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1. Introduction

The class (S) of regular functions ¥ (z) univalent in the unit circle K
and subject to conditions F(0) = 0, F'(0) = 1 has been investigated
very widely. In particular the both above conditions impose well known
restrictions on |F(z)| at z¢ K, wherezs the single condition F(0) = 0 does
not. In [6] p. 66, P. Montel suggested to find the precise bounds of |p(z)]
for @(2) being a function regular and univalent in K and such that

(1.1) @(0) =0, @(2) =1, 0 < [z <1.

If e. g. F(0) = 0, F(2,) = A, then ¢(2) = A~ F (z) satisfies (1.1) so that
the value of ¢(2) at 2, is irrelevant.

Some extremal problems connected with functions ¢(z) satisfying
(1.1) i. e. @pe(Sz,) have been investigated by several authors. V. Singh
[8] and Z. Lewandowski [5] obtzined precise bounds for |p(2)| with some
further restrictions concerning ¢, the former assumed ¢ to be typically
real whereas z, = 1, the latter assumed ¢ to be starlike with respect to
the origin.

On the other hand the well known double inequality

l2| |z
(1.2) A+ 12))} <|F(2)] < A=)’
may be replaced by the following single inequality
F(z,) | [1+ Izz|)2
F(z,) 7 \1—lzy|/

F‘(S)’

-
=

(1.3)
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The equality in (1.3) is attained only when F(z) is the Koebe function
2(1—e "2)~% and 2, = [5,6", 2, = — |2,]¢”. Hence, if 2z, and z, are not
situated on opposite radii, the precise bound in (1.3) can be lowered.
We are thus led to the following problem:
(i) Find the precise upper bound k(z,,z,) of (F(z)/F (z,)|

for fixed 2,,2,eK, 2, # 25, 2, # 0 # 2z, and varying F¢(S).
The problem (i) is a particular case of a more general one:
(ii) Find the region of variability of F(z,)/F (z,) for fixed z,, 2,¢ K when F

is varying within the class (S).

It is obvious that the assumption F’(0) = 1 in (i) and (ii) can be drop-
ped since F(z,)/F(z,;) does not depend on F'(0). Still it is advisable some-
times to assume F'(0) = 1 in order to achieve compactness.

Z. Lewandowski [5] solved both problems for the subclass of functions
starlike w.r.t. the origin.

Obviously the solution of (i) provides at once the solution of Montel’s
problem mentioned above. In that case F(z;) =1, so that [p(2)| <
< k(z,%). Again |F(2))/F(2)] < k(23,21), OF k(2 2,) < |F(2,)[F(2,)
and this means k~'(z,, z) < |p(2)|, both bounds being precise and being
attained, since the class (8) is compact.

It is easy to see that the problem (ii) is equivalent to the general
interpolation problem for univalent functions (» = 2) as considered in [7].
Although this problem has been solved by H. L. Royden for n = 2 in
terms of inequalities between periods of certain elliptic and hyperelliptic
integrals, no explicite determination of the domein of variability of
®(2,) (2, fixed, pe(Sz) varying) is given in [7] so that an immediate deri-
vation of the solution of (i) from Royden’s inequalities does not seem
to be possible.

In this paper which is a part of research done by the author as a Rese-
arch Asgistant at the Imperial College of Science and Technology in
London, we will use variational methods to obtain the solution of the
problem (i). The author is very much indebted to Prof. W. K. Hayman
for his encouragement and his helpful criticism.

2. Statement of results

Let 2,, 2, be two points of the unit circle K different from 0 and from
each other and let

212y — %3 — |2, — 24|[1 — 2424

2.1 n =
g A NG R PAT ST NPT

= 6"(a is real).
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If 4; is a closed Jordan curve situated in K containing 0,2, but not
2 in its interior and

(2.2) Q= [VQ@) at, j,k=1,2,
4/
n(z—n)?
2.3 O(z) = —— e R ==
G ) = e ae— 21— 5i2)(1—252)
then 2, is purely real, {, is purely imaginary.
If p is Waeierstrass's elliptic function with periods £,, 2,, and
1
(,'l\‘ = ‘,’)(—— .Qk\),k = .l., 2.

9

we hawe
= F(z) | J(2,) _|202+31
& Flevica) = 00 e | | Feoad || 20,00,
with the extremal function
. 1 \
(2.5) 1) = o[ 10178 + 5 (25 2) 40+ e
\0 -

which is unique apart from a constant factor. #'(z) is supposed to be
a function -regular and univalent in K and F(0) = 0.

3. A differential equation for the extremal function

Let f(z) be a function for which the functional |F(z,)/F (2,)| (24,24 # 0,
2y, 29€¢ K, 2, # z, are supposed to be fixed) attains its upper bound %(z,, z,)
within the class (S). We assume that F ¢(S) in order to obtain a compact
clags of functions although the condition F’(0) == 1 is not necessary,
a8 pointed out above.

We will need Schiffer’s variational formula (see e.g. [2], p. 302).
Let f(z) = 2+ a,2*+... = w map K conformally onto a domain G with
the boundary y. If w, +# 0 is a fixed interior point of G then the func-
tions

(3.1) w* = w+ 0" 6% | (w— wy)

are univalent for |w— w,| > ¢ and 0 < ¢ < = and for all ¢ > 0 sufficiently
small they will transform y into y* being the boundary of a new simply
connected domain G* contzining » = 0 as an interior point. G and G*
differ very little if o is small enough. According to Schiffer’s formula the
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univalent function f*(z) mapping K onto G* such that f*(0) = 0 and
f*'(0) >0, has the form:

. . .f,[ of'(2) 1 ) ("’]
3.2) f(2)=f(2)+e wf Wl —2) * fa—fm | fwl"
O N MO 40

+0(e®
laFra—a g 10"
where f(u) = w, and the estimation of the term O(p?) is uniform on com-

pact subsets of K. In general f* ¢(S), this is however irrelevant for the
ratio f*(2,)/f* (2,) which does not depend on f*’(0). (3.2) implies

f‘ (2) 2 2i fzf’(z) 1 1
3. I = 4 o LT T e Uoel) A
©3) g “ry ¢ f) srrwre—a T f@Te—f@n T
A ] [ 2f (2) = sz'(z)] ot
- J(2)f(u) e f2)Ef (W) P(1—az)  f2)f(u) 0l

Thus for the extremal function giving the maximal value to |F(2,)/F (z,)|,
and also to log|F(z,)/F(z,)| we have, using (3.3)

.f(zl) f( 1) f("'l]'
1 = = oNllo "Rbl =
208 | 4 z) i € f(zs) & f(s)
g e f(l)}JrO( i

B 8 f(z)
f*(z)

|
§°
. Pl
e f<,)}Jr L1k
q) asio] 1 5 f(z) 1 = z_af'(zz)_ 1 )
(3.4) *R“-”’ [uU’(u)]z( fG) w—  fl@) w—z)
g __1—_ 1 .l /f (1) f'(zz)\._l
f)f(21)—f(u) f(zz)(f(zz) f(w) ' f(u)\f(zl) f(zz)ll
- 26_21":[ BT 4 f (2) 1 __»zzf (24) 1 )\
lag e \ fe) 1—mz  fG) 1-az)
) 1 {ﬁf,(zl)__z;f’(zs))
fay \ fl@) S |]}<0_
Putting
(3.5) aldd) o o) el

f(z) elloca J(29)
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and using the fact that R{a+p} = R{a+p] we see that (3.4) takes
the form

il __L.__(__‘_i_ B ‘_.ZE. Bz, \
Tl \u—e,  u—z  1—uz, 1—uz,l
L f4 2y 1
3.6) g LA LN Y
( f s T N e —1w)

1
Kl TV H <0
f(zz)‘f(zz) _.f(u)) !
Hence since ¢ is arbitrary we obtain writing 2z instead of » the following
differential equation for f(z):

1 { A Az, B Bz, \
df (2) \z—z, _1—z§; 21—z, 1—2z3,
1 (4
3.7 T I 05
o f(z) |\z1 : )+f(zl)(f(zl)_f(z))
1

f@) [ =)
We now show that
(3.8) A|z,— A%, —B|2,+ B2, = 1/f(2,)—1/f(2,),

for the extremal function.
The transformation z*= (24 ¢)/(1+€2) with complex &, |¢| <1, carries
the unit circle K into itself. Put

B [z—%—a B
f‘(z)—f\1+Ez) J(e).

Clearly f*(0) = 0. Since (z--¢)/(1+¢e2z) = (z+€)(1 —ez4¢c2%2 —
=24 ¢e—ez2+0(e?) we have by Taylor’s formula, in view of f(
= &f'(0)+O(e?),

f*(2) = f(2) + (e—ez)f’ (2) — ¢f (0) + O (&),

I

)
)

or
f @) f(2) = 1+ (e—e2?) f (2) [f(2) — ¢f (0)[f(2) + O (e?)
and finally

log(f* (2)[f (2)) = (e—e2*)f (2) [f (2) — &f (0) [f (2) + O (e?).
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Hence
f( 1) f(z1) f*(z1) f(zl)l
— sR1og LY _ x)y 1 LO(ed) =
B] fiaa) % f(z) e e )
f‘( ) f.(zz)}
= Rl —1 O(e2) =
=°g fe) Bl O

q‘,[ [f (zl) f'(O) f’(zz) ]_J_é[:zf'(za) s f (zl)]l
fz)  flz)  f(za) f(za) [k o * Feaplh
_l[fE) _£O  fE) | £

it vz & % @il (Rai e
_2f (2) -2f (zl)]! <0

f(za) f(zx) il

for’ any small complex e. This implies

FE) FE) LfE) Lf@  fO) £

1@ 1@ ey ey e @

and in view of f'(0) = 1 it implies (3.8). Putting w =f(z), w, = f(2,),
wy = f(2,), we see that (3.7) takes, in view of (3.8), the form

+

P(2) +._( . ___\___ P i
@R wi\w, w] " wyw,—w) wy(wy—w)
or
dz\*  (w,—wy)dw?
(3.9) zP(z)(?) = w(w,—'w)('w,—w)’
where
(3.10) P(z) = A le B v} sz

2—2,  1—22, 12—z, 1—2%,
the constants 4, B being defined by (3.5).
4. The form of P(z)
In this chapter we will prove that
—Co ' (z— 6)
(2= 2} (2—29) (1—27,) (1—22,)
C >0 and a being real constants. Besides, we will show in sect. 5 that

(4.1) P(z) =

Z,2,— 21 23— |2, — 24|l — 2, 2|
o Zaf1 4 25)2) — Za(1 4+ |24]3)

(4.2) 6% =
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We now prove that, if f(z) is the extremal function for which

If(21) [f(z)] = K3y, 2y),

then

3 Al (z) 2af' (21)
4.3 R = 3} ’
= 1) 1)
resp. with the notation of (3.5)
(4.4) (A—4)—(B—B) = 0.

Let us rot;a.t9 2, and z2 about the origin by the same small angle 6
8o that 2* = 26° and 2*—z = Az = {26 - O(6%). Then f*(z) = f(z*) =
= f(2)+ Azf' (z) + O(62) and

F*(2)[f(2) = 1+ [i2f (2)[f (2)10 + O (6%),

or
e i)
. e g
(£5) % f() 1(@)
Hence
f{zl) f'( 1) I (24)
g LM I ALY oy Ty 1
B e | T % ) 8 o} L3

_ R 6[ af (=) = saf" (24) |

f(z) f(zs) |

for the extremal case. Since 6 can be either positive, or negative, we see
that R{¢(4—B)} =0, N(EA) = R(B), or I3 4 =3 B which gives

<0

(4.4).
Now we will prove that
(4.6) P(1/z) = 23P(2).
We have
P(l 4z A2 Bz Bz,
z)_ 1—2%  2—% 1—23 %—2
and hence
Pj) = A4z Az Bz _ Bzz

1—2z, z2—2, 1—2z, z2—2,
i’ — Az, -}—lzz,4 Az,—Az+Az B—Bzi,+ B3, Bz,—Bz+Bz]

1—2%, 2—2, 1—2Z, z2—2,

= 2[(A—4)— (B—B)+2P(2)] = 2°P(2)
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in view of (4.4).
For z = ¢°(0 real) (4.6) takes the form

o‘iOP(etO) — e‘l'OP (6“) ,

which means that zP(z) is real on |z| = 1.

Next we apply Julia’s variational formula in order to prove that also
zP(z) > 0 on |z| = 1. At the same time we will also show that the map
of K by the extremal function is a slit domain, the boundary of f(K)
being a single analytic arec.

Julia’s variztional formula is an anzlogue of Hadamard’s formula,
the variation of Green’s function being replaced by that of the mapping
function (see e.g. [1], or [4]).

Given a piecewise analytic curve y being the boundary of a simply
connected domain G containing w = 0 inside, let 2 = @(w) be the func-
tion mapping G conformally on K so thet ¢(0) =0, ¢'(0) >0. Let
n(8) = op(s) be the normal displacement of the point w on y, where
p(8) > 0 for the outward normal, p(s) being a continuous function of the
arc length 8 on y, vanishing in the neighbourhood of corner points of y.
If f(2) = ¢ '(2) and if f*(2) maps K on the new domain G* with the boun-
dary 9* resulting from normal displacements p(s) of points of y, and if
f*(0) = 0, f*(0) >0, then

f o (z)(f+ 2)

(&) —f(z) = ~ @' (w)|2 op (8)ds,, + O (0?)

where ( is the point on [2| = 1 corresponding to the point w on y. Hence

f'(Z) 1 r2f(2) ¢+2

® 1) 21r flz) ¢—

S 19" (w)l*ep (8) ds, + O (e?).

As before, with the notation of (3.5),

JE) gl ( (o o btm) L
— xR p B | -
L f(zz) l21tJ . t—2, B C_zz)l'i’ (w)["op (8)ds,

(4.7)

14 " (w)|2ep (8)ds,, <

\ (—2,

e S5 Py ke z:+
- t_p T

¥
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This implies that

6" +z €'+ z,)
4.8 %14 Lie B 2l>0
(4.8) \ Pz, & — 2, (

for any real 0. In fact, if for certain 0, the l.h.s. in (4.8) were negative,
then it would be negative in a certain neichbourhood of 6, corresponding
to a subarc y, of y. Taking now p(8) < 0 on y, and p(s) = 0 otherwise
(this corresponds to a shrinking of ¢ which is always admissible) we
would obtain by (4.7) dlog|f(2,)/f(2;)] > O (since ¢'(w) vanishes at isolated
points in view of (3.9)) and this is impossible for the extremal case. So the
inequality (4.8) is proved. Besides, it is readily seen from (4.8) that no
expansion of the domain in the extremal case is possible in view of the
fact that the 1.h.s. of (4.8) vanishes only at isolated values of 6. This means
that CG has no interior points. On the other hand (3.9) shows that y is
piecewise analytic. So we have shown that G is a slit domain, the slit
being piecewise analytic.

We have still to show that zP(2) = 0 on |zl = 1. We have for z = ¢

A Az
1—2,6® " 1—2,6°) ~

—if 0
- m{Al“—".—} =<}I{A sl e

1—216-‘0 8‘ —21
and hence
1] 16
A . 0 12 6 124
R{e"“P (6 =‘R{l —B }>0
{67P(6")) < & —z, O‘O—Z’ =

by (4.8). Thus 2P(2) > 0 on |z| = 1. Besides, we have

= _(ZE,—AE,)z+const. _(BE,—BE,)z—{—const. N
B = =) | e—mi—

~ [(A—A4)— (B— B)]%,%,2° |- (lower powers ofz)
N (6—2,)(L—223) (s —25) (1—27,)

and in view of (4.4) the leading coefficient in the numerator vanishes.
Hence P(z) has at most two roots different from oco. However, by (4.6)

(4.9) 2P(z) =z 'P(z7")

Annales t. XV, 1861
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and this means that if 2, is a finite root of P(z), z, # 0, so 1/Z, is also
a root of P(z). Thus P(2) having at most two roots has necessarily a pair
of roots symmetric with respect to |z| = 1. Now the r.h.s. in (3.9) does not
vanish for any wef(K) so that also P(z2) cannot vanish inside K. This
means that both roots of P(z) lie on |z] = 1. However, 2P (2) is real and
positive on |2 = 1 and having two roots on |2| = 1, it has necessarily
one double root € on |z| = 1. Hence

u(z— 3iu)2

(ki A ()t =S R e (L —%a2) "

a real, u = const.

Now the denominator in (4.10) for [2| = 1 has the form 22|z—2,|2|2— z,|?
and this means that

z__et'a2 - t:l'u:t
) el s g ot M,
z|lz—2y|2|z—2,|*

=

-
H]I

I

A=0,|z| =1.

Henceu = A(0)e™(e— €)= = A(0)e~*|2¢sin(}(6— a))| %, or ue™ =
= —A(0)/48in2[}(6— a)] = —C. Ultimately p = —Ce™ ' or

_Gze—l’c{z_afu}f

(2—2,)(1—22,) (2 —2,) (1 — 23,)

(4.11) 2P(z2) = C >0, a real,

and hence (3.9) takes the form

Ce " (z2— €y d2* 4
z(2—2,)(1—22,) (2 —2,) (1 —22,)

(4.12)

—10,)dw?
= (104 wl)_w , C >0, areal
w (w, — w)(w, — w)

Making z tend to 2, in (4.12) we have

Y —1a sl 1a\2
(4.13) S ;"lf {zl) == Ce (zl (7 ) = :
f(z) (1—124]%) (2g—2,) (1 — 2, Z,)
and similarly
’ —1a 1a\2
) g Al _ O
flzy) (1= |25]®) (2, —2,) (1 — 2, 2,)

(4.12) means that f'(z) is finite and different from 0 for all points of [2| = 1
but two. For z = €', f'(¢"®) = 0, for z = v such that f(r) = oo we have
f'(r) = co. This means that both arcs of [2| = 1 with end points e“’, T
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are mapped by f(2) onto two analytic arcs with the same endpoints
f(e"), f(r) = oo which by the univalency and by the absence of exterior
points necessarily coincide.

5. Determination of «

Putting 7 = ¢'* and using (4.13), (4.14) we see that (4.4) takes the
form

(5.1) n(2,—n)*G— (%, — ’7)26 = n(2;—n)*H—1n(Z,— n):H
where
(.2) G = 1 3

= M H = .
(1—[2,2) (2, —25) (1 —242,) (1— [2,]®) (25— 2,) (1 — 2, 2,)
Hence (2,— 73)*G— (1 —1%,)2G = (2,— n):H — (1— #Z,)*H which is a qua-
dratic equation with respect to 7, of the form
(5.3) 7 (G—Z20)— (H—2H)]— 29[(2,6 — 2G)— (2 H— 2,H)] +

' +l(6— ) — (H—H)) = 0.

However, (5.2) implies

B2, (1+ l2al’) —ZalL+ [22/%)]

(5.41) (G—%#G)—(H—zH) = PR T

(5.42) (zlG_Ela)_(zzH—igﬁ) - 2(2,29—2,2,)

- ?
|2y — 25|21 —2,2,|?

- 2[21(1+ [24|%) — 2o (1 + |zx|2)1

(543) (4G—G)—(4H—H) = |2y — 25|2 |1 — 2, 7,2

2
8o that (5.3) takes the form
72(Z, (14 |22]2) —Z2(1+ [242) ] — 29 [21 22— 2,22 ] —

—[21(1+ [2e[?) — 25(1+ |24|?)] = 0.

Since |2,(1+ [2,]2) — 25 (14 [2,]2)[2 = |2, —2,|2|1 — 2,2, — (2,2, —%,2,)%, We
have for the discriminant A of (5.5)

(5.5)

Va4 = |21 — 25| |1 —2,2,],
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and so the equation (5.3) has for any z,, z, different from each other and
from the origin a2nd situated in the unit circle precisely two different
roots 7,, 7y With |5,| = |54 = 1:

_5132_2122 :Flzl—zslll;zli_ﬁl
Z (14 |29]?) — Z5(1 + [24]2)

which interchange if we interchange z, and z,.

Now, both numbers 7,, 7, have a simple geometrical meaning. They
correspond to the intersection points of the circle || — 1 and the circle
through 2,,z,% ' (and hence through z,') orthogonal to |z| = 1. In
fact, the equation of the circle through z,,z,, 7' has the form

(5.6) M =

2|2 2z z 1

212 2z, 2, 1 S0
12 2, [

|Zal® 23 Zo 1

and after expanding w.r.t. the first row and dropping the factor (1 — |z,])?
we obtain

|2|2(2123 — Z122) + 2[21(1 4 |24]2) — 25 (1 -+ [24]2)]—
—Z[2, (14 [24]®) — 2a(1 + [2:[2) ]+ (2,23— Z,25) = O.

If 6 is the intersection point of the circle (5.7) and the unit circle then
4 = 6! and using this we see that (5.7) takes the form

01[2, (14 |25]2) —Z3 (1 + [24]2)] — 26(2, 23— 21 25) —
—[21(1+ |24]*) — 23(1+ |4])*] = ©

(5.7)

which is identical with (5.5).

(S) is @ compact family and this implies that sup|F(z,)/F (z5)] must
be always attained. Also k(z,,2,) varies continuously with 2, and 2z,. For
—1<2,<0<2z <1 the extremal function is unique and f(z) =
=2(1—2)"% Besides f'(z) =0 for z= —1 (f(2) = (1+2)(1—2)7Y
80 that in this case

(5.8) y e szz—zlza_lzx—za||1‘;z152|
' T TR+ ) — 20+ )

is the only point at which f'(2) = 0. Now changing both 2, and 2z, from
their starting position on the real axis we see that f and also  will change
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continuously so that the same formula (5.7) must be valid. Both values
7)1, N2 cannot interchange since |2, —z,||1—2,%Z,| # 0 and so is the deno-
minator. Hence 2, lies on the arc of the circle (5.7) between 7 and z,.
At the same time interchanging z,, 2, gives us another value of 5 which
thus necessarily corresponds to the function providing inf|F(z,)/F (2,)|,
since similar considerations for the case of minimum hold. We have thus
proved the

Theorem L. If z,, z, are two fized points of the wunit circle different from
the origin and from each other, then the function w = f(z) realising
sup |F(z,)|F(z,)| satisfies the following differential equation
Fe(S)

(_:!(3_'”2 Juim ame 0z 1 __Id_w\"
2(z2—2;)(2—2g) (1 —2;2) (1 — 2,2 w (1w, —w) (wy— w) l dz

(5.9)

where 7 = €' is the point of the unit circle which is the end point of a circular
arc (z,, n) orthogonal to |2| = 1 and containing z, inside, further n is deter-
mined by (5.8), C is a real positive constant and w, = f(z,), wy = f(2,).
The extremal function maps |z| = 1 onto a 8lit domain G, CG being a single
analytic arc extending from f(n) to oo.

6. Qualitative investigation of the extremal function

So far we have proved that the extremal function satisfies the diffe-
rential equation (5.9) or (3.9) which may be written in the form

[ (dz\] (wy— w0,) dw?
it g b (7)] ~ w(w, — w) (0, — w)
with
(6.2) 2P(2) = L (© >0),

(2—2,)(2—2,) (1 — 2Z,) (1 — 2%,)

zP(z) being non-negative on |z| = 1. Thus our problem is associated, in
accordance with Teichmiiller’s general principle, with the positive qua-
dratic differential zP (z)[ — (dz/z)2] = CQ(2)dz?, |2| < 1, having three sim-
ple poles inside K and a double zero on the boundary. At the same time
inner points of K have as a local uniformizing parameter the variable
w = f(z) and so the r.h.s. of (6.1) is also a positive quadratic differential
in the domain f(K). Since the shape of the trajectories can be determined
separately for the 1.h.s. and r.h.s. and w = f(z) carries the trajectories
on K into those on f(K), so a qualitative investigation of the mapping
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function can be done in this way. We begin by investigating the trajec-
tories of C~'zP(z)[ —(dz/2)’] = Q(z)d7 .

In view of (4.9) @(z)dz* may be continued into the whole sphere and
the trajectories lying outside |2| = 1 arise by reflecting of those situated
inside |z| = 1 w.r.t. [2| = 1. In fact, on the trajectories zP (z)[ — (dz/z)?] > 0,
|2 < 1. If ¢ =2%"" then dz/z = —(dt/), and so 2P(z)[— (dz/2)?] =
= [P ({)[—(dL[0)*] = CP(O)[—(ag[L)%).

So we can consider Q(z)dz* as a positive quadratic differential on the
sphere. @ (z)dz? has six simple poles z,, 2,,2,7*,%,7!, 0, co and one double
zero z = 7) (in accordance with the general formula, see e.g. [3] p. 36).

Let @ denote the union of all trajectories which have a limiting point
at a point of the set C of zeros and simple poles. Then according to The
Basic Structure Theorem ([3], p. 37) in the absence of poles of order
at least 2, the system of curves @ divides the sphere into a finite number
of ring domains ([3], p. 37) which are swept out by not intersecting tra-
jectories and each of these is a closed Jordan curve. We now determine
the shape of the trajectories for —1 <z, < 0 <2, <1. In this case
€% =¢ " = —1 and

—(2z+1)%d2? B
2(z+ 1) (2— 1) (1 —ry2) (14 7,2)

Q(2)d2* = i = |al.

Ience the set @ consists of the unit circumference |z| = 1 and the segments
—rnl<r< —n, 0<s <, r1' <2< +o0o of the real axis. Thus
we obtain two ring domains, the remaining trajectories being closed curves
filling those completely without intersecting each other. Now the qua-
dratic differential @ (z)dz? depends continuously on 2z, and 2, and this
implies that continuous changing of z, and 2, does not change the topo-
logical properties of the trajectories.

Hence the set @ for Q(z)dz? consists of |2| = 1, two non-intersecting
arcs: y, joining 0 to 2, and y, joining 5 to 2, and of the reflections
of y;, 7, w.r.t. |2| = 1. The set @ divides the sphere R into two ring
domains.

Since the function w = f(z), in view of (6.1), carries trajectories into
trajectories, the corresponding set &, in the w-plane consists of a simple
analytic arc joining f(y) and oo which is the map of |2| = 1 by f(2), of
an arc I', = f(y,) joining w, and f() and an arc I', = f(y,) joining 0
and w,. The complement of @, w.r.t. the sphere is thus a ring domain.
By considering the map of K by the Koebe function for —1 < 2, <
<0<z <1 and a subsequent continuous change of z, and 2z, resp.
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w, and w, wo see that the orthogonal trajectories of (,(w)dw? which
is the r.h.s. of (6.1) have the same topological structure as the trajectories
of Q, (w)dw?: there are two arcs, one I'; joining 0 and w,, another I, joining
w, and oo, the remaining orthogon2l trajectories being closed curves
surrounding I';. The map of I', by f ! (w) is also an orthogonal trajectory
v, of Q(2)dz? joining 2, to T = ¢, where f(r) = co. The value of f can
be found as follows:

There are two arcs I, I, on |2| = 1 with common end points 7, r which
are carried by f(z) into both edges of the slit. If {,el,, {,el, are points
corresponding to the same point w on the slit [, then

(V@) dty = [VQ(Z) dty = 07 [VQ (w)duw
i 173 1

For z =¢", however, VQ(z)dz = sin[} (60— a)]-|6°—2z,| 7" |6 — 2z, ' d0
so that 7 = ¢’ is uniquely determined by the equation

jlsm[%(e‘_ a)]- ‘cio_zll—l' le"’—zzl"dﬂ =

am+a

LS f sin[4(0— a)]-le®—z,| 7" | — 2z, ' d0.
f

Later on we will show that r lies on the sinaller arc of |z = 1 with end
points —mn, 7., (7, i8 defined by (5.6) when we take the sign “--”).
On the other hand the ring domain slit along an orthogonal trajectory

is mapped by f YQ(z)dz 1:1 conformzlly onto a rectangle. Let us slit the
ring domain K —(y, v y,) along the orthogonal trajectory ¥, joining
2

z, and 7. Taking the integral | VQ(2)d. = v(z) Wwe see that K —(y, -
~ ys “ 7,) is mapped 1:1 conformally by

e—ia/2(¢_o‘ia)dc -
C——zl)({—z,)(l—élC)(l—52C)]‘/2

(6.3) b(2) = J q

on a rectangle in the »-plane with corners corresponding to the points r
and z,. The trajectories of @(z)dz? (on which VQ(z)dz is positive) are
carried into segments parallel to the real axis, whereas the arcs of ortho-
gonal trajectories on which ¥Q(z)dz is purely imaginary are carried into
segments parallel to the imaginary axis. Both edges of the slit y, corres-
pond to one pair of sides, the third side corresponds to I,, both edges of
ya, and 1, the forth side is the map of both edges of y,.
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Similarly

1 ﬁ—wl ‘Il/z

(6.4) o(w) = €7 [ [w(w e

maps f(K)—(I'y v I'y uf‘l) on the same rectangle. Both edges of the
slit I", correspond to one pair of sides parallel to the imaginary axis,
whereas the third side parallel to the real axis is the map by (6.4) of the
slit I and both edges of I'y and the forth side (parallel to the real axis)
is the map by (6.4) of both edges of I',. The identity of both rectangles
means the equality of suitably chosen periods of both integrals (6.3)
and (6.4). At the same time w(z) being defined implicitely by (6.3) and
(6.4) is univalent.

7. Determination of the extremal function
Put now
= ‘ e-—:‘a/z(c_oiu)dc
;’l [E(E—2)({—2) (1 —2,0)(1—Z, D"

(7.1) 2,

where 4, is a closed Jordan curve surrounding 0 and z, but leaving z,
outside. At the same time A, is a closed curve on the Riemann sur-
face of [z(z—2z,) (2—2,) (1—Z2,2) (1—%,2)]'*. Of course we can replace
A, by an arbitrary trajectory®of the ring domain K —y, and hence we

see that 2, >0 (2, = fl/QE)dC and VQ(¢)d: > 0 on trajectory after a
4

suitable orientation and a suitable choice of the branch of ¥Q(z)).
Next we put
. —ta2 e la d
(7-2) Qg = ‘ f (C 8_) C = 172
i [E(E—2)(E—2) (1—%,0) (1 —2,0)]

where 1, is a Jordan curve surrounding 0 and z, but leaving 2, outside.
After replacing 4, by a closed orthogonal trajectory lying inside K (some
of orthogonal trajectories are open, their end points being points on I,
resp. I, corresponding to the same point of the slit I) we see that £, is purely
imaginary. A suitable orientation of i, gives us RQ, = 0, 32, > 0 since
Q(f)dt® < 0 on the orthogonal trajectory.
Put v = C'"*u and w = 4(wy3—w,) W+}(w,+ w,). Then (6.4) after
differentiating takes the form
( du \? 1
AW /)  4W:—g,W—g,
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where
1 wi—ww 4w, 1 1—z+a?
B0 w12 (1—op
L (@+1)(@—2)(@—}) o >
¥ = 8:97 I(w__T)a'”' ' wi=f(zl)7]=1,29w=1——0:.

Since & = g3 —27g; = o°/4*(x—1)" #0, we have necessarily W =
= p(4|w,, ;) beceuse W = oo for v = 0. p(#|w,, »,) denotes Weier-
strass’s elliptic function defined by

: A “1'[ 1 1 ]
J(u — £y B o o ’
P (uloyy w,) 0 Z (u—mo,—nwe)*  (mw,+ nw,)?

m,n

Hence

0, + 10,

(7.3) w = 4(wy— w,)P(u|w,, ©q)+ 3

Now g (u|wy, ;) = C 'V Cu|VCw,, VCw,) = C'o(]|VCwy, VCuy,),
and so (7.3) becomer

(7.4) w = 00|V Ca,, VCw,) + C,

C,, C, being constants. When z describes 2 closed trajectory (resp. an
orthogonzal trajectory) then v increzses by 2, (resp. by £2,) and at the
same time w attzins its initial value. At the same time w could not attain
the same value for two different points 2z on the trajectory. This proves
that £2,, 2, are periods in (7.4) and cannot be replaced by £,/k, 2,/m
(k, m being natural numbers greater than 1). Hence (7.4) takes the form

w = C,p(v|2y, 2,)+0,
where v, 2,, 2, are defined by (6.3), (7.1), (7.2) respectively. Now w = 0
0
for 2 = 0 and this gives —C,p([VQ(Z)dl|Q,, 2,) = C,. Finally

A
(1.5) w=p([Ve@a+ 5(91+Q,)) 6,46,

since the constant C, can be dropped and

2e,+ 6,
26,1 6, l'

1
(7.6) k(2yy 25) =| 0k=(0('2—9k), k=1,2.
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(v) is clearly a single valued function of ze¢ K. If z describes a closed

curve on the Riemann surface of ¥ (z) lying entirely over K, v changes

by m, Q,+ m, 2, which does not change g (v). If, however, the end points

of the two paths of integration lie on different sheets but over the same

point 2 the corresponding values of v have the sum equal 0 mod.(£,, 2,).

¢ (v) being even, we ageain obtain the same value of @ (v). Both functions

(6.3) and (6.4) are univalent and this implies also the univalency of (7.4).
We have proved

Theorem I1. If z,, 2z, are two fized points of the unit circle different from
the origin and from each other, and F(z) i3 a function regular and univalent
in the unit circle vanishing at the origin, then

S(;l?”"(ZQ/F(ZQI = 1f(2)) [f(z2)| = (2, 2,)

where k(z,, z,) is defined by (7.6).
The extremal function f(2) is defined by (7.5), (2.1)-(2.4) and is unique
apart from a constant factor.

8. The case of the Koehe function

We will now prove that for z,,2, - 0 lying on the same diameter
of the unit circle, and in this case only, the extremal function is the Koebe
function.

Suppose first that both points 4,, 4, (corresponding to the complex
numbers z,, z, # 0) lie on the arc BB’ of the circle orthogonal to |2| = 1,
By, B’ n,, whose centre will be denoted by C. Let P, @ be the points
of intersection of |2| = 1 and a ray emanating from C. If ¢ is the angle
between OC and CPQ and CB’' = CB = r, then

CP = cosp(V1+72—V1—ritaniy)

0Q = cosp(V1-+r2+V1—r2tanty)
CP-CQ = r?

Putting 0p = < COP, 6y = < COQ we have OC—cosfy = CQcosyp =
= cos?p(V1-+ 72+ V1—r3tan?p), and hence

/1L g2 CQ-dy
db, = ——(1+ A L v\d = — —— —_,
' - ' 1 ritantg ) cospV1—ritanly
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and similarly

/12 cP-
atp = () e 1 dp = — M
¥V 1—r2tan’y cOS(pl/l—r%a.nzq)
We have
PB =r-QB/QC = QB-PC|r,
4,P = r-4,Q/QC = A,Q-PC|r,
A, P =1r-A,Q/QC = A,Q-PC|r.
Hence
. O0—a
ar2n sSin———df
. PB'dap
T = J 60—z [l —2g ) AP-AP
ﬁg 1 2 B'B 1 2
_ f“" @BYPCT PC-dg "
) 41Q:4,Q PO 1" cospV1—ritantg
Yo B .
Q rdy 6f2 — Na-

N _y 419:4.0 cospV1—ritanty

and similarly

. ' QB-d9, _ ' QB QC-dg
; s 41040 4,Q-4,Q cospV1—r2tany

Since QC > r for C +# oo, I, > I, for r finite. Again, it is easy to see that,
if the end point B’ is replaced by B'’ < —y, then I, < I, in case r < —oo.
This means that the point t (for which both integrals are the same)
corresponding to w = oo lies in this case on the open arc (B’, B''). For
the Koebe function, however, + = — # and this is impossible, as we have
seen now, for C # oo.

When z, and 2, are on opposite radii, the extremal function is unique
and is a Koebe function which is known from the elementary theory.

Let us now suppose that both points z,, 2, lie on the same radius,
e.g 02, <2 <1.

Then = —1 according to (5.7) and § = a+=n, T = —g =1 in this
case. We see that the function f(z) also would be an extremal function.
The uniqueness of the extremal function implies f(z) = f(z). However,
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the only function with this property mapping K onto the plane slit along
a single 2nalytic arc is the Koebe function Az(1 F2)~* with real 4. In
our case (r =1, f/(0) = 1) f(z) = 2(1—2)>.
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Streszczenie

W pracy tej poslugujage si¢ metodami wariacyjnymi znajduje
sup |F(z,)/F(2,)| = k(2;, 2,) przy ustalonych z,,z,, przy czym F(z) jest
)

funkeja regularna i jednolistng w kole jednostkowym, zerujaca sie w zerze.
Funkeja ekstremalns jest funkcja Koebego jedynie dla z,,z, lezacych
na jednej érednicy kola jednostkowego, a w pozostalych przypadkach
funkcja ekstremalna jest superpozycja pewnej calki hipereliptycznej
i funkeji gp Weierstrassa o tych samych okresach, co dana catka hipere-
liptyczna:

Znajac k(z,,2,) mozna juz latwo znalezé dokladne oszacowanie |p(2)|,
gdy ¢(z) jest funkejg regularna i jednolistna w kole jednostkowym taka,
ze @(0) =0, @(z) =1 (0 < |z| <1). Wynik ten jest rozwiazaniem
problemu postawionego przez P. Montela.

Pe3omMme

B s1o0it paGore, moin3yAch BapMallMOHHBIMH METONAMHM, i HaXOMYy
sup |F(z,)/F(2,)| = k(2,,2,) NpM YyCTaHOBIEHHHWX 2,,2,, NpuuéM F(z2)
eCThb peryjaApHaA W OJHOJIMCTHAA QYHKUMA B €IMHHYHOM Kpyre, paBHas
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Hymio npu z = 0. ExcrpemanbHoit QyHkiumeir asaserca ¢yHkuua HébGe
MCKIIIOUMTEIIbHO JUIA 2; U Z,, JIEKAIUMX HA OXHOM JHaMeTpe eXMHUYHOrO
Kpyra, a B OCTaJIbHBIX CIy4YaAX O3KCTpeMaldbHoii (yHKUMeN sABIAeTcA
Hallo?KeHNWEe HEKOTOPOro TrHIEPILIMITUYECKOT0 MHTerpana M (yHKUMU
Bettepiutpacca @ ¢ TakuMM Ke IEPHONAMM, KAK JXaHHBIA IMPepPILIMITH-
YeCKMIT MHTErpal.

3Hana k(z,, z,), MOIKHO YyiKe JIerKo HalTH TOYHYIO OlleHKY |p(2)|, Korga
@(2) PyHKUMA perynsApHas M OJHOJIMCTHAH B €IMHMYIOM Kpyre Takas,
uto @(0) = 0, @(2) = 1 (0 < |z,] < 1). IToT pe3yiabTaT ABIAETCA pelle-
HueM mpo0iueMmbl, mocraBieHHoi I1. Mourenem.






