(L, 0/ +¢(¢, [t dedn
e<sili<l

with the initial condition R(0) = r satisfies R(T) = R, (ii) the derivatives p,,
and ¢ are continwous for R(t) < |w| <1 (0 <t <T), (iii) the solution
w = f(z,t) of (5.3) with the initial condition f(z,0) =z is identically
equal to f for t =T.

The proof is omitted as very easy and analogous to that of Theorem 3
in [34].

Theorem 6. Let v = ¢(w,t) be a function defined for |w| <1 and
0 <t <T, and bounded by }. Then there exists a unique solution o = I(t)
of (6.1) with the initial condition R(0) = ». Moreover, there exists a unique
solution w = f(z,t) of (5.3) with the initial condition f(z,0) = z which
represents a mapping belonging to UG" where Q(t) < expt.

Proof. For more clearness the proof is divided into three steps.

Step A. Ewistence of the unique solution of (6.1). Let H(o,t) denote
the right-hand side of the equation (6.1). 1t is casily seen (cf. [37], p- 44)
that for every t (0 < ¢ < T) the function H is continuous with respect
to ¢ in the interval 0 < ¢ < 1. In consequence the assumptions of a known
theorem of Peano are fulfilled, and thus there exists at least one solution
o = R(t) of (6.1) that fulfils the initial condition R(0) = r.

In order to prove the uniqueness of (6.1) we verify that the assump
tions of a known theorem of Osgood are fulfilled. In fact,let 0 < g, < p, <1.
Then

H (o1, )= H(oay ) <(127)  [[ (oa—eDlg (& /(& +9(C, [T dEdn+
eg=<I€I<]

eoslfl<oy

and, consequently, there exists at most one solution o — R(t) of (6.1)
that fulfils the initial condition R(0) = r.

Summing up, there exists exactly one solution p = I(t) of (6.1) that
fulfils the initial condition R(0) = r.
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Step B. Existence of the nnique solution of (5.3). Let F(w,t) denote
the right-hand side of the equation (5.3). It is easily seen (cf. [37], p. 44)
that for every ¢ (0 <t < T) the function F is continuous with respect
to w in the annulus R(¢) < |[w| < 1. In consequence the assumptions of
a2 known theorem of PPeano are fulfilled and thus there exists at least onc
solution w = f(z,t) of (5.3) that fulfils the initial condition f(z,0) = 2.

In order to prove the uniqueness of the solution w = f(z,t) of (5.3)
we verify that the assumptions of a known theorem of OOsgood are fulfilled.
In fact, it can be easily verified, that if w = f(z, t) is a solution of (5.3) in
the annulus r < |2| < 1 that fulfils the initial condition f(z, 0) = 2, then
(2.11) has the solution w = f*(z,t), determined in the disc [2| <1 and
corresponding to the same initial condition; this solution is defined by
the formulae

(6.2) Pz, = B>z, 1) dor L 2| <7 (v =1,2/4.),
(6.3)  f*(z,t) = R*(WO)f (=), 1) for P <<RI<™ (»r=1,2,..),

where R (t) = {R(t)}*". Obviously, we admit f*(z,t) = f(z,t) for r < |z|
< 1,and f*(0, t) = 0. The corresponding function «* = f*/f; is determined
by the formulae

(6.4) u*(z,1) = e*®*™u(P”[z,t) for T <pl<®'(=1,2,..),
(6.5)  w(z,t) = u(zfr”, 1) for PP <|zI<?® (v=1,2,..)

and, obviously, u*(z, 1) = u(z,?) for r < |z| < 1. Similarly, if w = f*(z, 1)
is a solution of (2.11) in the disc¢ |z] < 1 that can be expressed in the form
(6.2), (6.3), and that fulfils the initial condition f*(z,0) =z, then w
= f(z, t) i8 a solution of (5.3), determined in the annulus » < |z] <1 and
corresponding to the same initial condition. Consequently, if F*(w,t)
denotes the right-hand side of the equation (2.11), we can replace our con-
sideration of the expression |F(w,,?)— F(w,,t)| that appears in the
theorem of ()sgood by the consideration of |F* (wl, — F*(w,, 1)|. Here
we define ¢* in the same way as ¢, replacing « by u*.

An estimate of |F*(w,, t)— F*(w,, t)| can be obtained as in the paper
[19] of Krushkal. We have

w(l—w)/[E( ]—C)(w =1/ (w—C)+(w—1)/+w[(l—1),
w(l—w)/l(1—-0)(1— wC) —w3(1—wl)+ w(l—w)/+w/(1—1{)

Hence, for any w, and w, taken from the unit disc, we obtain

' 7 . e L i { dédy
6.( ) —F < mad P R S
( 5) Il' (?l?l, t) F (wzy ) < 21— — W, 2 |C'—w1”C""’w2|
pa [ [ B .‘15_"4- [tf=_= dedmge. ),
pa K .v- S1E=11 B M—wtii—wyl] |
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The first integral at the right-hand side is estimated by M, [log|w, —w,]|.
This is a consequence of a result presented in [37] (Chapter I, § 6), accord-
ing to which the same integral taken over an arbitrary domain D is est-
imated by M, (D) [log |w, —w,|| where 3{,(D) depends only on D). Applying
now l.emma 1 presented in Chapter I, § 5 of [37] we state that the second
and the third integrals in (6.6) are bounded; let M, and M, denote these
bounds, respectively. In order to estimate the fourth integral we distinguish
two cases. If |w,| or |[w,| < } and both are < 1, then this integral is bounded
by a constant M, as a function continuous in w, and w,. If |w,| and |w,|
are both > } and < 1, then we get an estimate M |log|w, — w,||, analogous
to that obtained in the case of the first integral. Hence we have finally

(6.7) |F* (wy, 1) — F* (wy, 1)] < Mg|w,— w,| {1+ M,|log [w,—1w,||}.

Let G(|w,—w,|) denote the right-hand side of (6.7). In order to apply
the theorem of Osgood we verify easily that G(5) > 0 for 4 > 0, and that
d
[{1/G(n)}dn > o a8 d > oo (¢ >0).
[4

Consequently, there exists at most one solution w = f(z, t) of (5.3) that
fulfils the initial condition f(z, 0) = 2.

Summing up, there exists exactly one solution w = f(z,1) of (5.3)
that fulfils the initial condition f(z, 0) = z. Moreover, f is continuous
with respect to 2, ¢t being fixed (cf. [37], p. 44-45).

Step C. Properties of the found wunique continuous solution of (5.3)
From the uniqueness and continuity of the solution w = f(z,1) of (5.3)
we infer that f must be univalent in the whole annulus » < |z] < 1. In
fact, the number of solutions of the equation f(z,1t) = w,(t), where u,
is continuous in ¢, R(t) < |wy(t)| <1, 0 <t < T, is equal to the index of
the point w,y(?) with respect to the cycle formed by the boundary curves

of the domain considered, i.e. (1/2xi) f{w wy (1)} dw — (1/274) f {w—
i( ]

—w,(t)}*dw, where C,(t): w = f(e'°, t), 0 < 2, Cy(t): w = f(re, 1),
0 <0 <2n. Let n(t w, (1) ) denote this index. The functiou N i8 tontlnuous
in w,(?), t being fixed, and f(1,1) = 1for 0 <t < T,80 n(t, uy(t)) = n(t, 1)

for any w,(t) taken from the annulus R(t) < ]wI <1, where 0 <t < T.
But » is also continuous in ¢, 8o n (2, 1) = n(O 1) =1, and conbequently,
n(t, wy(t)) = 1. Summing up, f must be univalent in the whole annulus
r< |zl <1.

Now we show that f transforms the annulus r < |2] < 1 onto R(?)
< |w| < 1. In order to do this, in view of the continuity and univalence
of f, it is sufficient to verify that |f(z, t)| = 1 for |2| = land [f(z, t)| = R(t)
for z] =r (0 <t < T).
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To prove the relation [f(z,t)] =1 on the circle |2 =1 let us note
that on the same circle we have Re{(1/w)F(w,t)} = 0. Then, intro-
ducing for r < |2| <1 and for 0 <t < T the notation

e(2y 1) = f(z, 1) —1/f(2, 1),
and applying an easily verified identity

2Re{[1/f(z,1)](0/0t)f(2, 1)} = (0/0t){f(2, t)e(2, )}/[1+f(2, 1) e(2,1)],
we obtain by (5.1), after letting |2| - 1—,

(0/ot){f(z,t)e(z, 1)} =0 (]2 =1, 0 <t <T).

I'rom the above it follows that for any t (0 <t < T) we have £(z,1)
= ¢(?)/f(z, t) on the circle |z| = 1, where ¢ does not depend on . Hence,
in view of the definition of ¢, we obtain

fz ) =1+4e2) (sl =1, 0<t<T).

Now, taking into account the initial condition f(z,0) = 2, we see that
¢(z) = 0 identically, and thus [f(z,?)| =1 for 2| = 1.

Similarly, by virtue of the relation Re{(1/w)F(w,?)} = R'(1)/R(?)
on the circle |z2| = r (cf. (4.6) and (4.7)), we prove that on the same circle
we have |(f(z,%)] = R(f). Noticing finally that the mapping w = f(z,?)
is sense-preserving for every ¢ (0 < 1 < T), we see that it fulfils the con-
dition (i) in Definition 1 of quasiconformality.

Next, similarly as in an analogous proof of the paper [34], we verify
that there are fulfilled the remaining conditions which warrant quasicon-
formality, that f(1,f) =1 (0 <t¢ < T), as remarked before, and that
Q(t) < expt in the whole interval 0 <t < T. In this way the proof of
Theorem 6 is completed.

Added in proof. During preparation of this paper for print there has
appeared a monograph on quasiconformal mappings by Lehto and Vir-
tanen, and also some results on the parametric method and its applications
due to Gehring, Reich and others. As some terms and notations become
commonly used, it is worth to present them here to compare with those
used by the author who was following mostly Shah Tao-shing’s termino-
logy. The author hopes to adopt terms and notations presented below
in subsequent papers. )

(i) It is convenient to speak about the complex dilatation u (or x) of
a quasiconformal mapping w = f(z) instead of the complex characteristics p
and 0. The complex dilatation means the same as the function % in our
paper.

(ii) The notation Sy (or Sx) become commonly used instead of U,
used in our paper. So seems to be more convenient in extremal problems
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than Sk, because K can be misunderstood with complete elliptic inte-
grals. Consequently, the author will adopt the notations Sy, S., (8)g,
(8)e, So, 8., SG*, 85, 8%, (8)G%, (8)0, (8)a, Sg%, 8, and S. instead of
UQ’ U., (S)O’ (S)n SO’ S, U8R9 UZN Us, (S)Z;R’ (S)E)’ (S)’;y ‘%"7 ‘% and S5,
respectively.
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