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Introduction

The idea of parametrization of conformal mappings of the unit disc 
was first realized by Lowner [24]. The corresponding results for conformal 
mappings of an annulus were obtained by Komatu [16] and Golusin [12]. 
With the appearance of the theory of quasiconformal mappings which 
was initiated in 1928-32 by Grotzsch [13], [14], [15] and Lavrentieff [20], 
and contained, in particular, the theory of conformal mappings, there 
arose the problem of parametrization for this very general class of map
pings. In the case of the unit disc the problem has been solved by Shah 
Tao-shing [34], while in the case of an annulus by Shah Tao-shing and Fan 
Le-le [35] and by the author [25], with different assumptions restricting 
the class considered. The aim of the present paper is to parametrize qua- 
siconformal mappings of an annulus in the general case (for a dense subclass 
of the class of all quasiconformal mappings of an annulus).

There exist several definitions of quasiconformal mappings and it is 
necessary to decide which one has to be used. The classical definition 
due to Grotzsch was completed in 1957 by Bers [8] who extended this 
notion on a considerably wider class of functions. As proved by Gehring 
and Lehto [11], the definition of Bers may be considerably simplified with 
maintenance of the same class of mappings. Apart from the analytic 
definition there exist some other ones. Ahlfors [2], Pfluger [32] and Mori 
[28] gave the geometric definition, while Lavrentieff [20], [21], [22], Pesin 
[31] and Bers [8] presented definitions using mappings of infinitesimal 
circles onto infinitesimal ellipses, or using solutions of Beltrami differen-
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tial equation. The problem of equivalence of these definitions was consi
dered among others by Bers [8] and Gehring [10]. In the present paper 
the following equivalent definitions will be used:

Definition I (Grotzsch, Bers and Gehring). A mapping w = f(z) of 
a plane domain D onto A is said to be Q-quasiconformal (1 < Q < oo), 
if (i) f is a sense-preserving homeomorphism in D, (ii) / is absolutely con
tinuous in D on almost all horizontal and vertical lines, (iii) an essential 
estimate (!)
(0.1) |£| < {(<?-l)/(Q + l)}|/,|

takes place a.e. in D.
Definition 2 (Lavrentieff and Pesin). A mapping w = f(z) of a plane 

domain D onto A is said be Q-quasiconformal (1 < Q < oo), if (i) f is 
a sense-preserving homeomorphism in D, (ii) the expression
(0.2) #(«„)= lim{ sup \f(z)-f(z0)\l inf \f(e)-/(z0)|}

/( -.0 |z-z0|=A |z-z0|=ft

is bounded for all zoeD, (iii) the essential l.u.b. of H in D is equal to Q.
A mapping w = f(z) is said to be Q-quasiconformal in a closed domain, 

if it is Q-quasiconformal in its interior and homeomorphic on its closure. 
Boundary points of a domain and the convergence to them is under
stood in the sense of the theory of prime ends due to Carath6odory.

In this place I should like to express my sincere gratitude to Professor 
P. P. Belinskii from Novosibirsk who gave me many advices and hints, 
and to Professors Z. Charzyriski from Lodz and J. Krzyz from Lublin 
for their remarks which vastly improved my already accomplished paper. 
I also owe very much to discussions with Dr Krushkal from Novosibirsk, 
and I profited particularly from Krushkal’s papers [17], [18] and [19]. 
Moreover, Professor Belinskii and Dr Krushkal kindly made accessible 
to me their yet unpublished results.

§ I. Existential problems

Parametrization of quasiconformal mappings requires the usage of 
the theorem on existence and uniqueness of such mappings with given 
characteristics. For the case of simply connected domains and continuous

(') Here fz = $(fx—ifv) and = l(fx+ ifv) where z = x+iy. A function w = F(s) 
is said to be essentially estimated a.e. in D by JfG(z), where Jf is a constant, if

ess sup {.?(«)/£?(«)} = Jlf. 
z«c

The essential supremum is defined as
inf sup {F(z)/G(z)}
E ztD\E

where the infimum is taken over all sets E with the plane measure equal to zero.
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characteristics it was first formulated and proved by Lavrentieff [21], 
and then generalized by Morrey [29], Belinskii [5] and Belinskii and 
Pesin [7]:

Theorem 1 (Lavrentieff, Belinskii and Pesin). Let D be an arbitrary 
simply connected closed domain, different from the whole plane, and let be 
given a.e. in D an arbitrary measurable and bounded pair of characteristics 
p = p(z), 0 = 6(z), where the essential l.u.b. of p is equal to Q(1 ^Q < oo). 
Then for any simply connected closed domain A, different from the whole 
plane, there exists a Q-quasiconformal mapping of D onto A, determined 
uniquely apart from conformal mappings of A onto itself and having the 
characteristics p, 6 a.e. in D.

An analogous theorem for multiply connected domains is an unpu
blished result of Belinskii which has been placed here together with the 
proof with his consent:

Theorem 2 (Belinskii). Let D be an arbitrary closed domain of connec
tivity n and let be given a.e. in L) an arbitrary measurable and bounded pair 
of characteristics p — p(z), 0 = 0(z), where the essential l.u.b. of p is equal 
to Q (1 ^.Q < oo). Then there exists a circular canonical closed domain A 
of connectivity n and a Q-quasiconformal mapping of D onto A, determined 
uniquely apart from, conformal mappings of the interior of A onto itself and 
having the characteristics p, 0 a.e. in D.

Proof. Let I)* be an arbitrary closed simply connected domain which 
is different from the whole plane and includes D. Let further p = p*(z), 
0 = 0*(z), where p*(z) Q(i Q < oo) for zeD*, be measurable functions 
defined a.e. in J)* and such that p*(z) = p(z), 0*(z) = 0(z) a.e. in D. Let 
finally A* be an arbitrary simply connected closed domain different 
from the whole plane.

In view of Theorem 1 there exists a quasiconformal mapping of D* 
onto A* with characteristics p*, 0* a.e. in D*. This mapping transforms, 
in particular, the domain D onto a certain domain A** c A* Q-quasi- 
conformally. Applying now the theorem on mapping of multiply connected 
domains onto circular canonical domains, we see that A** can be homeo- 
morphically mapped onto a circular canonical closed domain A of connec
tivity n, and that this mapping is conformal inside of A**. However, it 
is well-known (see e.g. [8]) that the Q-quasiconformal mapping with 
characteristics p, 0, internally or externally composed with a conformal 
mapping, gives a Q-quasiconformal mapping with characteristics p, 0. 
Thus, there exists a circular canonical closed domain A of connectivity n 
and a homeomorphical mapping of D onto A, Q-quasiconformal with char
acteristics p, 0 in D. Consequently, this mapping is Q-quasiconformal 
in the whole domain D.
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We have still to prove that the described mapping of 1) onto A is de
termined uniquely apart from a conformal mapping of A onto itself. Let 
us suppose that there exist two mappings w = f(z) and w = g(z) which 
fulfil the conditions of our theorem. Hence the mapping co — F(w) 
— '(w)) transforms A onto itself as a sense-preserving homeomor-
phism in such a way that

(1.1) lim{ sup \F(w)— F(w0)\/ inf \F (w) — F (w0)\} = 1
h 4) |W-t00|=/» |w—w| = ft

for almost all woeA.
In fact, in order to show (1.1) we verify that f/(w) = 0 a.e. in A, 

where F^(w) = U(w)Fw(w), and this implies (1.1). Let w and v be defined 
by the relations and (fe(z) = v(z:)gz(z) a.e. in A and
D, respectively. Hence v(z) — — M(w)exp(2iarg/“1(w)) a.e. in A, where 
z=f~1(w). Consequently,

~ 9zfw A~gz\.f }w = 9zfu> + 9ifu >

I'w = gzf,7,l + gi{f '}w = gzf^ + gifw1,

that is, by F^,(w) = U(w) Fw(w),

!/3{/w1-/w1exp(2iarg/M;1)}M = MM/„,1exp(2iarg/1(.1)} U,

whence U(w) = 0 a.e. in A.
Notice now (cf. [10], p. 13) that Definition 2 implies H(z) to be less 

than oo everywhere in A, except perhaps at points of a set of Z-finite 
linear measure. Now, applying Corollary 3 of Gehring’s paper [10] (p. 15) 
which is a generalization of a known Menchoff’s theorem [26] we see that 
the mapping u> = F(w) is conformal and this complets the proof.

An immediate consequence of Theorem 2 is the following
Corollary 1. Let be given a.e. in a nondegenerate annulus r < |z| < 1 

an arbitrary measurable and bounded pair of characteristics p = p (z), 
0 = 0(z), where the essential l.u.b. of p is equal to Q (1 < Q < oo). Then 
there exists exactly one number R (0 < R < 1) and a Q-quasiconformal 
mapping of the annulus r |z| < 1 onto R < |w| < 1, determined uniquely 
apart from reciprocal and rotations around the origin and having the 
characteristics p, 0 a.e. in the annulus r < |z| < 1.

§ 2. Remarks oil parametrization in the unit disc

We shall use further theorems on parametrization of quasiconformal 
mappings of the unit disc onto itself, obtained by Shah Tao-shing [34], 
mostly in the sense of application of analogous methods. We quote here
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his results in a more precise form than that given in [34] and the most 
of them under slightly weakened assumptions.

We prove first
Lemma 1. Let / map quasiconformally a closed domain D, contain

ing a circle |z| = r, onto zl so that (d/d&)\f(re,0)\ = 0 for almost all 
#( —yr < # C tt)- In order that the condition (d/dp)arg/(pe’tf)|e=r = 0 
be fulfilled for almost all &, it is necessary and sufficient that the cha
racteristics p, 0, corresponding to f, be such that for almost all &

(2.1) either p(re'°) = 1, or 6(rel№) — if or 0(re'u) = #+j?r.

Proof. It is known (see e.g. [8]) that the function f has generalized 
partial derivatives of the first order which satisfy a.e. the Beltrami equa
tion (see e.g. [8])
(2.2) /i = {(l-p)/(l + p)}e2i7,,

where (p, 0) denotes the pair of characteristics corresponding to f. More
over, it is easy to verify that

(2.3) fz = i{|/le + (l/e)|/|(arg/)tf + i|/|(arg/)e-t(l/e)|/|4x

X expi(arg/-0),

(2.4) fz = i{|/|e-(l/e)|/|(arg/), + t|/|(arg/)e-|-i(l/e)|/|#}X
Xexpi(arg/+0).

From (2.2), (2.3) and (2.4) the necessity as well as sufficiency of the con
dition (2.1) follows immediately.

Lemma 1 has an obvious geometrical sense.
Let now UQ denote the class of all functions f which map Q-quasicon- 

formally the disc |«| < 1 onto itself with /(0) = 0 and /(1) = 1. Let fur
ther U * denote the class of all measurable and bounded pairs of character
istics (p, 0) defined a.e. in the disc |«| < 1. Let in turn (S)* denote the 
subclass of Ut consisting of pairs of functions defined in the disc |«| < 1 
and belonging to the class C , and by 8* the subclass of ($)* consisting 
of pairs of functions which have for |«| < 1 partial derivatives of the first 
order fulfilling a global Holder condition with a certain exponent d (0 
< <5 < 1). Let finally ($)0 and SQ denote the subclasses of Uq = 
consisting of all functions corresponding (by virtue of Theorem 1) to pairs 
of charac teristics that belong to the classes (S)* and S*, respectively.

As it was remarked in [34] (cf. also Remark in the next paragraph 
of the presentpaper), there takes place the following

Lemma 2 (Shah Tao-shing). The subclasses Sq and (8% are dense 
in the class Uq.
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In what follows we consider functions f and the corresponding pairs 
of characteristics (p, 0) depending on one real parameter t.

The basic part of Shah Tao-shing’s paper [34] is the proof of the follow
ing integral lemma, analogous to Golusin’s lemma [12], and presented 
here with weakened assumptions, in a slightly different form:

Lemma 3. If a pair of characteristics (p, O)e(S)*, defined in the disc 
|»| < 1 and in an interval 0 < t < T, fulfils in this disc the conditions

(2.5) (l/t)u(z,t) ri<p(z) for t-rO + ,

(2.6) (1/Z)|w2(z, <)l < Mz) for 0</<T,

where cp and fc are bounded and u = e2tS(l—p)/(l+p), then for the func
tion fe(S)Q which corresponds (by virtue of Theorem 1) to the pair of char
acteristics (p, 0), the formula

(2 7) (l/<)[/(z, f)-»] =4 (IM)z(l-z) J J fa( £)/f(l-£)(«-£) +
lfl<i

+^j/C(l-C)(l-«C)}df  ̂ for/->0+ (C = ^+iri)

is satisfied in the disc |«| < 1. (2)
Proof. This lemma differs from that given in [34] by the missing assump

tion that the condition (2.1) holds for all ft ( —n < ft n). Moreover, 
we prove (2.7) in the sense of the footnote (2) only, but this is not essential 
for further applications.

If (2.1) is fulfilled, the function 0, continued outside the circle |z| = 1 
according to the formula 0(z, t) = arg«2 — 0(1/2, f), is of the class Cl and, 
consequently, we see in view of Lemma 1 that the function /, continued 
outside the circle |#| = 1 by the formula /(«,/) = l//(l/5, /), is of the 
class (S)q.

If (2.1) is not fulfilled, the proof runs quite analogously, but we obtain
(2.7) in the sense of the footnote(2) only. (3)

From Lemma 3 the following theorem can be deduced (see Shah Tao- 
-shing [34]):

Theorem 3. If for a pair of characteristics (p, 0)eS„, defined in the 
disc |z| < 1 and in an interval 0 < t < T, the function u = e2lfl(l — p)l(l-fp) 
has in the disc |#| < 1 and in the interval 0 < t < T partial derivatives ut

(2) We use the notation zj for an open set D in the sense of the so-called al
most uniform convergence in D (i. e. the uniform convergence on compact subsets 
of D) and the convergence of Re {(I/tz)[f(z, t)—z]} on its closure.

(3) It seems to the author that in (2.7) we have the uniform convergence for 
|z| < 1 also in this case. The problem requires a separate publication. An analogous 
remark concerns also Lemma 6.
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and Ugt, then the function feSQ, corresponding to the pair of characteristics 
(p, 0), satisfies in the disc |z| < 1 the equation

(2.8) dfidt = (iM)/(i-/) ff w, <)/c(i-o (/-:)+
lfl<l

(C - e+ir)),

where the function <p is defined by the formula

(2.9) <p(£,t) = {l/(l-|M(/1(f,Z),<)|2)|M<(/'*(C,/), <)exp(-2iarg/f~1(C,/)). 

If, in particular, p(z,t) — [/»(«)/ and O(z,t) = 0(z), then

(2.10) <ptf,t) = /))exp(2?'0(/-1(<:,/))-2zarg/f1(C,/))

and the solution w = f(z, t) of the equation

(2.11) dw/dt = (l/n)w(l-w) //{^(C,«)/:(!_f)(w-C) +
ICICI

+9>7?7ij/f(i-c)(i-wf)}did}? c = s+iy)

satisfies the initial condition f(z, 0) = z.
The proof is the same as in [34], but the lemma applied there must 

be replaced by Lemma 3 from the present paper.
An application of the above formulated theorem, instead of the cor

responding one from [34], permits to avoid the condition (2.1) which 
has been tacitly assumed by Shah Tao-shing in his Theorems 3 and 5 
from the same paper. Thus the proofs of the mentioned theorems may 
be already taken as complete.

Let us finally mention the results of Krushkal [19]. Basing on Lemma 19 
of the paper of Ahlfors and Bers [3] he proved that the assertion of Lemma 3 
takes place also under the following assumptions: 1° <p is measurable and 
bounded in the disc |»| < 1, 2° (l/t)(u — Up) is measurable and bounded 
on compact subsets of the disc |«| < 1 by a constant common for all t 
(<)<<< T), 3° if t -> 0+, then (l/i)w(z, /) -> qp(z) for almost all z (|z| < 1). 
He also showed that under these assumptions not only the uniform con
vergence in (2.7) takes place, but even there exists such a number p* >2 
that for any p from the interval 1 < p < p* there takes place the con
vergence with respect to the norm in Bp( |z| < 1), where Bp(|«| < 1) deno
tes the Banach space of functions/which are defined in the disc \z\ < 1 with 
the norm

II/(«)IIb„(W<1) = sup {|/(«i)-/(«1)l/|21-^|1_J/p} +
ijBjI.laaKl

+ ll/«(2!)IIXp(|a|<l)+ ll/«(z)||zI)(|a|<l)

(2.12)
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and fulfil the conditions /(0) = 0 and /(1) — 1. Using this lemma Krush- 
kal proved further in [19] that the assertion of Theorem 3 takes place 
also if u(z, t) — tu(z) for |z| < 1 and 0 t < 7’, where u is measurable and 
bounded by a constant k <1. Krushkal did not obtain theorems which 
correspond to Theorems 3 and 4 of Shah Tao-shing’s paper [34].

§ 3. Dense subclasses of quasiconformal mappings in an annulus

Let UqI{ denote the class of all functions / which map (l-quasiconfor- 
mally an annulus r < |z| < 1 onto R < |w| < 1 with /(1) = 1 and let 
TJq = \Jr,Q'<qUq?- Let further [7, denote the class of all measurable and 
bounded pairs of characteristics (p, 0) defined a.e. in the annulus r < |z| 
< 1. Let in turn (<S), denote the subclass of U* consisting of pairs of 
functions defined in the annulus r < |z| < 1 and belonging to the class Gl, 
and by the subclass of ($£ consisting of pairs of functions which have 
for r < |z| < 1 partial derivatives of the first order fulfilling a global 
Holder condition with a certain exponent <5 (0 < d 1). Let further ($)£, 
and SrQ denote the subclasses of VrQ consisting of all functions correspond
ing (by virtue of Corollary 1) to pairs of characteristics that belong to 
the classes (<S')» and $*, respectively. Let finally (S)q1{ and Sq]< denote 
respectively the subclasses of the classes ($)£> and <S'y which consist of all 
functions mapping the annulus r |z| 1 onto R |w| < 1. Obviously,
(-S’)u = Un(-8)3K and = Ufi«3K-

We prove first
Lemma 4. If fcUy11 then

(3.1) (l/16)«|z1-z1|° < |/(s,)-/(22)| < 16I«!-«/'0

and

(3.2) [/(«)-«l < 181og<?

in the whole annulus r < |z| < 1.
Proof. Let us continue the function f into the inner disc by the for

mulae

(3.3) /*(z) =^7/C27z) for < \z\ <r2”l(r = 1,2,...),

(3.4) /*(z) = K27(z/r27 for r2^1 < |z| ^(r = 1,2, ...).

Obviously, we admit f*(z) =f(z) for r < |z| < 1, and /*(0) = 0. It is 
easy to see that f* is ^-quasiconformal in the disc \z\ < 1. Hence /* satis
fies here the estimates (l/16)°|z, —z*!0 < |/*(zx)—/*(z2l| < 16|Zj—z2|1/0 
and |/*(z) — z\ < 181og# obtained by Mori [27] and Belinskii [6], respec
tively, and this implies the assertion of our lemma.
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We prove now
Lemma 5. A subclass of the class Uq consisting of all real-analytic 

functions is dense in L7q; in particular the subclasses fly and (S)rQ are 
dense in Uq.

Proof. The method of our proof is analogous to that used by Bers 
in [8].

Let us first note that, in view of Lemma 4, the function f satisfies (3.1) 
in the whole considered annulus. On the other hand, f satisfies here a.e. 
the Beltrami differential equation (see e.g. [8J)

(3.5) fz = u(z)fz

where |«(z)| is sharply estimated by (Q — 1)/(Q + 1). If we define f* as 
in the proof of Lemma 4, then the corresponding function u* will be 
determined by the formulae

(3.6) «*(«)= e4iarg2M(i^j for r2’< |«| < = 1,2,...),

(3.7) «*(«) = «.(z/r2’) for r2,+1 < |z| < r2r(v = 1,2, ...),

and, obviously, u*(z) — u(z) for r |«| < 1.
Now, let «<”> be a sequence of complex valued real-analytic functions 

such that |m(’1)(z)| < (Q — l)/(f? + l) and «*“*->?<* a.e. in the disc \z\ < 1. 
Let further

sup |«<*>(z)| = (<?»-l)/(Q„ + l) (n =-- 1,2,...).

Obviously, Qn -> Q as n -> oo. According to the theorem on existence 
and uniqueness of systems of partial differential equations, any equation

(3.8) = «<"’(«) ^ («=1,2,...)

has exactly one solution w = /*(n)(z) which is a real-analytic sense
preserving homeomorphism of the disc |z| < 1 onto itself and fulfils the 
initial conditions /*(n)(0) = 0 and /*<n)(l) = 1.

Applying now Corollary 1 we see that there exists a uniquely deter
mined sequence of numbers Rn (0 < Rn < 1) and a uniquely determined 
sequence of Qn-quasiconformal mappings w = /<w)(z) of the annulus r < |z| 
< 1 onto Rn < |w| 1 which have in r < |«| < 1 the characteristics pn,
0n, respectively, given by the relations exp(2i0n)• (1 —7>„)/(l+ p„) = un 
(cf. (2.2) and (3.5)) while /<n)(l) = 1. Moreover, Corollary 1 implies also 
the existence of a uniquely determined sequence of conformal mappings 
w = </»(«) of the domains /*(n)({z: r < \z\ < 1}) onto Rn < |w| < 1, 
respectively, such that for any n the relation fn}(z) = holds
for r Sg |Z| < 1.
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Thus we see that the functions are real-analytic in the annulus 
r < |«| < 1. On the other hand, in view of Lemma 4, we have here

(3.9) (1/16)°п|г1 —2g|°n < l/”)(«1)-/“)(«8)l < 16

Hence we may assume, selecting if need be a subsequence, that the sequence 
of function converges uniformly to a sense-preserving homoemorphism 
y(°°) which maps the annulus r < |»| < 1 onto R < |w| < 1 where R is 
the limit of Rn for n -> oo.

It remains to prove that /(00) is identically equal to / in the annulus 
r < |«| 1- To this end we note first that, by virtue of the condition (iii)
of quasiconformality in Definition 1, we have the estimate |Дв)(г)1 
<{(<?»-l)/(Q»+l)}l?,n)(«)|. Let» = ® + iy and /<“> =?<"> +iy(n>. Then, 
squaring both sides of the last inequality, we obtain

<ЛВ)2 +4n)2+<)l+4B)2 -

that is ?>£‘)l + 99tn)2 + V’®n)2 + 4n)J < (Q»+1/G»)(9’S,)V’w") —and con
sequently, after integration,

(зло) ff {|Лв)|2+|Л'012}^.у <^(^»+i/^).

From (3.10) we infer that the sequences of functions Дп) and f(vn) are, 
after selecting if need be subsequences, weakly convergent to certain 
functions tj and Л, measurable and locally integrable with the square in 
the annulus г < |«| < 1, and at the same time g = and h — almost 
everywhere. Hence we infer that the sequence of functions м(п)Д") is weakly 
convergent in r < |«| < 1 to Thus w is one of solutions
of the differential equation

(3.11) Wi = w(«)we

determined for r < И C I-
But, as proved by Bers [8], if w = /t(2) and w = f2(z) are two solutions 

of (3.11) in the same domain, and Д is a homeomorphism, then f2 is 
a holomorphic function of fu and thus f^(z) = G(f(z)) where G is holo- 
morphic in r < |г| < 1. Since f as well as /(0O) map the annulus r < |z| < 1 
onto R < |w| < 1 and /(1) ==/(oo)(l) = 1, then G must be the identity 
function in the annulus r < |z| < 1, and thus also on its closure.

In this way we have proved that a subclass of GrQ consisting of all 
real-analytic functions is dense in VrQ. This implies in particular that 
the subclasses <8q and ($)q are also dense in TJq.
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Remark. Similarly as in the previous proof it is easy to verify that 
a subclass of the class Uq consisting of all real-analytic functions is dense 
in Uq and this is a generalization of Lemma 2.

In the following paragraphs we shall consider functions fe UqR and the 
corresponding pairs of characteristics (p, 0) as functions of a complex varia
ble z and a real variable t. In these considerations r will be fixed, while It 
and Q will be functions of the variable t.

§ 4. Integral Lemma for an annulus

The following lemma on integral representation of quasiconformal 
mappings of the class (S)qR, depending on one real parameter, has a basic 
importance for the problem of parametrization of quasiconformal mappings 
in an annulus. It is in fact a considerable generalization of the correspond
ing results of [35] and [25] because the uniform convergence in r < |«| < 1 
instead of the convergence in the sense of the footnote (2) is not essential 
for further applications.

Lemma 6. If a pair of characteristics (p, 0)e(8)r*, defined in an annu
lus r < \z\ < 1 and in an interval 0 < t < T, fulfils in this annulus the 
conditions (2.5) and (2.6) where <p and k are bounded and u = e2'9 x 
X (1— p)l(l+p), then for the function fe(8)rQR which corresponds (by 
virtue of Corollary 1) to the pair of characteristics (p, 6), the formula

(4.1) (1/0 [/(2, /)-«] (jrc) //■ >(C)| i+r2v:\
t c* ’[z-^C l-r2’^

<p(C) 11 + ^'zC 1 + »*CUJ>3 for f->0 +
? (l-r2M 1-r2^/} f (C-$+*!>

is satisfied in the whole annulus r < |z| <1. (2), (4) Moreover,

(4.2) (1/0 [12 (t) - r]-^ (1/2jt) // 7-^(0/;2 + ^?)/f2}d^ for/^0 + .

Proof. The method of our proof is analogous to that used by 9hah 
Tao-shing in [34] and Shah Tao-shing and Fan Le-le in [35]. For more 
clearness the proof is divided into several steps.

Step A. Reduction to a Dirichlei problem. Let us put 

f(z, t) — z = P(z, t)+J(z, t)+J0(z, t) (r < |2| <1, 0 < t < T),
+OO

(4) In the sequel we apply for the sake of simplicity the notation £ av instead 
4-00 F—— oo

«0+(«»-+O-v) provided the last series converges.
»-1
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where
J(e,t) = (1/rc) ff (z—C) lu(ę,t)dędv, 

jo(«,o = (iM) (f (z-cru^omm,*)-^«^.
r<|C|<l

Applying Lemma 4 we prove, analogously as in [34], that (1//) J„(z, t) 
zfc 0 and (1/f) — z] =t /J(z) + J(z) for t->0+ in the annulus r < |»|
< 1, where f) is holomorphic in the above annulus and continuous on its 
closure, and J(z) = (1/tt) // (z — £) 190 (£) Hence, putting]5)

(4.3)

we obtain

, i / x f f I (1-*)P(C) I dl-dy

(4.4) (llt)[f(z,t) — z]^zp*(z)-Jt-zJ*(z) for/,->0 + (r < |z| < 1),

where, as it is easily seen, ft* is holomorphic in the annulus r < |z| < 1 
and continuous on its closure.

Since ff(z, <)| = 1 on the circle |»| — 1, we have

2Re{(l/te)[/(z, f)-z]} = (l/tz)[f(z, t)-z?lf(z, t) (|»| = 1).

Hence, in view of (4.4),

(4.5) Re{(1 /tz)[f(z, /) — «]}-> 0 forf->0+ (|z| = 1).

Similarly, we have |/(z, <)| = J?(<) on the circle \z\ = r. Hence, in view 
of the identity

Re{(l/<z)[/(z,/)-z]} = [/e(f)/r]Re{(l/ter-1)[/(rzr-1,i)/«(<)-zr-1]} +

+ (l//r)[7?(f)-r| (|«|=r)
and (4.5), we obtain

(4.6) Re{(4/<z)[/(z, t) — z]} -> q for /-> 0+ (|z| = r),
where
(4.7) q = lim {(lltr)[R(t)-r]}.

U»0+
From (4.4), (4.5) and (4.6) we get

-RefT(z) = —ReJ*(z) (|z| = 1),
(4‘8) Re/3*(z) = g —ReJ*(z) (|z| = r).

(5) The function J* is convenient for further calculations because IteJ*(z) = 0 
for |z| = 1.
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In consequence, we see, by virtue of a well-known theorem, that /9*, 
being holomorphic in the annulus r < \z\ < 1 and continuous on its clo
sure, can be expressed in it by the values of Re J* (z) on the circles |«| = 1 
and \z\ = r. Thus we have reduced our problem to a certain boundary 
problem equivalent in fact to the Dirichlet problem for an annulus. Fur
ther calculations are analogous to that of the author’s paper [25].

Step B. Solution of the boundary problem and transformations of the 
integrals. The solution of the boundary problem formulated above 
is given by Villat’s formula (see e.g. [1], p. 226). This formula will be 
written in a form more convenient for our purposes and used in [25]. Put

(4.9) c = (l/2m) f (llz')p*(z')dz',

(4.10) Fx(z) = (l/2ni) f (z'-z)"12 Re/9* («')<&',

(4.11) F2(z) = (ll2ni) f (z' — z)~l2~Re()*(z’)dz'.

Then, for r < |z| < 1,

(4.12) /9*(z)=c-2Rec + J\(T/2)’+

+ {F,(r2^)- (r2’7T)-P2(«/r2’) + F^IA-2^)}•
»• o

Note now that (4.3) yields

(4.13) J* (1/2) = -J*(z) (z 0) and ReJ*(z) = 0 (|z| = 1).

From (4.9), (4.10) and (4.13) we obtain

(4.14) Rec = 0 and FJz) = 0 (|z|= 1).

We admit for the elegance of further calculations

(4.15) c = c* + (lM) ff {9)(C)/(;(l-f)-^)/C(l-f)}d^;
«•«sicid

it is easily seen that the above integral exists.
In turn we transform the integral (4.11). First, in view of (4.8), it is 

possible to write this integral in the form

F2(z) = (l/2m) f (z-z')-1[J*(^) + J*^7j-2g]dz' 

whence, in view of (4.13), we have

(4.16) F.,(z)=(l/2m) J (z-z')-i[J*(z')-'J*(z'lr*)]dz'.
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For the further transformation of (4.16) we consider the difference A(z, z') 
= J* (2') —</*(«). By virtue of (4.3) we have

(z-z')<p(Ç) («-«')9?(0 j
---- H —------- =---------—o r C(1-^)(1-«'C) I "(1W J J ({(»-{№'

and thus we may replace (4.16) by an equivalent formula
(4.17) Ft(z) = (l/2m) J k-s')"1 [</*(*)-J

+ -

■(«/r2)] +

+

?(£)
£(l-z£) (!-«'£) t(r*-zÇ){r*

C) C(2-r2C)(z'-r^) 

»•W) (r< |z| < 1).

Step C. Integration under the sign of integration by the method of 
shifting the contour beyond the singular points. The present phase of 
transformation of the integral i\(z) we begin with an analysis of the 
different terms in the formula (4.17). Let for this end

0o(«') = (z-z')~i[J*(z)-J*(zlr2)],
gi(z') = (l/a) ff [<p(C)/^-C)(F-C)-p(Cj/C(l-^)(l-FC)]dSdr,, 

r<|C|<l

g2(z’) = (l/„) ff [r^^l^z-r^jfz'-r^)-
r<lt|<1 -rMC)/; (r2 - «£)(r2 - z'Wdtdr,.

It is seen at once that g0 is holomorphic in the whole disc \z'\ < |«|, and 
so in particular for \z'\ < r. Similarly (see e.g. [37], p. 45), gx is holomorphic 
in the disc \z'\ <r and continuous on its closure. Thus, applying Cauchy’s 
integral theorem, we obtain

(4.18) f go(z')dz' = O, f g^z’jdz' = 0.
lS'l=r

A similar consideration is impossible in the case of g2. One can verify 
that the integral of this function over the circle |z'| = r cannot be cal
culated even by application of the theorem on residues. Therefore an 
idea arises to integrate along the circle \z'\ = r under the sign of double 
integration.

In order to accomplish this idea we note that a known theorem on 
inversion of a repeated integral (see e.g. [9], vol. II, p. 753) requires assump
tions that the integrand is (i) integrable in both variables separately, 
and (ii) bounded in the Cartesian product of both integration sets. It is 
evident that in our case (ii) is not satisfied.



On the parametrization of quasieonformal mappings in an annulus 37

The way out of this difficulty can be achieved by a method that may 
be called the method of shifting the contour beyond the singular points. The 
idea of this method was suggested to the author by a paper of Vekua [36] 
who applied it on p. 223 in proving a theorem connected with differential 
equations of the elliptic type. It seems to be very useful in the theory 
of multiple integrals in general, and in the theory of quasieonformal 
mappings, connected with double integrals by a well-known integral 
formula of Nevanlinna [30], in particular.

The point of the idea of this method is that we replace the considered 
curvilinear integral by a curvilinear integral over another contour in 
such a way that the Cartesian product which appears in the formulation 
of the above quoted theorem on inversion should satisfy (ii). The choice 
of a new curve of integration depends on the particular properties of the 
considered integral.

We shall prove that in our case we have

(4.19) f g2(z')dz' = f g2(z')dz'.

In view of Cauchy’s integral theorem it is sufficient for this end to show 
that g2 is holomorphic in the annulus r < |#'| < 1 and continuous on 
its closure. The corresponding reasoning runs quite analogously to the 
case of the function gl in a disc.

Note that it is now possible to apply the above quoted theorem on 
inversion, because for \z'| = 1 and r < |f| < 1 with fixed z (r < |»| < 1) 
we have

|r2?>(C)/f (z - r«C) («' - r»£) | < K, \r*y Of (r* - zt) (r* - z'i) | < K (K< + oo).

Hence
(l/2m) J g2(e')dz'

lg'l=r

'WÎ) r2<p(Z) |
ç(e-r*ç)(z'-rK) C(r2-zC)(r«-2'f)J

dz'dÇdy,

whence, after application of Cauchy’s integral formula,

(4.20) (l/2„i) - (1W

The obtained formulae (4.18), (4.19) and (4.20) permit, in view of 
the definitions of g„, gt and g2, to write (4.17) in the form

(4.21) F2(z) rW)
C(si-rK)

,-2y(C) 1 
£«(»*-«£) J dl-dy (r < |2| <1).
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Step D. Transformations of the series in the formula for ft*. The 
considerations of previous steps of the proof enabled us to obtain the 
formulae (4.14), (4.15) and (4.21), from which it easily follows that the 
formula (4.20) may be replaced by the formula

?*(»*-Idl^z-rK) v

(r < |2|'< 1)
that is

(4.22) /?*(«)= c* + (1/tt)

We shall prove now that the function ft* may be, with preserved conti
nuity, defined by (4.22) also on the circles |«| = 1 and \z\ = r, and that 
in this formula it is possible to change the order of integration and summa
tion for every z such that r < |«| < 1. Let us note for this purpose that 
all integrals, appearing in this formula, exist and are continuous with 
respect to z in the whole annulus r < |»| + 1 (cf. e.g. [37], p. 45). Next, 
we prove that the series of the integrands in (4.22) is uniformly conver
gent in the whole Cartesian product of the annuli r < |£| + 1 and r < |z|< 1.

To prove the uniform convergence we apply the well-known Weier- 
strass’ test. Since r < |f| < 1, r < |«| < 1 and 0 < r < 1, we have

|l-£/r2’z| > |f/r*s|-l >r‘-2’-l >r1-2’(l-r), 
ll-a/r2":! > k/^fl-l >r1-2’ —1 >r1"2’(l-r), 
ll-ze/r2’! > |zf/r2*|—1 >r2-2p-l >r2-2’(l-r), 

ll-l/r2’^! > ll/r’^l-l >r-2’ —1 >r-2’(l-r),

and, consequently,

|1 /(1 - £I^Z) -1 /(1 - z/r2'f)| < 1 /|1 - clr2vz\ + 1/11-z/r2’ Cl < 2r2’-1/(l - r), 

\ll(l-zllr2')-lftl-ll^zl)\^ll\l-zllr2r\+ll\l-llr2rzC\<2r2r 2l(l-r).
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Hence

-l/(l-l/r2^c)}| < |(l/C2)9)(f)|{|l/(l-f/r2^)-l/(l-«/r2’O| +

+ |l/(l-^/7)-l/(l-l/r27C)|} < Ir2'-4 max |?(f)|

which proves the uniform convergence, as desired.
Thus the formula (4.22) holds in the whole annulus r < |»| < 1 and

the order of integration and summation may be changed (see e.g. [9], 
vol. II, p. 437, 663 and 439). In order to simplify further (4.22), we sub
tract and add j in each of the parentheses of this formula. In this way, 
after introducing the above described sign of summation from - oo to 
+ oo (see footnote (4)), we obtain the formula

(4.23) „-(4, - ✓+(!/»> ff T’C)

d/2,) fj V « + ^’C <P(Z) l + TX
_ . 2j V?-' 7-7F ’ f* ’ l-T’af

-(l/2”JJ TTi-^) r“’ ’

d^dr] —

< ICI < 1).

Step E. An integral formula for the functions f and R. The formula
(4.23) enables us to get the integral formula mentioned in the statement 
of our lemma. In fact, from (4.4), (4.23) and (4.3) we obtain

(4.24) (llzt)[f(z,t)-z]^eA-(ll2n) Jf {?> (№-?(£)/£ W»? +
rClCKl

+ oo« j g I j'“v £ ___  1 I ^»“l' |
(WO Tzp-v -d/PMC)

r<|CI<l ►- - no *■ r

for t -+ 0+ (r < If I < 1).

Hence, in view of the initial condition/(1, t) = 1, the formula (4.1) follows. 
Prom the formula (4.1), applied for the values z situated on the circle

|z| = r, we obtain easily (4.2) using (4.6) and (4.7).

§ 5. Basic Theorem on parametrization in an annulus

By means of Lemma 6 presented above we can now prove the following 
basic theorem which considerably generalizes the corresponding theorems 
of the papers [35] and [25], and which is the main result of this paper:
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Theorem 4. If for a pair of characteristics (p, 0)eSr*, defined in an 
annulus r < |z| < 1 and in an interval Q ^.t ^T, the function u = e2te X 
X. (l—p)l(l+p) has in the annulus r < |z| <1 and in the interval 
0 < < < T partial derivatives ut and uzl, then the function feS^11, corres
ponding to the pair of characteristics (p, 0), satisfies in the annulus r < \z\ 
<1 the equation (f)

(5.1)
K(<)C1C|<1 r--oo ' s w

_ ll + tf’Wfi _ 1 + R
? \i-^{t)fi i-^w1)!

w
(OC

d!-dq

l + ^2"(<)n 
i-ff2p«)d

(C=f+i»?)

where R2r(t) = {R(t)}2'’ and the function <p is defined by the formula (2.9); 
moreover, the function R is of the class G1 in the interval 0 / < 7', and

(5.2) dR/dt = (1/2tt) [ f R {?(£, t)l^+p^,t)rQ}d^dy.
Kssici<l

If, in particular, p(z,t) — [p(z)]z and O(z,t) = 0(z), then (2.9) takes 
the from (2.10), and the solution w =f(z,t) of the equation

(5.3) dw/dt = (1/2jt) jy lw+R2'(t)Z
, f 1[ w-R2,,(t)ęw

■R(0<ici«a ”

i + -R2W\ /l + .R2v(/M
1-^’(<)J \l — R2r (t)w£

1 + J?2W 
l-R2r(t)Ęi)}d^dq (f = £ + irf)

satisfies the initial condition f(z,O) = z.
Proof. The proof runs analogously to the case of the corresponding 

theorems of the papers [34], [35] and [25]. As the proof was only out
lined in the first and the second paper, and omitted in the third one, 
we give it here in a detailed form. For clearness it is divided into several 
steps.

Step A. Constmction of a suitable function satisfying the assump
tions of Lemma 6. In order to find a differential equation for functions 
belonging to the class Sq and to apply Lemma 6, we construct a suitable 
function satisfying the assumptions of this lemma; we denote this function 
by F. By a suitable function we understand any function of the variable 
w [r*W M l) depending on two real parameters t (0 < t < T) and 
t(0 < r < T*), and fulfilling in the annulus r*(Z) < |w| < 1 the condition 

(5.4) (1/t)[F(w, t, t) — w] rf df(g(w, Z), t)/dt for t->0 + ,

I
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where f is a function of the class 8q1{ corresponding to a pair of charac
teristics (p, 0)eS*, and g is a certain function chosen in such a way that 
Fe(S)rQ\ (1 < + oo).

The simplest way is to choose the function F so that the expression 
on the left-hand side of (5.4) be a difference quotient corresponding to 
the partial derivative df/dt i.e. so that

(5.5) F(w, t, t) =f(g(w, t), < + t),

(5.6) w =f(g(w,t),t).

Since / is invertible as belonging to Sq11, then (5.6) yields

(6.7) f~l(w,t) = g(w,t).

In view of (5.5) this means that the most convenient it is to admit r*(t) 
= R(t) and

(5.8) F(w,t,T)

There remains to verify whether the function F, defined in the annulus 
R{t) < |w| < 1 and in the intervals 0 < t < T, 0 < т < T — t by (5.6), 
satisfies the assumptions of Lemma 6.

Step B. Evaluation of the functions U and Ф. From editirial reasons 
let us begin from expressing the functions U and Ф, defined by

(5.9) U(w, t, t) = F^(w,t, t)/Fw(w, t, t) ,

(5.10) Ф(м, t) = lim [(I/т) U(w, t, t)]
t->04-

in the annulus R(t) < |w| < 1, in dependence on the functions f, p and 0. 
The derivatives in (5.9) exist, because, in view of Theorem 7.3 of [38], 
the assumption (p, 6)eS* implies that f belongs to C2, and thus, in view 
of (5.8), the function F must also be of the class G2.

Note first the identities

(5.11) Wz — Wi, Wj = W~B

which can be easily verified. Since in our case the functions w—f and w—], 
considered as functions of the variables s, z, w, w, satisfy the assumptions 
of a well-known theorem on implicit functions (see e.g. [9], vol. I, p. 454), 
then we have

fn^u>f~fz^w ~ 1, 
fBZw+fsZw = 0,

(5.12)

(5.13)
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where (5.13) may be, in view of (5.11) replaced by

(5.14) /i«w+Mw = 0.

The equations (5.12) and (5.14) yield

(5.15) «• = /./( Is-l/sl1),

(5.16) «w = — jfe/(l/»l2—l/ila),
whence in view of (5.11) we get

(5.17) =/./(l/,ls-tf;la),

(5.18) 25 = -/i/(l/,l2-|/il2).
The relations above obtained permit to accomplish differentiation 

in the formula (5.9). In view of (5.8) we have

(5.19) Fw(w,t,i) = f3(z,l + T)zw+f,(z,t + T)zw,

(5.20) ^(w, t, t) = f,(z, t + r)za+fi(z, <+t)zs.

Now, applying the relations (5.15) and (5.16) to the formula (5.19), and 
the relations (5.17) and (5.18) to the formula (5.20), we obtain 

(l/.(2, <)ls- 1/5(2, t)\»)Fw(w, t, t) = /,(«, < + T)/,(«,f)-/i(2, < + t)/s(2, <), 

(l/a(2, 01s— 1/5(2, 0l2)l*w(M-’, t, 2) = -/a(2, t + r)fa(z, t)+f;(Z, t+T)f„(z, t). 

Hence, after putting to (5.9), we get

TTZ , x -/a(2,f + T)/;(2,0+/5(2,< + T)/a(2,0 U(W, 1, T) =-------- _^===r.._--------------------------
f3(Z, t + r)f3(z, 0 -/5(2, f + T)/i(2, 0-

Note finally that in accordance with the notations of our theorem, by 
virtue of (2.2), we have

(5.21) fi(z, t)lf,(z, 0 = m(2, 0

whence
,roo, rrz z x M(2, <+T)- M(2, 0 ,(5.22) U(w, /, T) = —- ----- — ■------ r- exp(2targ/a(«, /),■

1 — u(z, /+t)w(2, 0

Dividing both sides of (5.22) by r and letting t->0+, in view of (5.10) 
and the assumed existence of the derivative ut, we obtain immediately

(5.23) 0(w,O = {l/(l-|«(2,0ls)}M*(«,06xp(2targ/a(2,0).

The formulae (5.22) and (5.23) where z = f '(w, t) give the expressions 
for U and 0, as desired.
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Step C. Verification of some properties of the function F. Note first 
that/«(*S’)37i; this follows immediately from the obvious relation 8rQRe{8)rQU. 
Thus, by virtue of (5.8), the function F belongs to C2 and fulfils the condi
tions (i) and (ii) given in Definition 1 of quasiconformality, and maps 
the annulus lift) < |w| < 1 onto itself so that F(l, t, r) = 1. Using next 
the formulae (0.1) and (5.21), in view of the above proved relation fe(S)rQR, 
we have

(5.24) 0 < \u(z, t)\ < (Q-l)/((? + l) < 1 (Q =

Hence, in view of (5.9) and (5.22), we infer that F fulfils also the condi
tion (iii) of quasiconformality; so this function represents a Q*-quasicon- 
formal mapping where, as it can be easily verified,

|l-«(«, i + T)M(2, f)| + |«(«, t + r)-u(z, t)\
Q = sup ——--------...... ............................................ ,

|l — u(z, t+r)u(z, t)\— \u(z, f + ij — u(z, t)\

and z = f~l(w, t).
From the above we obtain immediately that Fc(8)q. and that we 

may associate to this function a uniquely determined pair of characteris
tics P = P(w, t, t) and 0 — 0(w, t, t). Simultaneously from the formula 
(5.9) and from the formula (5.21) applied to the function F we obtain 
the relation U — e2,"(l —P)/(l+P). In view of the conditions (2.5) and 
(2.6) of Lemma 6 it means that there only remains to verify the existence 
of the bounded functions p and k which fulfil the conditions

(5.25) (1/t) U(w,/, r) =£ <p(w, t) for t->0 + ,

(5.26) (1/t) |Uw(w,/, t)| < fc(w,/) for 0 < t 2’—t

in the annulus R(t) |w| < 1 and the interval 0 < t < T.
To this end note that (5.10) implies

(5.27) (1/t) U(w, t, t) -> 0(w, t) for t->0 + ,

and the limit function is given by (5.23) where z = f1 (w ,t). Thus, it is 
necessary to prove that in (5.27) there takes place the uniform conver
gence. So, let e, w, t be arbitrary numbers fulfilling the conditions e > 0, 
P(/) < |w| < 1, 0 < t < T, respectively, and let z = f~1(ut, t). By (5.24) 
we have
(5.28) 1/(1- |m(«, t)|a) < (Q + l^/iQ.

Moreover, from the assumption on existence of the derivative ut we easily 
infer that for a certain i] there is

(5.29) |l/(l —m(2, < + t)m(2:, «)) —1/(1—|«(«,/)|a)| < e/2Jtf (0 < t < »/).
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On the other hand, it can be easily seen that |iq(z, t)\ < M, where 
M < + oo, whence, in view of a well-known theorem,

(5.30) |m(z, < + t) —m(z, f)| < Jfr (0 < t < »/);

moreover, we have for a certain ??*

(5.31) |(1/t){«(«, f+r)-«(«, t)}-ut(z, t)\ < 2Qel(Q + l)i (0 < t < jf).

Prom the inequalities (5.28), (5.29), (5.30), (5.31) we obtain immediately 
that in the interval 0 < t < min(»?, ?/*) there is

|(1/t){u(z, t + r) — u(z, t)}l{l — u(z, t + r)u(z, t)} — ut(z, lu(z, <)|2)|

< |(1/t){m(Z, < + t)-w(z, f)}||l/(l-M(z,t + T)«(z, t))-l/(l-|«(z, 0|2)| 

+ |(1/t){m(z, t+r)-u(z, t)}-'Ut(z, <)|/(1- |m(z, t)|2)) < e.

Hence, by (5.22) and (5.23), in the same interval there is 

|(1/t) U(w, t, t) —0(w, f)| < £,

that is the uniform convergence takes place in (5.27). Thus, there exists 
a function <p which fulfils (5.25); it is uniquely determined and is expressed 
by the formula
(5.32) 9?(w, t) = 0(w, t).

In concern with the question of existence of the function k which 
fulfils (5.26) let us notice first that the left-hand side of this inequality 
exists in view of (5.22) and of the previously shown appertenance of the 
function f to C2. There is also an opportunity to notice that only in this 
place the above property is used in full, and that with application of the 
present method of proving it is not possible to weaken the assumptions 
on regularity of characteristics (p, 0). The existence of the function k 
fulfilling (5.26) follows from the appertenance of the function f to C2 and 
from the assumption that the derivative exists. In fact, if for r < l«l < 1 
and 0 < t < T the derivative uzt exists, then, in view of (5.22) and (5.24), 
there exists also the derivative H«,, anti we have |H„tf(w, t, t)| < Jf* 
for 0 < t < T— t, where JZ* < + oo. Hence we infer, that for R(t) < |w|

1, Z T, 0<t^T — t there takes place an estimate \Uw(w,t, t) — 
— Uw(w, t, 0)| Jf*r, where the existence of Uw{w, t, t) for r = 0 
follows immediately from (5.22) and, as it is easily seen, we have 
Z7w(w,Z,0) =0. Thus we may write the last inequality in the form 
|(1/t) Uw(w, t, t)| < JZ*. This means that the estimate (5.26) holds, and 
that we may put k(w,t) — M* identically.

In this way we have proved that the function P, constructed in Step A 
of our proof, satisfies all assumptions of Lemma 6.
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Step D. The differential equation for the class Sq. In the previous 
parts of proof we have constructed the function F determined by the 
formula (5.8) and fulfilling the condition (5.4), and we have verified that 
this function satisfies the assumptions of Lemma 6. Therefore, applying 
this lemma for the function F we obtain, in view of (5.4) and (5.8), the 
differential equation (5.1), as desired.

According to Step C of our proof the function <p, that appears in 
the obtained equation (5.1), is determined by (5.32) and (5.23), where 
z = f-^Wft). For finishing the proof of our theorem there remains to 
reduce the formulae obtained for the function <p to the form (2.9), and 
to derive (5.2). For the first question it is sufficient to verify that if 
z = /), then

arg/UM) = -arg/^^w,/)
that is
(5.33) argw, = -arg/^‘(w, <).

Applying then a known theorem on implicit functions to the functions 
z—f~2 and z—f-1, considered as functions of the variables w, w, z, z, we 
obtain, similarly as in Step B of our proof, the formula

(5.34) w, = f~l(w, t)l{\fc'(w, t)\a-\&(w, t)|»}

which is analogous to (5.15). Since, as it was stated in Step C of our proof. 
f belongs to then / 1 belongs to (<S')y'r, and consequently, by (0.1),
we have

l/w’(w, <)|2- \&(w, t)\2 > -1| 01 = 4(?(Ç-1)-2X

xl/^^w,/)!2 >o.
Thus, by (5.34), we obtain the formula

argw, = arg/-*(w, t)
equivalent to (5.33).

The formula (5.2) can be easily obtained in a way analogus to that 
applied in the proof of Lemma 6 for obtaining (4.2) from (4.1). Obviously, R 
belongs to C1. Similarly, it is easily verified that if in particular p(z,t) 
— LpO8)]* anf 0(z, t) = Q(z), then (2.9) takes the from (2.10) and the 
solution w = f(z, t) of the equation (5.3) corresponds to the initial condi
tion/(z, 0) = z. In this way the proof of Theorem 4 is completed.

§ 6. Further theorems on parametrization

Now we obtain two further theorems on parametrization; they corres
pond to the theorem on parametrization of conformal mappings and 
to its converse, respectively, as obtained by Lôwner [24], Komatu [16]
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and Golusin [12]. They also correspond to Theorems 3 and 4 obtained 
by Shah Tao-shing [34]. One of the announced theorems was in a partic
ular case formulated in [35], but this formulation requires substantial 
supplements.

Theorem 5. Let w = f(z) belong to S^1'. Then there exists a function 
co = <p(w,t), defined for |w| <1 and 0</^T=logQ, bounded by j, and 
such that: (i) the solution q = R(t) of

(6.1) e'=(l/2Tt) ff e{p(£,t)/C2 + p((;,t)/?}d£dy

with the initial condition 22(0) — r satisfies R(T) — R, (ii) the derivatives 
and q>- are continuous for R(t) + |w| + 1 (0 + t + T), (iii) the solution 
w=f(z,t) of (5.3) with the initial condition f(z, 0) = z is identically 
equal to f for t = T.

The proof is omitted as very easy and analogous to that of Theorem 3 
in [34].

Theorem 6. Let co = qp(w, t) be a function defined for |w| < 1 and 
0 < < < T, and bounded by |. Then there exists a unique solution q — Rtf) 
of (6.1) with the initial condition .72(0) = r. Moreover, there exists a unique 
solution w = f(z,t) of (5.3) with the initial condition f(z,Q) =z which 
represents a mapping belonging to where Qtf) + exp/.

Proof. For more clearness the proof is divided into three steps.
Step A. Existence of the unique solution of (6.1). Let H{o,t) denote 

the right-hand side of the equation (6.1). It is easily seen (cf. [37], p. 44) 
that for every t (0 + t T) the function E is continuous with respect 
to q in the interval 0 < g < 1. In consequence the assumptions of a known 
theorem of Peano are fulfilled, and thus there exists at least one solution 
q = R(f) of (6.1) that fulfils the initial condition 12(0) = r.

In order to prove the uniqueness of (6.1) we verify that the assump 
tions of a known theorem of Osgood are fulfilled. In fact, let 0 < gt < g2 < 1. 
Then

|fl(Pi,/)-H(02,/)| <(i/2jr) ff (ei-e1)\T^t)l^i+W7i)r^di1+ 
e2<ICI<i

+(1/271) ff g1i9)(f,/)/:2+7(T,7)/c2id^ < jfoiei-g2i

and, consequently, there exists at most one solution g — R(t) of (6.1) 
that fulfils the initial condition 12(0) = r.

Summing up, there exists exactly one solution g = R(t) of (6.1) that 
fulfils the initial condition 12(0) = r.
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Step B. Existence of the unique solution of (5.3). Let F(w, t) denote 
the right-hand side of the equation (5.3). It is easily seen (cf. [37], p. 44) 
that for every t (0 t < T) the function F is continuous with respect 
to w in the annulus R(t) < |w| < 1. In consequence the assumptions of 
a known theorem of Peano are fulfilled and thus there exists at least one 
solution w = f(z, t) of (5.3) that fulfils the initial condition f(z, 0) = z.

In order to prove the uniqueness of the solution w =f(z,t) of (5.3) 
we verify that the assumptions of a known theorem of Osgood are fulfilled. 
In fact, it can be easily verified, that if w — f(z, t) is a solution of (5.3) in 
the annulus r < |«| < 1 that fulfils the initial condition f(z, 0) = z, then 
(2.11) has the solution w —f*(z,t), determined in the disc |#| <1 and 
corresponding to the same initial condition; this solution is defined by 
the formulae
(6.2) /*(2,0 = ft2’(<)//(»27M) for r2'< |«| ^r2”1 (v = 1,2,...),
(6.3) /*(2,0 = for r2-+1 < |2| cr2’ (v = 1,2,...),

where R2’(t) = {7J(0}2’. Obviously, we admit f*(z, t) — f(z, t) for r < |2| 
< 1, and/*(0, 0 = 0. The corresponding function u* = /*//* is determined 
by the formulae
(6.4) «*(«,<)= e4iMB*M(r27z, f) f°r r2’^ |«| < 1 (r = 1,2, ...),

(6.5) «*(2, 0 — u(z/fi*, 0 for r2'+1 < \z\ < r2' (v = 1,2,...)
and, obviously, u*(z, t) — u(z, t) for r < |2| < 1. Similarly, if w = f*(z, t) 
is a solution of (2.11) in the disc \z\ < 1 that can be expressed in the form 
(6.2), (6.3), and that fulfils the initial condition /*(2,0) =2, then w 
= f(z, t) is a solution of (5.3), determined in the annulus r < |2| < 1 and 
corresponding to the same initial condition. Consequently, if F*(w,t) 
denotes the right-hand side of the equation (2.11), we can replace our con
sideration of the expression \F(w1, t) —F(w2, t)\ that appears in the 
theorem of Osgood, by the consideration of \F*(wq, t)—F*(w2, t)|. Here 
we define (p* in the same way as y, replacing u by w*.

An estimate of |P*(«q, /)—P*(w2, f)| can be obtained as in the paper
[19] of Krushkal. We have

w(l-w)/C(l-f)(w-f) = l/(w-f) + (w-l)/f + w/(f-l), 
w(l — w)/£(l — f)(l — wf) = — ?r3/(l — wC) + ?e(l— w)/C + w/(l — C).

Hence, for any w1 and w2 taken from the unit disc, we obtain

(6.6) |P*(w,,/)-F*(w2,t)| < {/[____ «5-------h
1|C|<1 If —WllK-WsI

f f d^dri I 2 f f d^dri ] 6 ff d^dr> 1
|C|<1 lf| !C|<1 If I| ICK1 |1 — w’ifI |1 w»f| 1

Ml—i)
|wq— w2|
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The first integral at the right-hand side is estimated by JfJloglWj—w2||. 
This is a consequence of a result presented in [37] (Chapter I, § 6), accord
ing to which the same integral taken over an arbitrary domain D is est
imated by MX(D) |log|w1 — w2|| where Jf^D) depends only on D. Applying 
now Lemma 1 presented in Chapter I, § 5 of [37] we state that the second 
and the third integrals in (6.6) are bounded; let JI2 and JI3 denote these 
bounds, respectively. In order to estimate the fourth integral we distinguish 
two cases. If |wq| or |w2| < j and both are < 1, then this integral is bounded 
by a constant as a function continuous in wx and w2. If |wj and |w2| 
are both > j and < 1, then we get an estimate |log |w4 —w2||, analogous 
to that obtained in the case of the first integral. Hence we have finally 

(6.7) \F*(wx, t)-F*(w2, t)\ < Jf.lWj—w2|{l+Jf7|log|Wj— w,||}.

Let (?(,?«, — w2|) denote the right-hand side of (6.7). In order to apply 
the theorem of Osgood we verify easily that (7 (»7) >0 for r) > 0, and that

d

J {llG(rj)}drj -> 00 as d -> 00 (c > 0). 
c

Consequently, there exists at most one solution w =f(z,t) of (5.3) that 
fulfils the initial condition f(z, 0) = z.

Summing up, there exists exactly one solution w=f(z,t) of (5.3) 
that fulfils the initial condition /(2, 0) = z. Moreover, f is continuous 
with respect to z, t being fixed (cf. [37], p. 44-45).

Step C. Properties of the found unique continuous solution of (5.3). 
From the uniqueness and continuity of the solution w =f(z,V) of (5.3) 
we infer that f must be univalent in the whole annulus r < < 1. In
fact, the number of solutions of the equation f(z,t) = w0(Z), where w„ 
is continuous in t, R(t) < |w0(Z)| < 1, 0 < t < T, is equal to the index of 
the point w0(Z) with respect to the cycle formed by the boundary curves 
of the domain considered, i.e. (l/2jri) / [w —w0(Z)}_1dw —(l/2Tii) f {w —

—w0(Z)}_1d?c, where Cx(t): w = f(c'°,t), 0< 0^2n, C2(Z): w =f(re'°,t), 
0 < 0 < 2n. Let n(t, w0(Z)) denote this index. The function n is continuous 
in w0(Z), t being fixed, and/(l, Z) = lfor 0 < Z < T, so n(t, w0(Z)) = n(t, 1) 
for any w0(t) taken from the annulus E(Z) < |w| < 1, where 0 < Z < T. 
But n is also continuous in Z, so w(Z, 1) = n(0,1) = 1, and consequently, 
n(t, w„(Z)) = 1. Summing up, f must be univalent in the whole annulus 
Z < |2| 1.

Now we show that f transforms the annulus r < |«| 1 onto -R(Z)
< |w| < 1. In order to do this, in view of the continuity and univalence 
of/, it is sufficient to verify that 1/(2, Z)| = 1 for |2| = land |/(2, Z)| = R(Z) 
for |2| = r (0 < t < T).
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To prove the relation |/(z, <)| — 1 on the circle |»| = 1 let us note 
that on the same circle we have Re{(l/w)F(w,/)} = 0. Then, intro
ducing for r < |s| < 1 and for 0 < / < T the notation

e(M) =/(«,0 —!//(«,<), 
and applying an easily verified identity

2Re{[l//(«, <)](d/di)/(z, <)} = (d/d/){/(2, t)e(z, <)}/[l+/(«,<)«(«, <)], 

we obtain by (5.1), after letting |«| ->1—,

(d/d/){/(z, f)e(2, <)} = 0 (|z| =1, 0 < t < T).

E'rom the above it follows that for any t (0 < t < T) we have e(z, t) 
= c(z)lf(z, t) on the circle \z\ = 1, where c does not depend on t. Hence, 
in view of the definition of e, we obtain

|/(«,f)|» = l+o(«) (>|=1, 0<<<T).

Now, taking into account the initial condition f(z, 0) = z, we see that 
c(z) = 0 identically, and thus \f(z, t)| = 1 for |«| = 1.

Similarly, by virtue of the relation Re {(1/w) J1 (w, t)} = ft'(t)IR(t) 
on the circle |«| = r (cf. (4.6) and (4.7)), we prove that on the same circle 
we have |/(«, f)| = Eft). Noticing finally that the mapping w = /(z,t) 
is sense-preserving for every t (0 < T), we see that it fulfils the con
dition (i) in Definition 1 of quasiconformality.

Next, similarly as in an analogous proof of the paper [34], we verify 
that there are fulfilled the remaining conditions which warrant quasicon
formality, that /(1,<)=1 (0 < t < T), as remarked before, and that 
<?(<) < exp f in the whole interval 0 < t T. In this way the proof of 
Theorem 6 is completed.

Added in proof. During preparation of this paper for print there has 
appeared a monograph on quasiconformal mappings by Lehto and Vir- 
tanen, and also some results on the parametric method and its applications 
due to Gehring, Reich and others. As some terms and notations become 
commonly used, it is worth to present them here to compare with those 
used by the author who was following mostly Shah Tao-shing’s termino
logy. The author hopes to adopt terms and notations presented below 
in subsequent papers.

(i) It is convenient to speak about the complex dilatation p (or x) of 
a quasiconformal mapping w = /(«) instead of the complex characteristics p 
and 0. The complex dilatation means the same as the function u in our 
paper.

(ii) The notation SQ (or SK) become commonly used instead of TJQ 
used in our paper. Sq seems to be more convenient in extremal problems
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than SK, because K can be misunderstood with complete elliptic inte
grals. Consequently, the author will adopt the notations Sq, 8*, (8)Q, 
(8),, SQ, 8*, SqR, Sq, 8^, (S)qR, (S)q, (S)',, 8qR, and # instead of 
UQ,U., (S)Q, (S)„ SQ, 8„ Vf, UZ, (S)qR, (S)rQ, (S)r„ S%R, «0 and 
respectively.
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Streszczenie
W pracy niniejszej przedstawiam metodę parametryczną dla odwzo

rowań quasi-konforemnych w pierścieniu w przypadku ogólnym (dla 
podklasy gęstej klasy wszystkich odwzorowań quasi-konforemnych w pierś
cieniu). Uzyskana metoda stanowi uogólnienie wcześniejszych wyników 
Shah Tao-shinga, Fan Le-le i moich. Metoda parametryczna jest podsta
wowym narzędziem badań w wielu zagadnieniach ekstremalnych. Ponadto 
praca zawiera twierdzenie nieopublikowane dotychczas, a podane przez 
Bielińskiego (twierdzenie 1), które zamieszczam w tej pracy za zgodą 
autora.
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Резюме

В работе представлен параметрический метод для квазиконфор
мных отображений в круговом кольце в общем случае (для плотного 
подкласса класса всех квазиконформных отображений в круговом 
кольце). Этот метод является обобщением результатов предыдущих 
исследований, проведенных Ся До-шином, Фан Ле-лем и автором. 
Параметрический метод является основным орудием для исследований 
многих экстремальных задач. Кроме того, в работе содержится нигде 
до сих пор не опубликованное доказательство одной теоремы Белин
ского (теорема 1), приведенное с согласия автора.


