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Заметка о моей работе: Об однолистных функциях с двумя заданными значениями

1. Introduction, notations

A mistake committed in the formula (4.14) of [2], where the factor 
—z2 should be taken with the opposite sign, vitiates the argument 

of sect. 5 leading to the evaluation of a because the quadratic equation 
for r] = eia analogous to (5.3), [2], reduces to the identity 0 = 0. Besides, 
the discussion concerning the single-valuedness of the extremal function, 
as well as its dependence on the homotopy classes of curves determining 
the periods Qk was incomplete, so that some supplementary remarks seem 
to be necessary. These drawbacks do not, however, affect those state­
ments of [2] where the results of sect. 5 are not used and even the form
(2.5), [2], of the univalent function maximizing the ratio |E(z1)/.F(z2)| 
remains true after replacing a by the right value a which can be found
as follows.

With any real a«[0,2jr] we can associate the function

(1.1) «?„, ,
»(«—«l)(»—«»)(1—«««)

as well as three complex numbers

(1.2) A* = Ak(a) = f e-ia'2(C-eia)<p(C)dC, * = 0,1,2,

where (p[z) is the branch of [z(z — z1)(z—z2)(l—z1z)(l—z2z)]-1/2 chosen 
so that e~ia'2(C-eia)^(C)dC > 0 on |f| =1, for argf increasing in the
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interval (a, a + 2ji). Here A* denotes a loop joining t] = eia to zk,k = 0,1,2, 
which are three different points of the unit disc, z0 — 0. We call a loop 
joining y to zk a cycle Afc consisting of a small circle C(zk, e) centre at zk 
described in the positive direction and of a rectilinear segment described 
twice and joining C(zk, e) to t] whose prolongation contains zk. The radius 
e is chosen so that the only critical point of the integrand inside C(zk, e) 
is the centre. If the segment (?/, zk) contains critical points of the in­
tegrand, we replace suitable parts of (r],zk) by small semicircles so 
as to leave critical points on the left side, when passing from j? to zk.

We put next

(1-3) /2^ = £2^(<i) — A^—1 ? 2 j
and

(1.4) & = (a) = eifi,

where /3 = /3(a) is defined by the equation

(1.5) f • 1 
J 8m 2 (0-a)|e<fl-z1r,.|eifl-z2r1d0 =

a

a+2" •,
= 1 sin—(0 —a)|c‘9—z2|-1d0.

J 2a

Hence r] — eta am1 ft = eip divide the circumference |z| = 1 into two
arcs with common end points and of the same length 1(a) in the metric 
IQ (s,«)!*'2’1^1- If

(1.6) t = r(a) = T IAa(a)/I2i(n),

where the sign is chosen so that 3(r) >0, then the right value a maxi­
mizes the expression |A(t(a) +1) |; A(t) denotes here the elliptic modular 
function (the Jacobian modulus) defined by equations:

r = iK(l-l)/K(k),

KW = /[(l-<2)(l-A<2)]-*'2dt, 
o

where K(h) is real and positive for 0 < A < 1, cf. [3], p. 318.
If p(® | fi2) is the Weierstrass’s (■) function with periods 
then the functions

( /l Q(^T)dC I f31(a),I22(a)j 

•(»)
(1.7) «) = P
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are single-valued and univalent in the unit circle K for any real a and any 
path of integration situated inside K. The extremal function yielding 

• the maximum fc(Zj, z2) of the ratio |F(z1)/F(z2)| within the family of func­
tions F(z) regular and univalent in K and vanishing at the origin, has 
the form

(1.8) /(«) =O1J’(«,5)+<7> =

= f t/Q(C,i№+±G1(Z)+
' 1 0

+ |-f22(a)J+e1(a) + e2(a)|

where

(1-9) e*(5) = k =1,2,

p has periods Z31(a), Z32(a) and Ck, C2 are constant. The periods £?i(a), 
£?a(a) may be replaced by another pair of primitive periods coja), 
w2(a), with «i(a) real and positive.

Besides, the map of K under /(z) is a slit domain with the slit arising 
by a homothety from the map of a segment [0, Z(a)] of the real axis 
under p(® | w1, to2), where col is real. Finally

(1-10) fc(zn z2) = |2(-r(a) + l)j.

2. The properties of the integral f t Q(£, a)d£
«(a)

We first prove that r(a) as defined by (1.6) cannot be real for any 
ae [0, 2ti).

Similarly as in [4], p. 321, we see that the values I = I(r) of the
Abelian integral {e~iali(£ — eia)<p(Z)dZ taken along a closed curve P start- 

r
ing at t] = eia and situated inside K, have the form

(2.1) I = 1^) = y^kAk
fc-0

where /j.k are integers which can assume arbitrary values for r suitably 
chosen and Ak are defined by (1.2). There are two possible cases: either 
all Ak are collinear (in this case all the values I lie on a straight line 
through the origin), or there exists a „lattice” of parallelograms cover­
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ing all the plane such that to each corner point w there corresponds 
a curve r with w — 1(1"). On the other hand we have also (cf. [4], p. 323)

(2.2) I == eA.0-j-
where e — 0,1 and wtlf m2 are integers. Hence, if Q2 are collinear, 
the values I necessarily lie on a straight line through the origin and this 
means that also Ao, £?2 are collinear. Now, the circumference |«| = 1 
may be deformed continuously into a system of three loops After 
running around zT on we come back to r) with the opposite sign of 
<p(z), hence 21(a) = Aj —A+Ai = (Aj — Ao) — (Ak—A0) + (A,—A„)+Ao. 
Here and in what follows j, k, I are supposed to be three integers different 
from each other and taking the values 0, 1, 2; z0 = 0. Therefore
(2.3) 21(a) = >0,
where the signs depend on the relative position of y and zk. This implies 
that all the numbers Ao, £2lf i)2, when collinear, must be real. In absence 
of poles of order higher than 1, after removing from the unit disc K the 
trajectories of the quadratic differential Q(z, a)dzi emanating from poles 
and zeros, we obtain a ring domain. Thus there exists a trajectory 7* 
of Q(z, a)dz2 joining rj to zk and also a trajectory joining zf to zt. The 
orthogonal trajectory Pj of Q(z,a)dz2 starting at Zj attains dK Tk 
and for a cycle which can be shrinked continuously into Pj plus a sui­

table arc of dK Tk emanating from rj, we have — |3l(P)| >0 since
2

this gives the length of Pj in the metric \Q(z, a)|1/2 \dz\. Hence ^(a), 
&2(a) cannot be both real and this proves that 3r(a) 0 for any real a.

Let now I0(z), zeK, be the value of fe~la,2(£ — eta)<p(£)d£ taken along 
the segment [y, z] with the points zk possibly omitted along small semi­
circles. For any path joining r) to z and situated in K we have either

B

(2.4) f e-^C-e^fOdC = +

or
B

(2.5) f e-iai2(l;-eia)q>^)d^ = A0-I0(z) + m1Q1+m2Q2
z z

where wi2 are integers, cf. [4], p. 324. Now, / = 1(a) + J and using 

this, (2.3), (2.4) and (2.5) we see that

(2.6) f c-<a/2(C-e<a)^(f)dC = ^[l(a)-I0(z)]+m1Qi + miQt,
«(<■)

where ^(Q^/iii) 0.
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This implies that the functions F(z, a) as defined by (1.7) are singlc- 
-valued and regular in K for any real a.

We now prove that the periods 0j(a), 0a(a) may be replaced by 
another pair (^(a), <oa(a) of primitive periods with <ox(a) real.

There are two possible cases.
(i) A trajectory y separating dK 1 \ from the trajectory rfl joining 

zk to zt can be deformed in a continuous manner into a system of two 
loops Ay, Az joining to z} and zt resp. Since (p(z) changes the sign after 
running around zt, we have

(2.7) f ==F (Ay—A,) = T (Ay-A0)-(A,-A0)
y

= a real number

and this means that one of the numbers — 02 (k = 0), 0X (j =1, 
I — 0), 02(j = 0,1 = 1) is real. In the first case we may put £ox = i}1 — Q2, 
ma = Q2 and so we obtain the same lattice of periods with one real 
period.

(ii) If the trajectory y cannot be continuously deformed into a system 
of loops A*, Aj, we have

(2.8) fa)dC = A,-2Ak+At

= (Ay—A0) + (Aj—A„) — 2(Ak—A„)

= a real number

This means that one of the following numbers is real: .Qx + fl,, (k = 0), 
20j —02 (k = 1), 20a —0j (fc = 2). Putting — 0x4-02, o>2 = —0J 
«i = 201-0a, ma = 0j5 wx = 20a-0x, wa = -0a we obtain in each 
case the same lattice of periods with oq real. We may suppose that the 
real primitive period &>x is positive and then it represents according to 
(2.7) and (2.8) the length of y in the metric \Q(z, a)|1/2|dz|.

In all cases considered there exists another primitive period coa of

the form wa = 0y, j = 1,2, and — |30yl is the length of arcs of orthogonal 
2

trajectories joining to dK Tk.
We now prove that the functions F(z, a) defined by (1.7) are single 

valued and univalent in the unit circle.
We find on trajectories separating /p from dK Pk points whose 

distance from the orthogonal trajectory starting at d and attaining 

measured in the metric |<?(2, a)|I/2|A?| along trajectories is equal 

We obtain in this way an orthogonal trajectory 1\ emanating from zk.
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Now, open arcs of trajectories sweep out the domain K — (rk rk)

and each arc is mapped under v(z) = f a)d£ on an open straight

line segment < — 3« — const in a biunivoque manner.
2

Thus the mapping v(z) = a)d£ carries 1:1 the unit disc with
« „

removed closed arcs rk, rn, rk into the rectangle

(2.9) — — a»! < SR® <ico1,

where u>l is real and positive and the lattices + wi2co2 » WjPx+wijÆa
are identical. Since fp(v | cq, coa) is an even elliptic function of order 2, 
it is univalent in the rectangle (2.9). This and the formula (2.6) imply 
that F(«,a) are functions regular and univalent in the unit circle for 
any real a. Besides, the map of K under F(z, a) is a slit domain because 
p takes in the closure of the rectangle (2.9) every value. For zedK, v(z) 
is real, hence the slit is the image of [0,1(a)] under F(z, a).

3. Determination of à

As shown in [2], the univalent function w =f(z) for which \f(z1)lf(z2)\ 
= sup \F(z1)/F(z2)\,the least upper bound being taken with respect to 
functions F(z) regular and univalent in the unit circle and vanishing 
at the origin, satisfies the differential equation

(3.1) Q(2, a)
C(wa —Wj) IdwV

w(wl — w)(w2 — w) \dzl

where G is a real and positive constant, a is real, wk = f(zk), k =1,2, 
and Q(z, a) is defined by (1.1). Besides, f(z) maps K on the w-plane slit 
along an analytic arc joining /(?/) to f(0) — oo. Putting

9
(3.2) v(z) = f a)dC,

♦(«)

(3.3) w = 4C(w, — wx) W + (wx + wa),
o

we see that (3.1) is equivalent to (dW/dv)2 = ‘tW2 — g2W — g3, where 
g2, g3 are constant. Since W = oo for v = 0, resp. z = 0(a), we have 
necessarily W(«) = @(v(z) | co', co”). It follows from the discussion of 
sect. 2 that W (z) represents a univalent and single-valued slit mapping
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if and only, if the lattices + are identical. This
means that W(z) = F(z,a), and hence f(z) — C1F(z, a)+C2 where C\, 
C2 are constant. Putting z = zk in (2.6) and using the equality Ak = 2I0(zk), 
we obtain for k =0,1,2

*k r 1 "I
(3.4) J V'^UTa)^ = T ll(a) —— +m1£?1+wt1P3

#(a)

In view of (2.3) we see that

r — 1(3.5) J VQ(Z, «)dC =-(Tf21Tf2a) + Wi^j + »ta^2,

or 0 = /(0) = +Ca = CiC3(«)+<\> where

(3.6) e3(a) = p^(f21(a) + f23(a))j = —cja) —e2(a).

Thus f(z) has the form

(3.7) /(«) = C1{F(z, a) — e2(a)} = Ck{F(z, a)+e1(a) + e3(«)}

where a is a real and Cx a complex constant. From (3.7), (1.7) and (3.4) 
we have for k y=l, k,l = l,2: /(«*)= C1|p^(a) — — AJfcj—e3(a)j and 

using (2.3) we obtain f(zk) = C, jp^l(o)—— — — (jlfc—A0)^j —c3| —

= 01{p[|(Tf31Tf23)-|^]-c3(a)} = (\[M«)-

— e3(a)]. Hence

(3.8) /(«i)//(2a) = [««(“) —«8(«)]/[«i(«)-^(«Ji­
lt is well known, cf. e. g. [1], p. 178, that the expression (e3—e2)l(e1 — e2), 
where ek are defined by (1.9) (with a instead of a) and (3.6) is equal to 
the Jacobian modulus 2(t), t being defined by (1.6). Hence (3.8) takes 
the form /foV/fo) = A(t)/[A(t)-1]. Putting a>k = Qlf «» = Qi+Q* 
we obtain another pair of primitive periods with a)2lto1 =1 + t. 
If Ek = k = 1,2, E3 = p[|(«,i+«>a)], then A(1+t) = (E3-

■®a)/(^'i—E2) = (e3 — e2)lei ea)‘
In view of (3.8) we see that \f(zi)lf(z2)\ = |x(-r(a) + l)| and hence a 

must be chosen so as to maximize the latter expression. This implies
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(1.10) and the form

(3.8) f(z) = C^F^z, a) + e!(a)+ea(a)]

of the extremal function. We can eliminate &(a) from (3.8) deforming
the path of integration so that it passes through the origin. We have 

г 0 z
f = / + J and in view of (3.5) we obtain the second form of the 

#(") #(a) 0
extremal function as given in (1.8).

We have 9?{т'(а)А'(т + 1)/А(т+1)} = 0 in the extremal case, and 
using this and the identity

A(t+1) = -163/7(l + 32n)8(l-32n-1)"8,
n—l

where q = e**’, cf. [3], p. 319, we can easily obtain a transcendental 
equation for a.
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Streszczenie

W pracy tej dokonano modyfikacji niektórych wyników pracy po­
przedniej [2], będących konsekwencjami równania (5.3). Kównanie to 
zostało wyprowadzone ze wzoru (4.14) w pracy [2] ,w którym czynnik 
z1 — z2 został omyłkowo wzięty ze znakiem przeciwnym.

Резюме

В этой работе дается модификация некоторых результатов ра­
боты [2] будущих следствиями уравнения (5. 3), которое получилось 
из формулы (4.14) в работе [2], где умножитель г,—г2 оказался 
ошибочно взятый с обратным знаком.


