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On the Region of Variability of the Ratio f(z,)/f(2,)
within the Class S of Univalent Functions

O obszarze zmiennosci stosunku f(z,)/f(z:) w klasie S funkcji jednolistnych

OG6 obnacTu Bcex BOIMOXKHBIX 3HAaueHwd f(21)/f(22) B kaacce S 0AHOTHCTHBIX BYHKUH

1. Notations. Statement of results

Let S be the class of functions f(z) = 2+ a,2%2+ ... regular and uni-
valent in the unit disc K = {z: |2| < 1}.

The determination of the region D(z,,2,) of variability of the ratio
f(2,)/f(2,), where z,, z, are fixed points of K different from 0 and from
each other and f ranges over 8, is intimately connected with some other
unsolved problems in the theory of functions, e.g. with the evaluation
of precise bounds of arg F'(z), where F(z) is a univalent function with
Montel’s normalization: F(0) = 0, F(z,) = 1.

Let A() = k%({) be the elliptic modular function (the Jacobian
modulus) defined by the equation { = iK(1—A1)/K(A), where K(4) =

1

of [(1—t)(1—At*)] "2dt is real and positive for 0 < A < 1, cf. [1], [5].

Let ¢(2) be an arbitrary branch of [2(z—2;)(2—2;) X (1—2%,2) X

X (1—%,2)]""*, defined inside the triangle [z, 2, 2.}, 2, = 0, and put
Sk g

(L.1) Ge= [ @0)at, H,= [ tp)d, k=1,2,
[] 0

where the integrals are taken along the sides of the triangle.

In this paper we show that all the boundary points of D(z,, 2,) are
Ssituated on the analytic curve I'(z,, z,) which is the map under A(l) of
the circumference y(z,, 2,):

e“G,—H,

(1.2) {=C(a) =14

dagy r ! 0
e'G,—H,

N

a < 2n;
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the sign in (1.2) has to be chosen 8o that y(2,, 2,) should lie in the upper
half-plane which is possible since the imaginary part of (¢“G,—H,)/
/(¢°G,—H,) never vanishes.

The univalent functions corresponding to the points 4(Z(a)) of I'(z,, z,)
have the form

18) S a) = ofp] [ e re— o+ 3 Oar+ 3 2uta)] +

+ e (a)+ ez(a)}v

where C is a constant,

1
(1.4) exla) = v(;s:a(a)), k=1,2,

and p has primitive periods £,(a), k¥ = 1, 2, equal to those of the hyperel-
liptic integral fe™'**({—e'")p({)d{ for paths situated inside K.

2. The differential equation of extremal functions

In order to obtain the differential equation of functions correspon-
ding to the boundary 0D(z,,z2,) of D(z,z,), we apply Schiffer’s varia-
tional method, cf. [2], p. 103, and the Lagrange multipliers.

Let feS and put F(z,p) = f(2)+ o€ [f(2) P [f(2) —f(u)]"", where
0 >0, ¢ is real and |u| <r < 1. If p is small enough, F(z, o) maps the
annulus r < |z| < 1 conformally on a doubly connected domain which
arises by removing from a simply connected domain B, the interior of
an analytic Jordan curve being the map of 2| = r under F(z, g). The
function f*(z) realizing the conformal mapping of K on B, so that f*(0) = 0,
has the following form

f& @ () )}
@O —fw 1@ (uf'(u)) —z]+

S BTN S T
ree | T ) Sl o

where the term O(p?) has a uniform estimation on compact subsets of K.
We have, moreover, -

(2.1)  f*(2) =f(2) {1 + €'

= log f*(z1) —log J(z1) +0(o% = log [ (z) —log f(z 2)+0( 3).

f(z3) f.( 2,) f( 2) f(zx) f( 2)
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Now, (2.1) yields

&) ocie| f(2) zf(z)/f(u) \P 1

. 1
@) et e —1) TR sy e ]
o (z)(f(u) ) 2 .
+o 5 (i) 1o O

Using (2.2) and (2.3) we obtain

J(z z) e"’[ f(w) ]’fﬁf’(zl) v 2of" (2,)
f(z 2) uf' (u) l f(z1)) u—2, J(z,)

. f(z1)  J(=z) ]-i-ge_""[ f(u) ]z[zlf’(zl) uz,
fz)—f(u)  f(zs)—f(u) uf (W) I L f(z)) 17z,

zof'(25) U2y ]

fz) 1—7 |

The boundary points of D(z,,2;) correspond to those functions f(z)

which yield stationary values of log|f(z,)/f(z;)| for fixed argf(z,)/f(2s).

Using the Lagrange multipliers we see that for the case of a local maxi-

mum of |f(z,)/f(2,)| under the restriction argf(z,)/f(z,) = f = const.,
there exists a real number A = A(B8) such that

(2.4) dlog ——

-+

= 99“,‘81(“7 21y 29) + ge“"Sz(u, 21y 2s).

f(z) J(z) J J(=z) f( 1)}
o|lo P! = §{R
. (06| J | + e i) = o w10 725+t 25 <0
1.e.
(2.5) R {(1—14)blog ?‘ 3 } <0.

Using the equality R(a+b) = R(a+bd), (2.4) and (2.5) we have
R{(1—12) [0€™® 8, (u, uy, 2,)+ oe " 8y(u, 2,, 2,)]} =
= m{gc"[(l—il)sl(u, 21y 23) + (1 +142) 85 (u, 2y, 2,)1} <O
for any o > 0 and any real ¢. This implies
(1—142) 8y (u, 2,, 2;) + (1 +14) 8y (u, 21, 2,) = 0
and putting z instead of u, we obtain

A ){[f(z) Yoty bt xSty

f' (2) f(z)) 2—2 f(zg) z—2,
f(z) B f(z,) } f(2) [ 4, f () -
T feo—f@  fe—fa) T ) FaE) AT ) T
£ (zaf (zz)) 22, 1_
f(z,) 1—2z, I
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The same equation holds for local minima of |f(2,)/f(z;)| under fixed
arg{f(z,)[f(z,)}. Put now

.0y 2 (21) : .o\ Zaf (%)
2.7 A= (1—12 : B =(1—14 .
A4l ( » f(z) : by f(zs),
(2.8) w = f(2), wp = f(2), k¥ =1,2.

The equation (2.6) takes now the following form

md_z\:/ Az B A2z, ____st, ) (1 —iA)w(wy— w,) o
\2 dw) \2—2, 2z—2z, 1—23% 1-—23, (w0, — ) (10, — w) '
resp

P(z)  (1—id)(w,—w,;) [dw)’
(2.9) ¥y w(w w,) (w — w,) \dz)
where
(2.10) P(z) = 4 ey | gl g

2—2, 1—2% z2—2, 1—2%

3. The form of P(z)

Considering for small, real 6 the function f*(z) = f(z¢'®), we obtain
the formula

fe _efe
f(2) f2)

Using (2.2) and (3.1) we have

f(z) [2J (2) zJ’(z,)
10 :
blog ]( 2) Y l f(zy) f(2s) ]

Hence (2.5), in view of (2.7), takes the form

(3.1) log 04 0(6%).

R{i6(A—B)} = F{6(B—A)} <0

for both positive and negative 6 which implies

(3.2) SA =SB,
or
(3.3) A—4 =B-B,

The same equation holds for local minima of |f(z,)/f(z,)| under fixed

arg {f(z,)/f (2,)}.
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We now prove that z P(z) is real on [2| = 1. The identity #(a+b) =
= .f(a—b) implies

{ Ae" Az, 6" }—J{ A Aze
i

—i0
L o A _ s
- 1-6"3 N l—z,e‘”’}

and similarly

{ Bé® Bz |
S = S (B),

—z,  1—¢%|
and therefore, in view of (2.9) and (3.2), we have

F{e"P(e'°)} = 0 for real 6.
Since
((A—A)— (B—B)]%,7,2°+ (lower powers of z)

P(2) = 3 s
(2—21)(2—25) (1 — 2,2) (1 — %,2)

.

(3.3) implies that P(z) has at most two finite roots. Besides, the principle

of reflection implies zP(z) == 2-1P(2-!), hence both roots of P(z) are
symmetric w.r.t. 2] = 1. Now, the r.h.s. of (2.9) does not vanish for
any zeK, so that P(2) # 0 for ze K and this means that both roots of
P(2) necessarily lie on |2| = 1.

We next prove that zP(z) has a constant sign on |2 = 1. Suppose
that |f(z,)/f(z,)| attains for a function feS a local maximum under the
restriction that argf(z,)/f(z,) is fixed and let I" be the boundary of f(K).
In view of (2.9) I' is a union of a finite number of analytic arcs. If wel
and { = @(w)ed K correspond to each other, then the function f* map-
ping K on a domain which arises by the displacement gp(w) of points
w on I" along the outward normal, satisfies according to G. Julia [3]
the following equation

L o
L SR ) p 1) s+ O,

(3.4) logm= o o5
()  2nJ f(z) (—

where p(w) is a real and continuous function of weI” which vanishes in
the neighbourhood of points for which ¢(w) ceases to be analytic, and o
is a real parameter. In view of (2.2) and (3.4) we have

(3.5)

flz)) 1 [af (2] $+2  2,f(2) (42
5 . » '
s f(z,) 27 }[[ flz)) -z f(ze) t— Z,J @' (w) % op (w)ds,,.
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Now, (2.5) and (3.5) imply

2 1
(3.6) R{(l—ii)élogﬁz; - Efcﬂ(zl gifr _B gizs) X
2 7 o | 2

X |¢’ (w) |*ep (w)ds, < 0

for the case of a local maximum. This means that

(3.7) ‘.?{A w— —B

for any real 6. Suppose, on the contrary, that the l.h.s. in (3.7) is negative
on an analytic are y, c I. Taking a continuous function p(w) which is
negative on the open arc y, and vanishes outside it on I", we obtain a po-
gitive variation in (2.5). At the same time this is an admissible variation
of f since negative values of p(w) involve a shrinking of f(K). On the
other hand (3.6) and (3.7) imply that the complementary set €f(K) has
no interior points since otherwise a function p(w) providing a -positive
variation in (3.6) could be constructed. Hence f(K) is a slit domain.
Now, we have for real 6

Ae® Azz, e 6042
%! i0 & : w}=m{A 0 1}

(4 —zl

and in view of (2.10) and (3.7) we see that R{e"’P(¢'®)} > 0 in the case
of a local maximum. Similarly R{e”P(¢”)} < 0 for those f(z) which cor-
respond to local minima. Thus we have proved that 2P(z) is real and
of constant sign on [2| = 1. This implies that both roots of zP(z) situated
on [z =1 coincide and P(z) has the form

0" (e—n)?

(3.8) P(z) = (2—2,) (2— 23) (1— 2, 2) (1 — Z,2)

where C is real and |5 = 1.
Using (2.9) and (3.8) we obtain the differential equation (3.9) of
functions which correspond to the boundary points of D(z,, 2,):

e~ (z—e ') _ C(1—id)(w,—1wy) (dw\’
2(z—2))(2—2) (1 — %,2)(1—2,2) w(w—1w,)(w—1w,) \ dz ]’

(3.9)

ia

(a, C, A are real constants, ¢ = z).
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4. Solution of the equation (3.9)

The equation (3.9) is formally identical with the equation (3.1), [4],
and we can adopt the argument used in [4] in order to solve (3.9).
With any real a we can associate the rational function

e—l'a (z_ eid)z

2(2—2,)(2—25) (1 — 2,2) (1 — Z;32)

(4.1) Q(2, a) =
a8 well as three complex numbers

(42)  Ax=Arla) = [e T P(—ep(t)d, k=0,1,2,
]

where ¢(z) is the branch of [2(z—2,)(2—2,)(1 —Z,2(1—%,2)]""* chosen so

that e~ (L —¢e"“)(L)d. > 0 on |£] = 1 for arg? increasing in the interval
(a, a+2x). Besides, 4, denotes here a loop joining % to z; (k = 0,1, 2;
2, = 0), i.e. a cycle consisting of a small circle C(z;, ¢) centre at z, des-
cribed in the positive direction and of a rectilinear segment described
twice and joining C(z, €) to 7 whose prolongation contains z,. The radius ¢
is chosen so that the only critical point of the integrand inside C(z, ¢)
is the centre. If the open segment (7, 2;) contains critical point of the
integrand, we replace suitable parts of (5,2z:) by small semicircles so
a8 to leave critical points on the left side, when passing from 7 to 2.
We put next

(4.3) Q) = Qi(a) = A;—4,, k=1,2,
and
(4.4) ® = B(a) =

where f§ = f(a) is defined by the equation
foa

(4.5) fsm5 (0— a) |6 — 2, |6 — 25| *d0 =
at2n

1 -
4 f sin - (0—a) 6% — 2, 6% — 2,|~'d0.
g

We have proved in [4] that J{2,(a)/2,(a)} # 0. Therefore we may
define the function

(4.6) t(a) = £25(a)/2)(a), 0 < a < 2m,

where the sign is chosen so that fz(a) > 0.
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Besides, we have also proved that the functions

(4.7) F(z,a) =p| [VQ(L, a)de|2y(a), 2u(a)|
O(ua)

are single-valued and univalent in the unit disc K for any real a and
any path of integration situated inside K.

Putting
(4.8) o(z) = [VQ(t, a)ds,
&a)
1
(4.9) ’ w = 4C (1 —id)(w, — w,) W + 3 (w0, + w,),

we see that the equation (3.9) may be brought to the form (dW /dv)* =
=4 W3—g,W —g,, where g,, g5 are constant and w = W = oo for v = 0.
Hence W = W(z) = p[v(2)|w’, »"']. It follows from the discussion of
sections 2 and 3 in [4] that W (z) represents a univalent and single-valued
slit mapping if and only, if the lattices m,w’ -+ myw'', m,2,+m,Q, are
identical. This means that W(z) = F(z, a), where F(z, a) is defined by
(4.7). In view of (4.9) we see that

(4.10) w = C,F(z, a)+ 0y = C,{F(2,a)+ ¢,(a)+ €5(a)},
where C,, C, are constant and

(4.11) ex(a) = p[-—;—.Qk(a)], k=1,2.

If f(2) is the function corresponding to a boundary point of D(z,, z,).
then the same consideration as that used in sect. 3, [4], yields

(4.12) f(21)[f(2e) = A[z(a)+1]

where A(t) is the Jacobian modular function and z(a) is defined by (4.6),

5. The proof of the main result

Theorem. If G4, H, (k = 1, 2) are defined by (1.1), then both circles
defined by (1.2) have no points in common with the real axis J& = 0.
If y(2,,2,) is this circle which is situated in the upper half-plane #¢ > 0,
then all the boundary points of the region of variability of the ratio,
{f(21)[f(25)} have the form A(£(a)), where {(a)ey(z,, 2,) and A(s) = k()
is the Jacobian modular function.

Proof. Suppose first that the points z,, k¥ = 0,1, 2, are not collinear.
Let (0k), k = 1,2, be the loop joining 2, to z., i.e. a cycle consisting
of two circles C(z,, 8), C(2;, 8) of small radius 4 and centres at z,, z,,
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both described in the positive direction and of a rectilinear segment
described twice and joining both circles so that its prolongation con-
tains z, and z,. The radius ¢ is 8o small that the circles C(z, d), k =
= 0,1, 2, have no points in common and are all contained in the unit
disc. In view of (4.12) it is sufficient to prove that

(56.1) A1+ 1(a)] = 2[((a)}

with {(a) defined by (1.2) after a suitable choice of sign. The prolonga-
tions of the segments [z, z],j, ¥k = 0,1, 2, divide the unit circle [z| =1
into six arcs. For 5 = ¢'° situated on four of them both loops (0k) are
homotopic to the system of two loops 4, 4, (defined in sect. 4) w.r.t. K

punctured at 2z, (j # 0, k). We have therefore [ = [e "*({—¢€")x
(0k)  (ok)

X@(&)dE = Ay— A, = 2, since after describing the loop 2; the integrand

changes the sign. Hence

1+ 7(a) = 1+ 824(a)/2,(a)

e [@(&)dé— [cp(s)dc
—1F f/f=14: (02) (62)

= 1 e_"‘G_,—_»Hz
(62) (01) e [@(&)dE— [ tp(&)dE ¢“q,—H,
(01) (01)

- = ¢(a)

and (5.1) i8 proved in this case.
If 7 = €' is situated on the arc of |2/ = 1 whose end points are deter-
mined by the rays [2,,2,], [2., 2], then the loop (01) is homeotopic to

the cycle 4,1+ 4,, hence f =A,—A4,= 09,. On the other hand the
(o1)
loop (02) is homotopic to the cycle i,+ 4,+4,— 4, w.r.t. K punctured
at z,. This implies ¢(a) =1F [/ [ =14 (4,—24,+4,)/(4,—A,)
(62) (61)

= (1+2,(a)/2,(a))2+ = [1+4 7(a)]+2. Since A(r) has the period 2,
(5.1) holds also in this case.

Finally, on the sixth arc the loop (02) is homotopic to the cycle 4.+ 4,
w.r.t. K punctured at z,, whereas the loop (01) is homotopic to the cycle

A+ A4,+4,— 4, w.ort. K punctured at z, so that
[ =4,—4,=20, f = A,—24,+4, = 2,—29,.

(02) (01)
We have
- Q,/9,
(5.2) fa)=1+ [/ | =14 2" |
(0-[)*(0—;) 1—-20,/02,

It #{Q,/02,} > 0, then T = 2,/Q,, and (5.2) takes the form &(a) =1 +
+17/(1—2t) = (1—17)/(1—27). Putting 1+v =, we have &(a) = (v—
—2)/(20—3) = (av+b)[(ev+d), where a =d =1 (mod 2), b =c=0
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(mod 2), ad—bc =1, which amens that (av+b)/(cv +d) is a modular
2

=4
3) (v)

transformation. The automorphic property of 1 implies }.(;_
v

and (5.1) follows.

If 5{Q,/Q,} <O, then 1 = — 2,/Q2,. We have in this case from (5.2):
¢(a) =1+7/(1+27) =1+ t/(1+27). Putting 1+ 7 = v, we obtain 14
+1/(1+2t) = (3v—2)/2v—1) which is another modular transformation.

3v—
Hence 4(v) = }.(

20—1
tinuity proves our theorem in the case of 2; and 7 situated on one straight
line. Since the automorphic transformations preserve the real axis, we
have always J¢(a) # 0 for otherwise we would also have Sft(a) =0
which is impossible as shown in [4].

) and (5.1) follows again. The one-sided con-
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Streszczenie

Niech 8§ bedzie klasg funkeji f(z) = 2+ a,2*+ ... regularnych i jedno-
listnych w kole jednostkowym i niech 0,2z,,2, bedg trzema réznymi
punktami tego kola. W pracy tej dowodze metodami wariacyjnymi, ze
wszystkie punkty brzegowe obszaru zmiennoéci D(z,, 2z,) stosunku f(z,)/
[f(z;) przy f zmieniajacych si¢ w klasie S leza na krzywej analitycznej
I'(z,, z,) bedacej obrazem okregu o réwnaniu (1.2), lezagcego w goérnej
péiptaszezyznie, poprzez funkcje modulows.

Pe3wome

ycrs S Oyner kaaccoM QyHkumit f(2) = 2+ ay22+... peryiaapHmIX
1 OJHOJIMCTHHIX B €IMHHYHOM Kpyre M nyctb 0, z,, z, 6yayT Tpu pasHhie
TOYKM 3TOro Kpyra. B 3T0it paboTe noKa3niBaeTcsa, YTO BCe IpaHMYHBIE
TOYKHM obnactu D(z,, z,) Bcex BO3MOKHBIX 3HAYeHUil oTHoweHuA f(2,)/f(2,),
ecin z,, 2z, PUKCHpPOBaHKLl, a f M3MeHAETCA B Kiacce 8, JieKaT Ha aHAIH-
TUYecKoil KpuBo#t I'(z,, 2;), KOTopad ABIAeTcA o6pa3oM Kpyra (1.2) Bepx-
Hel moJyniaoCKoCcTH mpu npeobpasoBaHun moaynAapHo#t pyHkumn HArobu.



