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Variational Formulae for Functions Meromorphic and Univalent

in the Unit Dise.

Wzory wariacyjne dla funkcji meromorficznych i jednolistnych
w kole jednostkowym

Bapuaunonnbie ¢popmMyanl 118 MepoMOPOHLIX H OJHOJMCTHBLIX

B EQHHAYHOM Kpyre QyuKmmi

1. Introduction.

Let U(p) be the class of functions f(2) = 2+ a,22+ ..., 2| < |p| <1,
meromorphic and univalent in the unit disc K which have a simple pole
at 2 =p, 0 < [p| < 1.

Let X2 be the class of functions F({) = {+ b,+ b,/{+ ... regular and
univalent for || > 1 and let Z(1/p) be the subclass of all FeX vanishing
at { =1/p.

The class U(p) was investigated by several authors, c¢f. Goodman
(2], Jenkins [3], Komatu [4], Ladegast [5], however no variational
formulae for U(p) have been given so for to the best of our know-
ledge.

In this paper we obtain variational formulae of Schiffer’s type for
the class U(p) and give some applications of these formulae.

2. Main results

_ Theorem 1. If feU(p) and z,, 2y, ..., 2, are arbitrary points of K,
different from p, then for arbitrary, fixed complex numbers 4,, 4, ..., 4x,
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a positive 4, can be chosen so that for a = — p/res,f(z) and for all 1¢(0,
2> the functions:

T2(2)f* (=)
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1y (2) k+p]
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1 O - f’(z,,) +zzk 14+pz .
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@ @ =f(z)+l[f(z)—zf’(2) : taf(e) ot P ]+ow>,

where |2, =1 belong to U(p).
Besides, if the complementary set ¥f(K) contains interior points
Wy, Wqy ..., Wy, then the function

3) f“(z)=f(z)—iz.‘h.uf:( ’f( 5 o,

also belongs to U(p).

The terms 0(4%)/A? have uniform bounds on compact subsets of K
punktured at p.

Proof. If { = 1/z, then obviously f(z) e U(p) if and only, if [f(1/£)]-! x
X ¢X(1/p). Now, according to H. G. Shlionsky [7], the following varia-
tional formulae for the class Z hold:
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where W;, {x, k =1,..., m play an analogous role a8 wy, z; resp., and

(&5 =g 1
1 PR e . AJLYE
If F({)eX(1/p) and a = p-F (;}, then the following variational
formulae for the class X'(1/p) can be easily derived from (1')—(3’):

(1) F‘(«:)=F(c)+x§ A e
;2 e )):{Fm—cﬁ"m Ry
+% A (;)—) |- wa g:ii P +C"] Fou),
(2) ) = l"(t)+1§ Tﬂ[—l%cl_ﬁ] +o(),
(3  F(Q)=F()—4 [F(C)—CF 0 - i%; §°]+0(A*>,

In view of (1'")—(3") and of the relation:

s =[#(3)] v

we obtain (1) — (3). Obviously a = —p/res,f(2).

3. Applications

Let Up be the class of functions f(z) = 2+ az22+ ... meromorphic
and univalent in K which have a simple pole at a point of the circumference
2] = g. Obviously U(p) = Up if and only, if |p| = o. Besides, f(z)e Up
implies e **f(2¢'*)e Up for any real g. Therefore the maximal absolute
values of the n-th coefficient for U(p) and U(p) (|p| = o) coincide. It
is well known that for f(z) = z+a,2*+ ... eU(p), we have |a;| < |p|+
+|p|~! ef. Komatu, or Ladegast. In connexion with a conjecture of
A. W. Goodman [2]. J. A. Jenkins showed [3] that, if the Bieberbach's

R e A
n-1

Conjecture holds for all k < N, then |a,| < =

for any

" < N and any f(z)e U(p).
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The variational formulae given in sect. 2 enable us to find the diffe-
rential equation for functions yielding the maximal value of a, within
the class Up and to prove the inequality |a,| < [p|+ |p|".

Theorem 2. The function f(z) yielding the maximal value of a, within
the class Uo satisfies the following functional equation

-1
(4} (~f( )) 2 {f‘. k({g}—}—" e {" l)“u"’ %““Cakz"_k'l'kﬂkzk-ﬂ)_

f(2) z)

a (l

fz(‘-)l’u

2z

where |p| = 9, a = —p/res,f(z), and {f,({)}, denotes the n — th coeffi-
cient of the power series expansion of f,({) at { = 0.

The functions satisfying (4) map K onto the w — plane slit along
a finite number of analytic arcs, which are the integral curves of the
following equation:

n-1

k+1
(5) (= (sz ! ,m((i;}” =o.

Proof. We may suppose without loss in generality that a, > 0.
We first prove that the complementary set €f(K) has no interior points.
Suppose on the contrary that w, is an interior point of ¥f(X). Using (2)
with m =1 we obtain

. f2 z)wl ]
(6) a,’ = — 3 +0(A2).
w,—f(2) )
n—-1 k41
H" 2)in .
Since the coefficient of w; " f{ Ul = ) if——kf—z)—} is equal 1,
wx—f(z) in e W
this expression is different from 0 if w, is suitably chosen. Hence
we can determine A, and A > 0 so that |a}*| > a,, where a," denotes

the n — th coefficient of f**(z). However, thls contradicts the extremal
property of |a,|.

We now apply the formula (1) with »n = 1. After some calculations
we obtain the equality

2f'(2) )" ‘f*{:)-f‘tz)
iz 1 () —f(2)
+ Cz! z

Hre 2 —alE p—a g

(7)

) - _2a..+{:f't-:) Tl

_‘sln

TP
pz

~
~ g



Variational formulae for functions meromorphic and univalent... bl

which can be brought easily to the form (4). Obviously the r.h.s. in (7),
and also in (4) is real on |2| = 1. The formula (3) gives

® e —a,,+a[a,. {Cf & "“” z“” {f*(:)}.,]+0(v)
In view of the extremal property of a, we ha.ve
(9) 92['?“’ e @ z"“} ] < —ay

~o_ n

for any z, with |z = 1. We see therefore that the r.h.s. in (7) and also
in (4) is non-negative on |2| = 1 and has a8 a rational function of z only
even zeros on |z| = 1. Let P(z) be the r.h.s. in (4). The equation (4) takes
now the same form as the analogous equation for the class S:

# @\ O O
= (f(z) Z e L@

Hence we deduce that the boundary of f(K) is a finite union of analytic
arcs. Putting z = ¢, t = [VP(¢")d0 we obtain, in view of (10) the
differential equation of the boundary in the form (5). The theorem 2
is proved.

Let us now consider the particular case n = 2. The equation (2) takes
the following form

{zf(z)\ a3,
f@ ] )~ ® 2 22—p 21—pz

Multiplying both sides in (11) by 2z and comparing the coefficients of
Zz we obtain a = a. Hence (11) takes the form

(11)

1: zf(z)) X o L et
W |y g bt el )

After integrating the equation (5) we can state that the image arcs
of 2| = 1 under w = f(z) is either a straight line segment if the integra-
tion constant ¢ = 0, or an arc of a cardioid which does not contain the
double point at the origin, if ¢ +# 0. We have f'(z) = 0 at the end points
of the image arc. Hence the r.h.s. in (12) has double zeros at the points
of |z| = correspondlng to the end points of the image arc. Putting
2= ¢ = |p|e", we obtain

—_ 2
(13) a,+2c08p—a - - (1—ip?* 0
1+ |pl2— 2|p| cos(¢— y)
(14) sing — a(1— |p|?) psin(p—y)

[1+ pl*—2(plcos(p— )]
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If sin(¢p—p) = 0, also sing = 0, and in view of (13) we obtain for the
extremal case

) | 1—p?
(15) a=p+—, a= s 0<p<1l.

If sin(p—y) # 0, we obtain after inserting (14) in (13)

sing Sin(2<}’—'l’)
ot () s
sin (¢ — y) Ip sin(p—y)

1
and it is easy to see that a, < |p|+-— in this case since a, < singx

[P

|1 lpl) —2cosp. Therefore (15) holds for the extremal case and
(15), (12) yield

1\ 2 WLLTyata
(16) T mr o

)

After integrating both sides we see, in view of f(p ) = oo, that the extre-

2
mal function has the form f(z2) = ————7F———

= +—)z+z’
(r+3
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Streszczenie

Przedmiotem noty jest wyprowadzenie wzoréw wariacyjnych typu
wzor6w Schiffera dla funkeji meromorficznych i jednolistnyech w kole
jednostkowym oraz zastosowanie ich do problemu wspélczynnikéw.

Pesome

[TpexmeToM 3aMeTKM ABIAETCA BLIBOJ BapHalMOHHLIX (OpMYyJa THNA
llIndpdepa nna ¢GyHKunit MepoMOpHLIX 11 OXHOIUCTHBIX B €IUHUIHOM
Kpyre M NIpHUMeHEeHUe MX K mnpobieMe Ko3PULHMEHTOB.






