ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN — POLONIA

VOL. XV, 6

SECTIO A

1961

Z Katedry Matematyki Wydziału Mat.-Fiz.-Chem. UMCS Kierownik: prof. dr Adam Bielecki

ZDZISŁAW LEWANDOWSKI

Starlike Majorants and Subordination

Majoranty gwiaździste a podporządkowanie

Звездообразные мажоранты и подчинение

1. Introduction. This paper is a continuation of an earlier note [3] dealing with the connexion between majorization and subordination and we will use some definitions and notations introduced in [3]. The aim of this paper is to give a complete solution of the problem dealt with in [3] for the particular case of starlike majorants. We will prove the following

Theorem A. Suppose $f(z)=a_1z+a_2z^2+\ldots$, $a_1\geqslant 0$ and $F(z)=z+A_2z^2+\ldots$, are functions regular in the unit circle C_1 , (|z|<1) such that $|f(z)|\leqslant |F(z)|$ for $z\in C_1$, and suppose moreover that F(z) is starlike with respect to the origin (i. e. $F\in S^*$). Then for every ϱ , $0<\varrho\leqslant R^*$ we have $f(C_\varrho)\subseteq F(C_\varrho)$, where $C_\varrho=\{z\colon |z|<\varrho\}$, and R^* is the unique real root of the equation $x^3+x^2+3x-1=0$. The number R^* is best possible and does not depend on f, or F.

This theorem can be considered as a converse of the following result due to Golusin: suppose $f(z)=a_1z+a_2z^2+\ldots$, $a_1\geqslant 0$ and F(z) are regular in C_1 , $F\in S^*$ and $f(C_1)\subset F(C_1)$. Then $|f(z)|\leqslant |F(z)|$ for $z\in C_{r^*}$, where the constant $r^*=\frac{1}{2}(3-\sqrt{5})=0,386\ldots$ is best possible [1]. This paper contains the proof of the first part of Theorem A. The proof of the second part will be omitted here because it is contained in [3], where for any $R>R^*$ two functions f, F are constructed which satisfy all the hypotheses of Theorem A apart from $f(C_R)\subset F(C_R)$. Theorem A could be restated in a slightly more general form as follows.

Theorem B. Suppose $f(z) = a_1z + a_2z^2 + \dots$ and $F(z) = A_1z + A_2z^2 + \dots$ are regular in C_1 , F being univalent and starlike w, r, t. the origin in C_1 , $\arg a_1 = \arg A_1$, unless $a_1 = 0$, and $|f(z)| \leq |F(z)|$ for $z \in C_1$. Then $f(C_\varrho) \subseteq F(C_\varrho)$ for any $0 < \varrho \leq R^*$. R^* does not depend on f or F and we can take as R^* the unique real root of the equation $x^3 + x^2 + 3x - 1 = 0$. Then R^* cannot be replaced by any greater number.

The Theorem B can be obtained from the Theorem A by a suitable homothety and rotation.

2. The domain Ω_r and the classes N(a), N.

Let C_r^0 be the boundary of C_r and Ω_r ($0 \le r < 1$) a domain whose boundary consists of the left-hand half of C_r^0 and two circular arcs symmetric to each other w.r.t. the real axis, intersecting each other at z=1 and touching C_r^0 at $z=\pm ir$.

A function $\omega(z)$ regular in C_1 is said to belong to the class N(a), $0 \le a \le 1$, if $\omega(0) = a$ and $|\omega(z)| \le 1$ in C_1 . Let N be the union of all classes N(a), whereas a ranges over (0,1). In view of Schwarz's lemma

$$\left|\frac{\omega(z)-a}{1-a\omega(z)}\right|\leqslant |z|\quad \text{ for any } \quad \omega \in N(\alpha).$$

This means that for fixed r and $|z| \leq r$ the values of $\omega(z)$, $\omega \in N(a)$, are inside the disc

(2)
$$|w-a\frac{1-r^2}{1-a^2r^2}| \leqslant r\frac{1-a^2}{1-a^2r^2}.$$

For any real φ the functions

$$\omega_{\alpha}(z) = (ze^{i\varphi} + \alpha)/(1 + \alpha ze^{i\varphi})$$

correspond to the points on the boundary of the circle (2). If ω_1 , $\omega_2 \in N(a)$, then $\lambda \omega_1 + (1-\lambda) \omega_2 \in N(a)$, $(0 \le \lambda \le 1)$ and this implies that the values of $\omega(z)$ (z ranging over \overline{C}_r and ω varying over N(a)) cover entirely the circle (2). If a ranges over (0,1) the envelope of all the circles (2) is the boundary of Ω_r (see e. g. [2], p. 410). Hence we have

Lemma 1. Suppose that z ranges over \overline{C}_r (r fixed, 0 < r < 1) and ω is changing within the class N. Then the points $\omega(z)$ cover the closure of Ω_r .

3. The domain S_r^* .

According to [4], p. 123 for any fixed z_0 , z_1 in C_1 the domain of possible values of $[z_1F(z_0)/z_0F(z_1)]^{\frac{1}{2}}$ for F ranging over S^* is the circle with the boundary $w = (1-z_1e^{it})/(1-z_0e^{it}), -\pi \leq t \leq \pi$. This implies that

the values of $[F(z_0)/F(z_1)]^{\frac{1}{2}},\ |z_0|=|z_1|=r<1$ cover the disc $K(\varphi)$: $\zeta=e^{i\varphi/2}[(1-re^{it})/(1-re^{it}e^{i\varphi})], \qquad -\pi\leqslant t\leqslant\pi,$

where $\varphi = \arg(z_0/z_1)$. The equation of the circle $K(\varphi)$ has also the form

$$\left|\frac{\zeta - e^{i\varphi/2}}{\zeta - e^{-i\varphi/2}}\right| = r.$$

We now determine the envelope of the circles (3) for varying φ . (3) has the form

$$\Phi(\zeta,\varphi) = \Re\left\{\log\frac{\zeta - e^{i\varphi/2}}{\zeta - e^{-i\varphi/2}}\right\} - \log r = 0.$$

The equation $\partial \Phi/\partial \varphi = 0$ gives

$$\mathcal{R}\{e^{i\varphi/_2}[(\zeta-e^{-i\varphi/_2})/(\zeta-e^{i\varphi/_2})]\}=0$$

and in view of (3) we obtain the equation of the envelope:

(4)
$$e^{i\varphi/2} \frac{\zeta - e^{-i\varphi/2}}{\zeta - e^{i\varphi/2}} = \pm \frac{i}{r}, \quad 0 \leqslant \varphi \leqslant 2\pi.$$

Taking the sign ", +" we obtain the circumference L_r with the centre $S(r)=2ri/(1-r^2)$ and the radius $\varrho(r)=(1+r^2)/(1-r^2)$ and taking the sign ", -" we obtain the circumference L_r' symmetric to L_r with respect to the real axis. Both circumferences intersect at -1 and 1 (since $|1-S(r)|=\varrho(r)$) and enclose two closed discs K_r and K_r' respectively. Therefore all the possible values of $[F(z_0)/(F(z_1)]^{\frac{1}{2}}]$, whenever $F \in S^*$, and z_0 , z_1 satisfy $|z_0|=|z_1|=r$ cover the set being the closure of the symmetric difference: $K_r : K_r'$ of both circles K_r , K_r' . Hence the domain S_r^* covered by $F(z_0)/F(z_1)$ when z_0 and z_1 are moving on C_r^0 and F is varying within S^* is identical with the set of all ζ^2 , where ζ is ranging over the closure of $D_r = K_r - \operatorname{Int}(K_r')$, resp. over the upper half of $K_r : K_r'$. Let a be the least distance of a point on L_r' from the origin and let $\eta = \eta(a, \varphi)$, $0 \le \varphi \le \pi$ be the equation of the upper part of L_r' in polar coordinates.

Corollary 1. $\eta(a, \varphi)$, a being fixed, is a decreasing function of φ in $\langle 0, \pi/2 \rangle$ and an increasing function of φ in $\langle \pi/2, \pi \rangle$, moreover $\eta(a, \pi/2) = a$

It is easy to see that the distance of S'(r) from the origin is equal $(1-a^2)/2a$ and hence from the triangle OS'(r)A we have

(5)
$$\eta(a,\varphi) = \frac{1}{2a} \left\{ \left[(1-a^2)^2 \sin^2\varphi + 4a^2 \right]^{\frac{1}{2}} - (1-a^2) \sin\varphi \right\}.$$

Annales t. XV, 1961

We now prove the inequality

(6)
$$\eta(h,\varphi) \leqslant \eta^2 \left(\sqrt{h}, \frac{\varphi}{2} \right) \text{ for any } 0 \leqslant \varphi \leqslant \frac{\pi}{2}, \ 0 < h < 1,$$

with the sign of equality for $\varphi = 0$ only.

It follows from (5) that (6) is equivalent with

$$\begin{aligned} & 2 \left\{ \left[(1 - h^2)^2 \sin^2 \varphi + 4h^2 \right]^{\frac{1}{2}} - (1 - h^2) \sin \varphi \right\} \leqslant \\ \leqslant & \left\{ \left[(1 - h)^2 \sin^2 \frac{\varphi}{2} + 4h \right]^{\frac{1}{2}} - (1 - h) \sin \frac{\varphi}{2} \right\}^2, \end{aligned}$$

and this gives

(8)
$$(1-h)^2 \sin^2 \frac{\varphi}{2} + 4h \leqslant 4(1+h)^2 \cos^2 \frac{\varphi}{2}.$$

The left-hand side attains its greatest value $l = \frac{1}{2}(1-h)^2 + 4h$ in $(0, \pi/2)$ for $\varphi = \pi/2$, whereas the least value of the right-hand side in $(0, \pi/2)$ $p = 2(1+h)^2$ satisfies the inequality l < p, so that (8) and also (6) are proved.

Besides, for 0 < h < h' < 1 we have evidently

(9)
$$\eta(h,\varphi) < \eta(h',\varphi)$$
 for any $\varphi \epsilon(0,\pi)$

and, moreover

(10)
$$\eta(h, 0) = \eta(h, \pi) = 1$$

Let now G_a (0 < $a \le 1$) be the domain containing the origin and enclosed by the curve Γ_a :

(11)
$$w = \eta^2(a, \theta/2)e^{i\theta}, \quad 0 \leqslant \theta \leqslant 2\pi$$

It follows from (9) that for a < a', $G_a \subset G_{a'}$, and in view of (10) we have

$$(12) \bar{G}_a - \{1\} \subset G_{a'}$$

We now prove

Lemma 2. The boundaries of Ω_{a^2} and G_a have no points in common apart from $-a^2$ and 1.

Proof. In view of Corollary 1 the point $-a^2$ is the nearest point on Γ_a from the origin. Hence the closed circle \overline{C}_{a^2} is contained in G_a apart from the only point $-a^2$ where it is touching Γ_a from inside. The arc L'_{a^2} being a part of the boundary of Ω_{a^2} has the equation $w = \eta(a^2, \varphi)e^{i\varphi}$,

 $0 \leqslant \varphi \leqslant \pi/2$. It follows from (6) with $h=a^2$, and from (11) that this arc, the point w=1 excluded, lies entirely inside of Γ_a . Since G_a is symmetric w.r.t. the real axis, the remaining part of the boundary of Ω_{a^2} also lies inside of Γ_a and this proves our lemma.

In view of (12) we obtain

Corollary 2. $\Omega_{a^2} - \{1\} \subset G_{a'}$ for $0 < a < a' \leqslant 1$.

It is easy to see that $a=a(r)=(1-r)/(1+r)=\varrho(r)-|S(r)|$. The domain $G_{a(r)}$ is contained in the complementary set of S_r^* by definitions of S_r^* and G_a .

4. Proof of the first part of the Theorem A.

Let us suppose, contrary to hypotheses, that there exist $r_0 \in (0, R^*)$ and two functions f(z), F(z), $F \in S^*$, satisfying the assumptions of the Theorem A and such that $f \neq F$, $f(C_{r_0}) \subset F(C_{r_0})$. Thus for a value z_0 , $|z_0| = \varrho_0 < r_0$, the point $f(z_0)$ is situated outside of the domain $F(C_{r_0})$ and so the segment $(0, f(z_0)$ contains a point $F(z_1)$ with $z_1 = \varrho_0$, in view of $\overline{F(C_{r_0})} \subset F(C_{r_0})$. Put $\omega(z) = f(z)/F(z)$. We have $\omega(0) = a$, $0 \leq a < 1$, and $|\omega(z)| \leq 1$ in C_1 . Hence

$$rac{f(z_0)}{F(z_1)} = rac{\omega(z_0) F(z_0)}{F(z_1)} > 1 \,, \,\, ext{or}$$

(13)
$$\omega(z_0) = (1+\varepsilon) \, \frac{F(z_1)}{F(z_0)} \,, \quad \text{with } \varepsilon > 0 \,.$$

It follows from Lemma 1 (in view of $f(z) \neq F(z)$ which means $\omega(0) < 1$) that

(14)
$$\omega(z_0) \in \Omega_{\varrho_0} - \{1\}.$$

 $F(z_1)/F(z_0)$ is a point of $S_{a_0}^*$ and this means $F(z_1)/F(z_0) \notin G_{a(\varrho_0)}$, and also for any $\varepsilon > 0$

$$(1+\varepsilon)\,\frac{F(z_1)}{F(z_0)}\notin \overline{G}_{a(c_0)}\;.$$

Now, R^* satisfies $x=(1-x)^2/(1+x)^2$, $0< R^*<1$, and hence for $\varrho_0< R^*$ we have $\varrho_0<[(1-\varrho_0)/(1+\varrho_0)]^2=a^2(\varrho_0)$, or $\varrho_0^{\frac{N}{2}}< a(\varrho_0)$ and in view of Corollary 2

$$(16) \overline{\Omega}_{\varrho_0} - \{1\} \subset G_{a(\varrho_0)}.$$

(16), (14) and (13) imply

$$(17) \qquad (1+\varepsilon)\frac{F(z_1)}{F(z_0)} \epsilon G_{a(\varrho_0)}$$

contrary to (15). Thus the first part of Theorem A is proved. Since the proof of the second part is contained in [3] the Theorem A is proved completely.

REFERENCES

- [1] Голузин, Г. М., Мажорация подчиненных аналитических функций I, Математический сборник, 29 (1951), р. 209-224.
- [2] Геометрическая теория функций комплексного переменного, Москва-Ленинград 1952.
- [3] Lewandowski, Z., Sur les majorantes des fonctions holomorphes dans le cercle |z| < 1, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 15 (1960), p. 5-11.
- [4] Sur certaines classes de fonctions univalentes dans le cercle-unité, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 13 (1959), p. 115-126.

Streszczenie

Dowodzi się, że jeśli $f(z)=a_1z+a_2z^2+\ldots$ i $F(z)=A_1z+A_2z^2+\ldots$ są funkcjami holomorficznymi dla |z|<1, a druga z nich jest jednolistna i gwiaździsta, jeśli $\arg a_1=\arg A_1$ lub $a_1=0$ i jeśli $|f(z)|\leqslant |F(z)|$ dla |z|<1, wówczas obszar, na który funkcja f(z) odwzorowuje koło $|z|<\varrho$, zawiera się zawsze w odpowiednim obszarze wartości funkcji F(z), o ile tylko $0<\varrho\leqslant R^*$, gdzie R^* jest jedynym rzeczywistym pierwiastkiem równania $x^3+x^2+3x-1=0$ i nie może być zastąpione przez żadną liczbę większą.

Twierdzenie to jest poniekąd odwrotne do pewnego twierdzenia G. M. Goluzina [1]; tw. 8'.

Резюме

Доказывается, что если функции $f(z)=a_1z+a_2z^2+\dots$ и $F(z)==A_1z+A_2z^2+\dots$ голоморфны для |z|<1 причем вторая из них однолистная и звездная, если $\arg a_1=\arg A_1$ или $a_1=0$ и если $|f(z)|\leqslant \leqslant |F(z)|$ для |z|<1 тогда множество значений функций f(z) для $|z|<\varrho$ заключается в соответствующим множестве значений второй функции F(z) если только $0<\varrho\leqslant R^*$ где число R^* является единственным вещественным корнем уравнения $x^3+x^2+3x-1=0$ и уже не может быть увеличено.

В известной мере теорема эта является обратной к некоторой теореме Г. М. Голузина [1]; теор. 8'.