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1. Introduction

The class (S) of regular functions F(z) univalent in the unit circle K 
and subject to conditions P(0) = 0, F'(Q) = 1 has been investigated 
very widely. In particular the both above conditions impose well known 
restrictions on |E(z)| at zeK, whereas the single condition P(0) =0 does 
not. In [6] p. 66, P. Montel suggested to find the precise bounds of |<p(z)i 

for cp(z) being a function regular and univalent in K and such that

(1.1) f(0)-0,?W = l,0<W<l.
If e. g. P(0) — 0, F(z0) — A, then <p(z) = A~1F(z) satisfies (1.1) so that 
the value of q>(z) at z0 is irrelevant.

Some extremal problems connected with functions y(z) satisfying
(1.1) i. e. (pe(8z0) have been investigated by several authors. V. Singh 
[8] and Z. Lewandowski [5] obtained precise bounds for 199(2)! with some 
further restrictions concerning 99, the former assumed 99 to be typically 
real whereas z0 = 1, the latter assumed 99 to be starlike with respect to 
the origin.

On the other hand the well known double inequality
И(1.2) <|P(2)| < Pe(S),

(1+1*1)* ' (1-И)2
may be replaced by the following single inequality

(1.3) Л*х)
F(2.)

!, /1+ NV 
8 \1 — 12,1/ '
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The equality in (1.3) is attained only when F(z) is the Koebe function 
a(l —e_l92)~2 * * and zt = z2 = — |z2|e’9. Hence, if 24 and z2 are not
situated on opposite radii, the precise bound in (1.3) can be lowered. 
We are thus led to the following problem:
(i) Find the precise upper bound k(zlfz2) of |J'(«1)/F’(»2)| 

for fixed Zi, z2eK, z1 z2, Zi =/= 0 z2 and varying Fe(S).
The problem (i) is a particular case of a more general one:
(ii) Find the region of variability of F(z1)IF(z2) for fixed zlt z2eK when F 

is varying within the class ($).
It is obvious that the assumption F'(0) = 1 in (i) and (ii) can be drop­

ped since F(z1)IF(z2) does not depend on F'(0). Still it is advisable some­
times to assume F'(0) = 1 in order to achieve compactness.

Z. Lewandowski [5] solved both problems for the subclass of functions 
starlike w.r.t. the origin.

Obviously the solution of (i) provides at once the solution of Montel’s 
problem mentioned above. In that case F(z2) = 1, so that |<p(#)| < 
<k(z,z0). Again < fc(z2, 2q), or zt) \F(zJIF(zt)\
and this means < l<p(2)|, both bounds being precise and being
attained, since the class (S) is compact.

It is easy to see that the problem (ii) is equivalent to the general 
interpolation problem for univalent functions (n = 2) as considered in [7]. 
Although this problem has been solved by H. L. Eoyden for n = 2 in 
terms of inequalities between periods of certain elliptic and hypereUiptic 
integrals, no explicite determination of the domain of variability of 
^(z^ (24 fixed, q>e(Sz0) varying) is given in [7] so that an immediate deri­
vation of the solution of (i) from Eoyden’s inequalities does not seem 
to be possible.

In this paper which is a part of research done by the author as a Rese­
arch Assistant at the Imperial College of Science and Technology in 
London, we will use variational methods to obtain the solution of the 
problem (i). The author is very much indebted to Prof. W. K. Hayman 
for his encouragement and his helpful criticism.

2. Statement of results

Let z±, z2 be two points of the unit circle K different from 0 and from
each other and let

(2.1) '/ =
21 g2 lgl Zzl [1 'gl221

*,(i+ l*J2)—z2(i+ l*,la)
= eta(rt is real).
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If /.,■ is a closed Jordan curve situated in K containing 0,2y, but not 
zk in its interior and
(2.2) = j'lQtfj d£, j,k = 1,2,

>-i

(2.3) <?(«) =
__ '])* ____

2(2 —2,)(2 -22)(1 — Sj2)(l —222)

then is purely real, I32 is purely imaginary.
If p is Weierstrass’s elliptic function with periods IJa, and

we hawe 

(2.4) k(zif 22) = sup 
(F)

^(*l)
>(22)

/(*l)

f(z2)
2e2 + dj 
2 6,+ e.

with the extremal function

(£?]-)-f22)l -FH-&•>(2.5) f(z) =Uj’[<?(f)]1/2d: +

'0

which is unique apart from a constant factor. /’(2) is supposed to be 
a function regular and univalent in Jf and F(0) = 0.

3. A differential equation for the extremal function

Let/(2) be a function for which the functional \F (z2) /F (z2)\ (2,, 2a ^0, 
2n z2eK, 2X 22 are supposed to be fixed) attains its upper bound k(zt, z2) 
within the class (<S). We assume that Fe(S) in order to obtain a compact 
class of functions although the condition F' (0) — 1 is not necessary, 
as pointed out above.

We will need Schiffer’s variational formula (see e. g. [2], p. 302). 
Let /(2) = 2+a222-)-... = w map X conformally onto a domain G with 
the boundary y. If w0 =#= 0 is a fixed interior point of G then the func­
tions
(3.1) w* = w+g2 02£v7(w —w0)

are univalent for |w — w0| > q and 0 < <p < n and for all q > 0 sufficiently 
small they will transform y into y* being the boundary of a new simply 
connected domain G* containing w = 0 as an interior point. G and G* 
differ very little if q is small enough. According to Schiffer’s formula the
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univalent function f*(z) mapping K onto G* such that /*(0) = 0 and 
/*'(0) >0, has the form:

(3.2) f* (z) = f(z) + ------7 + fl c-1 ; + 777I +
L«[/(«)] («-«) f(u)J

+ e e y ----------- -4^- +O(e3),
Ltt[/'(w)]»(l—uz) f(u) J

where/(w) = w0 and the estimation of the term O(gs) is uniform on com­
pact subsets of K. In general /* j(S), this is however irrelevant for the 
ratio f* If* (z2) which does not depend on /*'(0). (3.2) implies

/*(«) 2 2iJZf'(Z) 1 1
(3.3) log 577- = gV*’’ +I /(*) u[f'(u)Y(u-z) f(z)[f(z)-f(u)]

"W I 2f.-2lJ _________ z2f'(^l
)/(M)j ~ Lf(z)M rf'(w)l2(l — uz) f(z)flu} J

fw
f’M

f(z)f(u)
+O(e3).

Thus for the extremal function giving the maximal value to \F(z1)IF(za)\, 
and also to log |.F(zJ/F(z2)| we have, using (3.3)

<Hog

= J h>g

/(*i)
/(«»)
/*(2l)

= ó91|log^(—} = Olólog—— 
8 /(2g) I f(zi)

-—log'“1’ 
f*(zi) f(zi)

+ O(<?3) -

^(logr^_tog^+0(,.

(3.4,
1 (' zlf'(zl) 1 zif (s2) 1 \

.«[/'(«)]* '< f(zl) /(*«) u-zj

1 1 1 IfM /'(22)\1
/(2l)(/(«l)-/(«)) /(«2)(/(«2) “/(«)) /(«)\/(2i) /(22)/J

+ e2c-^ [ 1 1 22/'(22) 1 \
Lutf'(w)]2 \ Z(«l) 1 — uzi /(««) 1 —«*,)/

1 /’27'(2x) £/'(%) ]!]}<«•

/(«) /(»l) /(«a) /
Putting

(3.5) zlf'(zl) = A. 2j'(22) = B
f(zl) /(«.)
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and usinjj the fact that 9?{a+/9} — + we see that (3.4) takes
the form

(3.6)

-----------~l L^l/ (m)]2 \ u— Zj u — z2 1 — uz, l — uz2l
1 IA B \ 1_____

/(«)\«i Zl «2 ' ~7 /(«i)(/(«i)-/(«))

Z(«8)(/(«a)-/(«))■

Hence since (p is arbitrary we obtain writing z instead of u the following 
differential equation for f(z):

1 i d Az, B Sz2 \
z(/'(2))2 \ Z — Z, 1—ZZ, Z — Zg l — zzj

(3.7) + — -Az, - — + J3zj + T---- 7-T-^--------- T
/(«) ’ 2, «2 ' /(2i)(/(2j)-/(«))

1 _
/(«s)(/(2a)-/(2))

We now show that

(3.8) A/Zg—Az,—B/Zg+Szg = l//(z,)—l//(z2),

for the extremal function.
The transformation z* — (z+ e)/(l + ez) with complex e, |e| < 1, carries 

the unit circle K into itself. Put

f(2) J \l + ezl /(*)•

Clearly /*(0) = 0. 
= z+e — ëz2+O(e2) 
= e/'(0) + O(e2),

Since (z+e)/(l+ez) = (z + e)(l — ë«+ë2z2 — ...) = 
we have by Taylor’s formula, in view of /(e) =

f (2) = /(2) + (c- ïz')f (z) - e/' (0) + O (e2), 
or

/*(z)//(z) = l+(e—ëz2)/'(z)//(z) —e/'(0)//(z)4*O(e2)

and finally

log(/*(2)//(z)) = (e-ez2)/'(2)//(z)-e/'(0)//(z) + O(e2).
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Hence

Mog f(Zi)' = ó?uog4^4=^JiogS

= 9?jlog

f(^)
f(«i)

/(2») 
.AM 
/("2) I-iogMAH0^2) =

/(«1)
ęj rf(*i) /'(0) .f^)

!№) /'(0) /'(*»)
■ /(«x) Ax)

2/'(*2) + z2 -=- 
/(2«)

ŁA.) _logZAU 4-O(ea) = 
f (2S) /(2») I

j £12114/(«1) /(«1) /(«a) j

/'(0)+ £££+

DA*») ,»A»i)1l _ P/w 1A.)Ji

.«mi
/(®x) J)

/(«»)

<0

/(*»)

for' any small complex e. This implies

A®x) /'(«») ,-2/'(*2) _2/'(*l)
TZ2 . 21 '

/'(0) /'(0)
Ax) A») ’ /(z2) /(«,) Ax) /(«a)

and in view of f'(0) = 1 it implies (3.8). Putting w = /(2), «h = Al)> 
w2 = /(z2), we see that (3.7) takes, in view of (3.8), the form 

1 1P(2)
zf’W + wW \W2 w2l

or

(3.9) 

where

(3.10)

zP(z)

P(2)

wx(wx—w) w2(w2~w) 

( <2zj2 (wl — w2)dw2
«;(«?, —w)(w8—w) ’

B Bz2Azt 
1 —2Ż1Z — Zy l — ZZi z — z2 

the constants A, B being defined by (3.5).

4. The form of P(z) 
In this chapter we will prove that

-Ce-fa(2-?a)a

1 — zz„ ’

= 0,

(4.1) P(2) = (s-z1)(z-z2)(l — zz1)(l — zz2)
C > 0 and a being real constants. Besides, we will show in sect. 5 that

2x2a—z1z2 \zt #2|,1
(4.2) eia -

, MH-|22|8)-22d+|2x|2)
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We now prove that, if /(2) is the extremal function for which 

l/(«l)//(«»)l =
then

(4.3) ? gj'(gi) _ ^ ««/'(«»)
№»)/(»i)

reap, with the notation of (3.5)
(4.4) (A-A)-(B-B) = 0.

Let us rotate 2, and zt about the origin by the same small angle 0 
so that z* = ze'° and z* — z = Az = »20 + O(02). Then /*(«) =/(«*) = 
= f(z) + Azf (z) + O(02) and

• f(z)/f(z) = l + [^/'(«)//(2)]0+O(02),
or

(4.5)

Hence

f*(2) izf (2) _= -M2e+°(ea)- 
/(«) /(*)

dlog 1 7TT i = * !log ITT ~logVFtI+ 0(0a) = 
fat) I > /(«1) /(«1) I

I L /(2X) /(2») I
for the extremal case. Since 0 can be either positive, or negative, we see 
that 9?{t(A —B)} = 0, yi(iA) — or 3 A = 3 B which gives
(4.4).

Now we will prove that

(4.6)
We have

P(l/2) = 22P(2).

J.2 Jz,2 Bz Bz£

and hence

W) =
Az

1 — 22,

2,2 2 — 2j

Aztz Bz 
Z — Z-. 1 — 22,

1 — 2,2 2 — 2,

Bz2z 
2 — 2,

_ rA — Azz-l + Azzi Azt—Az+Az B—Bzz^+Bzzt Bzt—BzfBzl 
1 — 22 , 2—2, 1 —22a 2 —2, J

= 2[(J-A)-(5-B) + 2P(2)] «= 2»P(2)

'(;) - ri

+
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in view of (4.4).
For z — el9(0 real) (4.6) takes the form

?°P(ei9) = ei9P(ei9),

which means that zP(z) is real on |«| = 1.
Next we apply Julia’s variational formula in order to prove that also 

zP(z) >0 on |z| = 1. At the same time we will also show that the map 
of K by the extremal function is a slit domain, the boundary of f(K) 
being a single analytic arc.

Julia’s variational formula is an analogue of Hadamard’s formula, 
the variation of Green’s function being replaced by that of the mapping 
function (see e. g. [1], or [4]).

Given a piecewise analytic curve y being the boundary of a simply 
connected domain G containing w = 0 inside, let z — <p(w) be the func­
tion mapping G conformally on K so that = 0, >0. Let
n(s) = qp(s) be the normal displacement of the point w on y, where 
p ($) >0 for the outward normal, p (s) being a continuous function of the 
arc length s on y, vanishing in the neighbourhood of corner points of y. 
If f(z) — <p_1(z) and if f*(z) maps K on the new domain G* with the boun­
dary y* resulting from normal displacements p(s) of points of y, and if 
/*(0) = 0, /*'(0) >0, then

1 r zf(z)(£+z)‘ \<p'(w)l*eP(8)d8w + O(e»)

where £ is the point on |»| = 1 corresponding to the point w on y. Hence 

f*{z) 1 r zf'(z) £+z ,
log

/(s)
=-f

2tc J |y>'(w)|1 2ep(s) d«w-)-O(ei!).
/(«) £-«

As before, with the notation of (3.5),

/(«i)«5 log
/(z2)

(4.7)

= ■5— I
Z7I J 1 £—Zy (,— Z%)
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This implies that

(4.8) —B ei#+*2l
ei#-z2lI > 0

for any real 0. In fact, if for certain 0O the l.h.s. in (4.8) were negative, 
then it would be negative in a certain neighbourhood of 0o corresponding 
to a subarc y0 of y. Taking now p(s) < 0 on y0 and p(s) = 0 otherwise 
(this corresponds to a shrinking of G which is always admissible) we 
would obtain by (4.7) <51og|/(2,)//(z2)| > 0 (since vanishes at isolated 
points in view of (3.9)) and this is impossible for the extremal case. So the 
inequality (4.8) is proved. Besides, it is readily seen from (4.8) that no 
expansion of the domain in the extremal case is possible in view of the 
fact that the l.h.s. of (4.8) vanishes only at isolated values of 0. This means 
that CG has no interior points. On the other hand (3.9) shows that y is 
piecewise analytic. So we have shown that G is a slit domain, the slit 
being piecewise analytic.

We have still to show that zP(z) >0 on |z| = 1. We have for z =

Aztz | co | . Azxe u |

and hence

WW“)! = -B
eie+zt
ei9—zte — 2,

by (4.8). Thus zP(z) >0 on |«| — 1. Besides, we have

P(z) =
(Azy-Az^z-}- const. (Sz2—Bz2)z+const.

(z-z1)(l-2z,) (2-Z2)(l-ZZ2)

[(A-A)-(B-B)-]ziz^ + (lowerpowersofz)
(2-2,) (1-22^(2-2^1-22,)

and in view of (4.4) the leading coefficient in the numerator vanishes. 
Hence P(z) has at most two roots different from oo. However, by (4.6) 

(4.9) zP(z) = ï-’Pfz"1)
Annales t. XV, 1961

>0
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and. this means that if z0 is a finite root of P(z), z0 0, so l/z0 is also 
a root of P(z). Thus P(z) having at most two roots has necessarily a pair 
of roots symmetric with respect to |z| — 1. Now the r.h.s. in (3.9) does not 
vanish for any wef(K) so that also P(z) cannot vanish inside K. This 
means that both roots of P(z) lie on |z| = 1. However, zP(z) is real and 
positive on |z| = 1 and having two roots on |z| = 1, it has necessarily 
one double root e’“ on |z| — 1. Hence

(4.10) P(z) = ___j________
(z-z1)(l-ż1z)(z-z2)(l-ż2z) '

a real, fj, — const.

Now7 the denominator in (4.10) for |z| = 1 has the form z2|z—zj2^ — z2|2 
and this means that

zP(z) =
^~da)2

z|z—zi|a|z—z2|
5:0, or—----- = A>O,|z| =1.

Hence/t = A(0)el9(e’“—e’“)-2 = 2(0)<ria[2isin(i(0-a))]~2, or fieia = 
= — A(0)/4sin2[ j(0—a)] = —C. Ultimately /z = —Ce~la or

(4.11) zP(z) =---------------- — ------ —-------r, (7 >0, a real,(z-z1)(l-zz1)(z-z2)(l-zz2)

and hence (3.9) takes the form 

Pe i“(z—c<a)2dz2
(4.12)

»(«—zjfl —zzx)(z—z8)(l—zz2)

(w2—wx)dw2
, C > 0, a real.

W(Wj —w)(w2—w)

Making z tend to z1 in (4.12) we have

Ce-ia(Zl-eia)2
(4.13) .1 =

and similarly

(4.14) P =

/(z,) (1-|z1|2)(z2-z1)(1-z1z2)

ejfa) Ce~ia(z2—e'a)2
(1 22)(1 ZlS2)

(4.12) means that/'^) is finite and different from 0 for all points of |z| = 1 
but two. For z = e1“, f (e’°) — 0, for z = t such that /(t) = oo we have 
/'(t) = oo. This means that both arcs of |z| — 1 with end points d*, t
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are mapped by f(z) onto two analytic arcs with the same endpoints 
= 00 which by the univalency and by the absence of exterior

points necessarily coincide.

5. Determination of a

Putting ri = e'a and using (4.13), (4.14) we see that (4.4) takes the 
form

(5.1) ^(«1 — rffQ-ri&i—r))^} = r/(z2-rj)2H-ri(z2 — ri)2H 

where

(5.2) G = ------—------ - ------------—H =------ ------ ——--------- --------
(1 — |3i|2)(3i 2a)(l — 212a) (1 |^2|2) (Z2 3i)(l Z122)

Hence (z1—ri)2G—(l — 7]z1)2G = (z2—rj)2H — (l — riz2)2H which is a qua­
dratic equation with respect to ?/, of the form

7]2[(G—z21G)—(H — z2H)] — 2ri[(z1G—-z1G) — (z2H—z2Hy]-\-
(5.3)

+ [(^G-G)-(^H-H)} = 0.

However, (5.2) implies

(5.41) (G-%Q)-(H-z22H)
_2_ 2[z1(l+|z2|2)-z2(l+|z1|2)]

(5.42) (z1G — z1G)—(z2H—z2H) =

I«i-2îIî|1-»iZ2|2 

2(z1z2-z1z2)

(5.43) (z21G-G)-(^H-H) = -

l«i —«2|2|1 «i32|2

2^(1+|*«l2)-«2(1+l*il2)]
l«i «2I211 «iz2l2

so that (5.3) takes the form

>?2[z1(l+|z2|2)-z2(l + |»i|2)]-2jj[21z2—z1z2]- 

.-[«i(i+l*2|a)-*2(i+l*il2)] = o.
(5.5)

Since |z1(l+|z2|2)-z2(l+|zi|2)|2 = |z1-z2|2|l-z1z2|2-(z1z2-z1z2)2, we 
have for the discriminant J of (5.5)

ÿ A = |zt — z2\ |1 zxz2|,
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and so the equation (5.3) has for any zu z2 different from each other and 
from the origin and situated in the unit circle precisely two different 
roots r]2 with = |j?2| = 1:

2,2, -F|gl~ gt||l—giZgl
' “ 2,(1+|z,|8)-2,(1+|z,|«)

which interchange if we interchange e2 and 2,.
Now, both numbers jj,, j/2 have a simple geometrical meaning. They 

correspond to the intersection points of the circle |«| = 1 and the circle 
through (and hence through 22“‘) orthogonal to |g| =1. In
fact, the equation of the circle through zl,gi,z['1 has the form

|z|8 z z 1 

kil8 zi 2, i _
1 «1 2, |2,|«

|22la z2 2, 1

and after expanding w.r.t. the first row and dropping the factor (1 — |2,|)* 
we obtain

|g|*(g,2,—2,g,) + g [2,(1 + |z,|*)—2,(1+|g,|*)]—
(5.7)

— 2 [2, (1 + |g,|8) — 2,(1 + |g,|2)] + (2, 2,—2,2,) = 0.

If d is the intersection point of the circle (5.7) and the unit circle then 
3 = d_1 and using this we see that (5.7) takes the form

^1[2,(l+|g,|*)—'2,(l+|g,|,)] — 2i(2,2,—g,2,) —

-[2i(l+l*2l,)-«a(l+l«1|),] = 0

which is identical with (5.5).

(£) is a compact family and this implies that sup|F(2,)/F(22)| must 
be always attained. Also k(z1,zi) varies continuously with 2, and 2,. For 
—1<2,<O<2,<1 the extremal function is unique and f(z) = 
— «(I — z)~2. Besides f'(z) = 0 for z = —1 (f(z) = (l + 2)-(l — z)~3) 
so that in this case

,5.8) 2,»,-»,2.-|.,-»,l|l-*,i,l
2,(1+W!)-*.(l+W)

is the only point at which f(z) = 0. Now changing both zL and z, from 
their starting position on the real axis we see that f and also r) will change
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continuously so that the same formula (5.7) must be valid. Both values 
’/u Vi cannot interchange since l^—|1 —ZjZ2| 0 and so is the deno­
minator. Hence lies on the arc of the circle (5.7) between i\ and zx. 
At the same time interchanging zlfz2 gives us another value of q which 
thus necessarily corresponds to the function providing inf \F(Zj)IF(22)\, 
since similar considerations for the case of minimum hold. We have thus 
proved the

Theorem 1. If z2, s2 are two fixed points of the unit circle different from 
the origin and from each other, then the function w = f(z) realising
sup \F(z1)IF(zt)\ satisfies the following differential equation
FgS)
(59) __ _= w2-w,____ /dwV

where g = e’“ is the point of the unit circle which is the end point of a circular 
arc («j, g) orthogonal to |«| = 1 and containing z2 inside, further g is deter­
mined by (5.8), C is a real positive constant and w2 = f(z2), w2 = f(z2). 
The extremal function maps |2| = 1 onto a slit domain G, CG being a single 
analytic arc extending from /(??) to oo.

6. Qualitative investigation of the extremal function

So far we have proved that the extremal function satisfies the diffe­
rential equation (5.9) or (3.9) which may be written in the form

(6.1)

with

(6.2)

(w2—w1)dw2 
w(w1 — w)(w2 — w)

ZP(2) =
~Cze-ia(2-eia)2_______

(2-Z2)(Z-Z2) (1-22^(1-22^ (C >0),

zP(z) being non-negative on = 1. Thus our problem is associated, in 
accordance with Teichmuller’s general principle, with the positive qua­
dratic differential zP («)[ — (dz/z)2] = GQ(z)dz2, |z| <1, having three sim­
ple poles inside K and a double zero on the boundary. At the same time 
inner points of K have as a local uniformizing parameter the variable 
w = f(z) and so the r.h.s. of (6.1) is also a positive quadratic differential 
in the domain/(K). Since the shape of the trajectories can be determined 
separately for the l.h.s. and r.h.s. and w — f(z) carries the trajectories 
on K into those on f(K), so a qualitative investigation of the mapping
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function can be done in this way. We begin by investigating the trajec­
tories of C~1zP(z)[ — (dz/z)2'] = Q(z)dz2.

In view of (4.9) Q(z)dz2 may be continued into the whole sphere and 
the trajectories lying outside |z| = 1 arise by reflecting of those situated 
inside |z| = lw.r.t. |z| = 1. In fact, on the trajectories zP(z)[ — (dz/z)2] > 0, 
|z| < 1. If f = z-1, then dz/z = — (dt/t), and so zP(z)[ — (dz/z)2] = 
=

So we can consider Q(z)dz2 as a positive quadratic differential on the 
sphere. Q(z)dz2 has six simple poles z2, z2, z^1, z2_1, 0, oo and one double 
zero z = t) (in accordance with the general formula, see e.g. [3] p. 36).

Let 0 denote the union of all trajectories which have a limiting point 
at a point of the set C of zeros and simple poles. Then according to The 
Basic Structure Theorem ([3], p. 37) in the absence of poles of order 
at least 2, the system of curves 0 divides the sphere into a finite number 
of ring domains ([3], p. 37) which are swept out by not intersecting tra­
jectories and each of these is a closed Jordan curve. We now determine 
the shape of the trajectories for — 1 < z2 < 0 < z2 < 1. In this case 
eia = e~ia = -1 and

Q(z)dz2 =
-(z+l)W

z(z+r2)(z-r1)(l-r1z)(l + r2z) ’ L- = l«.l

Hence the set consists of the unit circumference |z| — 1 and the segments 
—r2l < a? < —r2, 0 a; rf1 < x < + oo of the real axis. Thus
we obtain two ring domains, the remaining trajectories being closed curves 
filling those completely without intersecting each other. Now the qua­
dratic differential Q(z)dz2 depends continuously on z2 and z2 and this 
implies that continuous changing of z2 and z2 does not change the topo­
logical properties of the trajectories.

Hence the set 0 for Q(z)dz2 consists of |a?| = 1, two non-intersecting 
arcs: yj joining 0 to z2 and y2 joining rj to z2 and of the reflections 
of 7x, y2 w.r.t. |z| = 1. The set 0 divides the sphere 91 into two ring 
domains.

Since the function w = f(z), in view of (6.1), carries trajectories into 
trajectories, the corresponding set 0!O in the w-plane consists of a simple 
analytic arc joining and oo which is the map of |z| == 1 by f(z), of 
an arc r2 — f(y2) joining w2 and /(?/) and an arc r2 — f(y2) joining 0 
and w2. The complement of 0W w.r.t. the sphere is thus a ring domain. 
By considering the map of K by the Koebe function for — 1 < z2 < 
< 0 < zt < 1 and a subsequent continuous change of zl and z2 resp.
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and w2 we see that the orthogonal trajectories of Q1(w)dwt which 
is the r.h.s. of (6.1) have the same topological structure as the trajectories 
of Q1(w)dw2: there are two arcs, one r2 joining 0 and w2, another I\ joining 

and oo, the remaining orthogonal trajectories being closed curves 
surrounding 1\. The map of I\ by/’(w) is also an orthogonal trajectory 
yx of Q(z)dz2 joining 2, to t = e’A, where /(r) = oo. The value of /3 can
be found as follows:

There are two arcs Z1? l2 on |z| = 1 with common end points rj, t which 
are carried by /(«) into both edges of the slit. If ^eZ,, C2eZ2 are points 
corresponding to the same point w on the slit Z, then

/ iWJdf, = f = (T1/2 f fQAw)dw
h h 1

For z = et0, however, ^Q(z)dz = sin[|(0 — a)]-|e1“—«J-1 |e'9—z2\~ldO 
so that t — is uniquely determined by the equation

/sin[i(0-a)]-|«<fl-i?1r1-|0*-zJr1d0 =
a

= f sin[|(0-a)]-!cia-^rI-K'<’-2:2|-1d0.

Later on we will show that t lies on the smaller arc of |«| = 1 with end 
points —r/,?)2,(t)2 is defined by (5.6) when we take the sign “ + ”).

On the other hand the ring domain slit along an orthogonal trajectory 
is mapped by f^Q(z)dz 1:1 conformally onto a rectangle. Let us slit the 
ring domain K—(y1^y2) along the orthogonal trajectory joining

z ___
and t. Taking the integral jFQ(C)dC — v(z) we see that K— (yx

T
7i) is mapped 1:1 conformally by

f e-<a/2(£-e<a)<ZC
(b,3) y(2) - J [C(C—»i)(C^^)(l —2x0(1—zaC)]1/2

on a rectangle in the v-plane with comers corresponding to the points r 
and aq. The trajectories of Q{z)dz2 (on which \'Q{z~}dz is positive) are 
carried into segments parallel to the real axis, whereas the arcs of ortho­
gonal trajectories on which ^Q{z)dz is purely imaginary are carried into 
segments parallel to the imaginary axis. Both edges of the slit y, corres­
pond to one pair of sides, the third side corresponds to Zx, both edges of 
y2, and Z2, the forth side is the map of both edges of yx.
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Similarly

(6.4) v(w) = C-1'2 f F W>~Wl.----- -1'%«,
J \_U>(W1--(ü)(w2—co) J

maps /(A) —(7\ Pa PJ on the same rectangle. Both edges of the 
slit correspond to one pair of sides parallel to the imaginary axis, 
whereas the third side parallel to the real axis is the map by (6.4) of the 
slit Z and both edges of and the forth side (parallel to the real axis) 
is the map by (6.4) of both edges of Pt. The identity of both rectangles 
means the equality of suitably chosen periods of both integrals (6.3) 
and (6.4). At the same time w(z) being defined implicitely by (6.3) and
(6.4) is univalent.

?. Determination of the extremal function
Put

(7.1)

now

Q = (•_________ <?-*»'8(C—e<a)<*C

*i
where A, is a closed Jordan curve surrounding 0 and z1 but leaving z2 
outside. At the same time is a closed curve on the Riemann sur­
face of [z(z—z1)(z — z2)(l — z1z)(l — z2z)]I/2. Of course we can replace 
A, by an arbitrary trajectory’of the ring domain A —yx and hence we
see that > 0 = fVQ(£)d£ and ^Q(C)dC > 0 on trajectory after a

4 ___
suitable orientation and a suitable choice of the branch of \Q (z)).

Next we put

(7 2) O = f

where Aa is a Jordan curve surrounding 0 and z2 but leaving zt outside. 
After replacing A, by a closed orthogonal trajectory lying inside K (some 
of orthogonal trajectories are open, their end points being points on Z, 
resp. Z2 corresponding to the same point of the slit Z) we see that ßa is purely 
imaginary. A suitable orientation of Aa gives us 9?Z2a = 0, 3ß2 > 0 since 
Q(Z)dt2 < 0 on the orthogonal trajectory.

Put v = Cl,2u and to = 4(wa—wx) W + J(wt + w8). Then (6.4) after 
differentiating takes the form

du \2 1
dWi 4W3 — g2W — g„
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where
1 tOj — №, Wj + W2 
12 (w8 —Wj)2

1 1 — x-\-x* 
12 (l — ®)2

*Za
1 (a?+l)(a;—2)(a?—|)

8-27 ~ .(®-l)s wi = /(*>)» j = 1, 2,æ
Wt 
w2 '

Since <$ = </2 —2703 = aj2/44(®—l)4 #=6, we have necessarily W — 
— p(u)w1,co2) because W = oo for u = 0. ^)(n\u)i, w2) denotes Weier- 
strass’s elliptic function defined by

Hence

(7.3)

w2)
1

(mcUi + ncoj)2

w = 4(w2— w1)^)(u\u)1, w2) +
Wj + w2

]•

3

Now £>(«!«>!, co2) = C 1^)(VCu\VC(o1, VCa>t) = C ^(ul^CtOu VCcd2), 
and so (7.3) becomes

(7.4) w = /Cto2) + C2

Clf C2 being constants. When z describes a closed trajectory (resp. an 
orthogonal trajectory) then v increases by Q1 (resp. by ß2) and at the 
same time w attains its initial value. At the same time w could not attain 
the same value for two different points z on the trajectory. This proves 
that X?n ß2 are periods in (7.4) and cannot be replaced by Q^k, ii2lm 
(k, m being natural numbers greater than 1). Hence (7.4) takes the form 

w = ß2) + C2

where v, Qlf Qt are defined by (6.3), (7.1), (7.2) respectively. Now w = 0 
0 ___

for z = 0 and this gives — Q2) = C2. Finally
T

(7.5) w
3

= lW)*:+|(01+ß2))+ei+<
•n '

since the constant Cj can be dropped and

(7.6) *(3j,32) =
2e2 + ei 
2 «1 + 02

k = 1,2.
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p(v) is clearly a single valued function of zeK. If z describes a closed 
curve on the Riemann surface of t<?(2) lying entirely over K, v changes 
by m1Q1+miQ2 which does not change £>(«). If, however, the end points 
of the two paths of integration lie on different sheets but over the same 
point z the corresponding values of v have the sum equal 0 mod.^,, £?2). 
ft>(v) being even, we again obtain the same value of @(v). Both functions 
(6.3) and (6.4) are univalent and this implies also the univalency of (7.4).

We have proved
Theorem II. If zlf z2 are two fixed points of the unit circle different from 

the origin and from each other, and F (z) is a function regular and univalent 
in the unit circle vanishing at the origin, then

sup\F(z1)IF(zi)\ = \f(z1)lf(gt)\ = k(z1,z2)
(F)

where k(z1,z2) is defined by (7.6).
The extremal function f(z) is defined by (7.5), (2.1)-(2.4) and is unique 

apart from a constant factor.

8. The case of the Koebe function

We will now prove that for z^-z* 0 lying on the same diameter
of the unit circle, and in this case only, the extremal function is the Koebe 
function.

Suppose first that both points (corresponding to the complex
numbers zlf z2 0) lie on the arc BB' of the circle orthogonal to |«| = 1, 

B'*r+g2, whose centre will be denoted by C. Let P, Q be the points 
of intersection of |«| = 1 and a ray emanating from C. If <p is the angle
between OC and CPQ and CB' — CB — r, then

CP = cos<p(j/l + r2 —Vi —r2tan2<p)

CQ — cosq!,(I/l + r!!-|-t/l — r2tan2<p)

CP-CQ = r2

Putting 6P = «£ COP, 0Q = < COQ we have OC— cos0o = CQcos<p = 
= cos2<jp(Vl + r2 + Vl —r2tan2T?), and hence

CQ-d?
cos^Vl —r2tan2<p

I / i J. r2 \
dOn = — 11 + 1/--------------- I da> — —\ I 1—r2tan2<p/ T
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and similarly

dO, = li/—At/*-- =
\r 1 —r2tan2<p / T

CP-dq
cosipl/l — r2tan2<p

We have
PB = r-QBIQC = QB-PC/r,

A1P = r-A1Q/QC = A.Q-PC/r, 

A2P = r-A2Q/QC = A2Q-PC/r.
Hence

0— a
o+2n sin-------dd

2r z ç PB • dBp
l2= ) y°-Zl\\e«>-22\ = J/A^P A„P

r° Q 
J AXÇ-

-Vo

QB-PC-r PC-dy
A2Q-PC2-r cos<pl/l —r2tan2<p

QB
J AQ-

rdy

-Vo

and similarly

A2Q cos<p/l — r2tan2<p
e^2 = >?2.

z = QB-dOQ = r" QB

BB' -ç>()

QC-dy
Q A2Q cosijp/l — r2tan2<p

Since QG >r for C 00, Ix > I2 for r finite. Again, it is easy to see that, 
if the end point B' is replaced by £"<-> —?/, then Ix < I2 in case r < +00. 

This means that the point t (for which both integrals are the same) 
corresponding to w = 00 lies in this case on the open arc (B', B"). For 
the Koebe function, however, t = —17 and this is impossible, as we have 
seen now, for C 00.

When 24 and z2 are on opposite radii, the extremal function is unique 
and is a Koebe function which is known from the elementary theory.

Let us now suppose that both points «q,«2 lie on the same radius, 
e. g. 0 < z2 < zx < 1.

Then rj = —1 according to (5.7) and ft = a + 7t, t = —17 = 1 in this 
case. We see that the function f(z) also would be an extremal function. 
The uniqueness of the extremal function implies f(z) = f(z). However,
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the only function with this property mapping K onto the plane slit along 
a single analytic arc is the Koebe function Az(l T«)-2 with real A. In 
our case (r = 1, /'(0) — 1) f(z) = 3(1 — z)~2.
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Streszczenie

W pracy tej posługując się metodami wariacyjnymi znajduję
sup |F(31)/F(32)| = fc(3n 32) przy ustalonych z1,zi, przyczyni F(z) jest 
(F)

funkcją regularną i jednolistną w kole jednostkowym, zerującą się w zerze. 
Funkcją ekstremalną jest funkcja Koebego jedynie dla 31,32 leżących 
na jednej średnicy koła jednostkowego, a w pozostałych przypadkach 
funkcją ekstremalną jest superpozycja pewnej całki hipereliptycznej 
i funkcji p Weierstrassa o tych samych okresach, co dana całka hipere- 
liptyczna.

Znając k(z1,zi) można już łatwo znaleźć dokładne oszacowanie |<p(z)|, 
gdy q>(z) jest funkcją regularną i jednolistną w kole jednostkowym taką, 
że <p(0) = 0, <p(z0) = 1 (0 < |30| < 1). Wynik ten jest rozwiązaniem 
problemu postawionego przez P. Montela.

Резюме

В этой работе, пользуясь вариационными методами, я нахожу 
sup |Р(з1)/1?(з2)| — k{z1, z2) при установленных zl,zi, причём F(z) 
есть регулярная и однолистная функция в единичном круге, равная
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нулю при 2 = 0. Екстремальной функцией является функция Кёбе 
исключительно для хх и г2, лежащих на одном диаметре единичного 
круга, а в остальных случаях экстремальной функцией является 
наложение некоторого гнперэллиптического интеграла и функции 
Вейерштрасса р с такими же периодами, как данный гирерэллипти- 
ческий интеграл.

Зная ^(2?!, г2), можно уже легко найти точную оценку 199(2)1, когда 
99(2) функция регулярная и однолистная в единичном круге такая, 
что 99(0) = 0, 99(20) = 1 (0 < |г0| < 1). Этот результат является реше­
нием проблемы, поставленной П. Монтелем.




