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a—convexity and a—close—to—convexity Preserving Integral Operators

Operatory calkowe zachowujgoe a—wypuldodé oraz a—prawie wypukiodé

Let E be the open unit disc in C and H(E) be the dass of all functions f
halomorphic in E. Let g € H(E) be such that g{0) = ¢°(0)—1=0 du’ﬂf—;eo
in E. We consider the integral operator Ay4(f) = F, defined by

M Fe=an={2 [aroreoa)

For e = 1 and a = 1, this reduces to an integral operator introduced by P.T.Mocanu
[5], wherein he has determined conditions on g so that A, is an convexity or dose—
to—convexity preserving integral operator. For g(z) = 3, our operator reduces to
the operator introduced by St.Ruscheweyh (9] and further-a = 1 yields Bernardi's
operator [1]. These two operators have been extensively studied by several anthors in
the field. In this paper we first consider the cdass M, of a—convex functions defined
by P.T.Mocanu [4] as follows:

Definition 1. A fanction f(s) € H(E) with f(0) = f'(0) — 1 = 0 is called an
a—convacfunctioni{!(’;fﬁ;ﬁOinE andforsomenx;n-negaﬁverealnunxber a,

Re{(l—a)zf(;)-o- a{l + ;','('(;’)}m. :€E.

In Theorem 1 we obtain suffident conditions on g so that Ay is an a—convexity
preserving operatar. Next, we consider the class P(a) of a—close—to—convex functions
studied by K.S.Padmanabhan and R.Bharati (7].
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=0 and &‘)IL(‘—) # 0in E.

Definition 2. Let f € H(E) with f(0) = f'(0) -1
f is said to be in P(a) provided
. 1"(x) ) s s
[, releti+ i+ - ) it 0>

whenever 0 < 0; < 93 S +2x ,3=r ,r <1, a2 0. They also established a
characterization for functions in P(ay), that is f € P(a) if and only if there exists an

¢ € S°® such that \
WL o) a1 R
pz)
In Theorem 2, we establish conditions on ¢ so that A,(f) € P(a) whenever f € P(a).
Also we determine conditions on g so that Ay(f) € S* whenever f € S*. Finally we
give an application of Theorem 3.
To prove our main results, we make use of the following theorems.

Theorem A. [6] Let @ > 0 , a + 4 > 0, and consider the integral operator
Ianlf) = {o:;"ff“(t) g'T"‘dt}Va. If B € [-2,1) then the order of stariike-
ness of the class I:,,,(S‘(ﬁ)) is given by §(a;8;9) = im‘gl Reg(z) where S*(8) i
the class of starlike junctiom of order B. Moreover, if B € |[Bo,1) where
Bo = max{ 2;21-—1, ==} and g =Io,(f) for f € S*(B) then

x:(’,(:;) LTy [F(l Za(l -;)+07+'1+1 ) 7]
for|z|=r< 1 and

a+y
@) blas Bi) = g(~1) = [p(l 2a(1 Aa+1+1L}) 7]

)Ml =8

F(a,b,c;z) is the hypergeometric ‘[\mctwn. The extremal function is given by
9 = la (k) where k(z) = 3(1 — 5)*

Theorem B. [2] Let f € S°,let & and p be regular functions in E with
2(0) = ©(0) = 1 and ¥(z)p(z) # 0 in E and let a,ﬁ, 7,6 be real numbers satis-
frnga20,820,620,a+86>0andB+~v=a+6. If there exists a real
numberlZOmdz that

where ¢(z) =

38'(s)
@) J 2 v+ Rei 2 L fEE.
(4) 8+y>1J
(5) 6+Rc-‘£'-gf—)2m(0.l—a\(l)) \ 2 € E wvhere

} min (B+~4-J J

® AU) = fmin| 20

A(0) =
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then there ezists a unigque function F(z) = 5 + Agz® +--- , satisfying

, F] 1/p
m ro = (S5 [ rwewe-ta) ", sk

such that F € S°.

We also need the following result which is a alight modification of a lemma due
to K:S.Padmanabhan and R.Paravatham (8§].

Lestwrm 1.  Let ,4 € O , A € H(E) be convex univalent in E usth A(0) = 1
and let g € H(E) with q(0) =t and Re(B¢q(2)+4) > 0,2 €E. [Jplz)=1+pz+--:
s analytic in E, then

3 'iﬂ]—- )= p\z 2
Pa) + 5ty < Mle) = ple) < A(s) .

Since the proof of this lemma is emmtiaily in same as the one in (8], we omit the
details. Now, we proceed to prove our main results.

Theorem 1. Suppose g € H(E) with g(0) = ¢’'(0) — 1 = 0 and (3,'(’!;&0
inE. Leta>0,¢e>0, (c+1)a>1>(c—l)aandﬁelmchthatﬂe[ﬁo0)

Menm=m{—l—(c+l)a —ac __—ea—(a-{-l)}

2 el bl
® e 28 g,
and
(9) {(c+1)’—ﬂ- (1+:r())}se+sl.

where § = §(1;8;¢) is given by (2). ThenF = Ay(f) defined by (1) is in My whenever
fEM,.

Proof. It is clear that F is homomorphic in a neighbourhood of 3 = 0 and
satisfies F(0) = 0 = F’(0) — 1. Thus there exiata an R > 0 such that F(z) # 0 for
0 < |z] < R. We begin by showing that F is a—convex and hence univalent in |3{ < R
and the proof will be complete if we establish that R 2> 1. Indeed, if F(20) = 0,
|20] = R < 1 then for any given & > 0, 3 a neighbourhood of 39 in which |Flz)l < e.

This is a contradiction because F is univalent and so |F{z)| > ——— | G

Thus F(z) #0 in E.
Fram the definition of F = 4,(f), we have

in |s{ < R.

¢°(2)F/2(2) _ (e+ Y/a)

(10) gett/a . getl/a e' g (‘)9'(‘)fl/a (¢)ds .
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Differentiating with respect to z and eimplifying,

ORI _ (o 1ja) [ O10 01O

¢'(z)

: _ @M= ) _ gt ()P (x) e (s)
Putting k(s) = r—— and H(z) = 7o) we have
(11) H(z)= {L‘i';eli‘.'l L ; c"'k""(c)a} :
Now

=K' (z) T 2¢'(2) z!'(x! ‘f"( z) o

Rt = e ne( ) +re{1-0) o vt 4 T | e

by condition (8) and the fact that f € M,. Now an application of Theorem A to H
yields that if B€ [Bo,0) where B = max{ L2 "1 _se}, then

2/a

(12) R‘{ i((z))}> [F(l i(1- ;)+I+e+1,}) ]'5&“’;‘):6

where F(a,b,¢; ) is the hypergeometric function. We proceed to verify that § > 0.
Consider

_ 11-8) 1 2a-8)(2(1-8)+1)
F(L%(‘"ﬂ)"}"""'l’%) l+f+ +1 2+ (l+¢+1)(l+c+2) (2)

Sinoeﬂ>l—-—(szlzgmhave—z(£—i<landso

1+ (c+ 1o
2(1-
F(l'ﬁ(l-ﬂ),§+c+l;§)<l+n((e—fl))a
and

iz 1+ ae _“>(l+ae)(l+(c+1)a)_-
F(L,}1-8),1+c+1;4) 1+ (c+1)a+2-28
. _1+a—ac+2ﬁac>0

T 34+ (e+1)a-28
provided ea < 11j2ﬂ Whlchlstruebeca.nseﬂ>m—2g:+—” From

. F(s) () 6 2
Re{ (1e) ) F ) |=Rele g )"“’“*"“‘{'*‘r( e}
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using (9) and (12) we get

{(1- )’g(;"w(u (‘)’)}gnw-s_«:o

which completes the proof of the theorem

Remark 1. When a =1, ¢ = 1 this gives Theorem 1 of P.T.Mocanu (5]
When @ =1 and g(z) = z, we get the well-known result that the class K of convex
univalent functions is closed under Bernardi’s operator.

Theorem 2. Letg € H(E) with g(0) = ¢'(0) — 1 = 0 and ,(,]ff{z) £0
inE. UBa)l,c>-0,(e—l)a<landBeRauchthatBe[ﬂo'O) where

i~ —(e+1)a ca—(a+l) : zg(z)
Bo = 2 , —ae, e y Reqe }>c+B/a and
L0 L) g L
(13) 0<Re{(l+c) ’,())}< -

where 6 = §(1;B;¢), then F = Aq4(f) € P(a) whenever f € P(a).

Proof. We remark that @ 2 1 and ¢ > 0 => (¢ + 1)a > 1. The existence and
analyticity of F in E fallow in the same way as in Theorem 1.

a'm(:)fl-o(_’
Since f € P(a) , 3 an ¢ eS‘snchthaxRe{—W} > 0in E.
1

P.T.Mocanu [4] showed that ¢ € M, if and only if 3 an ¢, € S°® such that
129" (2)p'~%(z) = p1(2). Hence if f € P(a) then 3 an p € M, such that

1-a
f :::)2 .-..‘(')) > 0 in E. Also from the definition of F, (10) holds, whence we get
diff

erentiation with respect to z,

19 LOF @FG)

+eg° (2)g' (2)F'(2) = (e + L)~ (2)g' () SV (2) .

F*(s)F'~o(s)

Posting () = Feyar-s(a)

where $(z) = A4(p) , (14) becomes

g‘(z)@’(:}.ﬂo-ﬁd'{’) % cg"_l(z)g'(z)F‘/"(z) a (c+ i-)gc_l(z)"(x)f”a(z)

o
ar

g () ¥ ()8 (2)p(2)
ag'(s)

= (c+ L)o* ()11 (z) - eg* (2)F'/2(2) =

= 23 [ s a.
a Jo

T eparewiee '
i =(+3) [ rOretoros.




94 K.S.Pedmanabhan, R Paravatham, T.N.Shanmugam

Now differentiating again and simplifying,

azp/(s) ale+ 1);‘(3)2! He=l(a)f'(s)

aG(s) +¢(2) g ()@ (x)81/01 (5)
(“a{') - '[ )) 'I(‘)

+p(s) =

where ¢(z) = (1-3)—=—— el +a (1+xﬂﬂ) and G(s) = (e+l)s’;‘i(f))-—(l+ %(-)l

N ®(2) ®'(2)

(aa(,) + q(z)) !ﬁﬂﬂ.}g.;ﬂ_a—l(i) = a(c + g.),'c(,)q,l/a-l (z)so'(x)
and hence
(15) _ @) LR

Glz) + M T et (7)p'(z) |

Theorern 1 asserts that under the given conditions Req(s) 2 0 and fmm(13) it follows
that ReG(z) 2 0. G(0) = ¢ and q(0) = 1. Let Q(z) = G(z )+ az) _ +l Then
Q(0) = 1. Then (15 can be written as

zp'(2) [ (=) f'(3)
Q@ Fe+1/a—1 TP = TG G)
~ with Re(Q(z) + ¢+ 1/a—1) 2 0. As f € P(a) we have

jee( G reare = + )

< % where Re(Q(s) + e+ 1/a—1) 2 0.

Since @ 2 1, this with Lemma 1 implies that |a.rgp(z)| S % whick in turn shows
that
I (f""(')f'"“(x))
ME\ ()@ (s)
where & € M,. This shows that F € P(a).

= |erg ()| < 3

Remark 3. For a = 1 we get Theorem 2 of P. T.Mocanu [5] and for g(z) = 2
we get Theorem 1 of K.S.Padmanabhan and R.Bharati [7] for real ¢ such that
ale-1)< 1. \

" Theorem 3. Let g€ H(E) uithg(0)=¢'(0)-1=0, M #0inE and

let f € S*. Define F = Ay(f) wheree>0,a>0 and(c+l)a>zl. If3J7 €R such

1
( /.;+ c’ Ji,¢) where Jy is the positive root of the equation

that J > Js =

(16) 2 +J—-(e+d)=0
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and

(17) p ("(l(;))<1<c+‘-i-.
NERYL{C IO )\ S :

(18) Re{( 1) ‘(')+(1+ g,(:))}zl A(9), €E

where A(J) = (e+ 4 = J) /27, then F € S°.

Proof. Thehypothenis(l‘?)impliacsJuddnoe])l,:m(éﬁzt—c,ll,e)
hmg-'-—zl-ﬁs.l(c+%whichimpﬁao<e+l—l<l. So

. fe+lja-T J c+1l/a-J
[ %m‘{ J e+ 1lfa- J} 2J 2 <4
Again J - A(J) = W+ 7~ {et1fa) > 0 provided J > J; - the positive root of

2J% + J = (¢+1/a) = 0. Let Jo be the positive root of the equation 2J% + (1 — 2¢)J —
—(e+1/a)=0. (18) implies J — A(J) S ¢ or 2J% + (1 - 2¢)J — (¢ + 1/a) S O which
will hald if J € Jo. Since 2Jo? + Jo — (¢ + 1/a) = 2¢ Jo > 0, it follows that Jo < J;.
Alsoclearly Jo 2 e. f J; = mlx(c,=+ lfc']l) then Jy > J;. Further, (e+ l)a > 1
imaplies Jo > (¢ + 1/a)/2. Thus Jo > Jy. Let J € [J2, Jos Then 0 < J = A(J) < .
Set of g(z) = 29(z) , 8(z) = 9°(s) , ® € H(E) with #(0) = ¢(0) = 1. Sincel(-:—-)- #0
in E we have ¢(z) # 0 in E which implies =" (z) € H(E). #(z) # 0 in E, since
¥(z) #0 in E.

P = (Sl [ wwwrewe) = (255 [ e qurena)”
where Q(z) = ¢9°~1(s)¢’(s) € H(E) , Q(3) # 0 ip E with Q(0) = 1. Also
) g0l (100 ),
) - wE e )
Q) (¥l | s
Q0w @ e

In Theorem B, if we put 8 = 1/a , v = § = ¢ and change a to 1/a, the operator (7)
yields our operator for cur choice of @ and Q. Then

1Q'(») 7"(s) ¥'(z)
e+Regrr = *“‘{ v He- s m}
£ (oLl ) =
=+ Ref s+ - 1) b}
) SR (O]
=re{1+ m*( Y a(z)}

2 J - A(7) = max{0, - A(J)}
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from (18) ; (5) is satisfied. From (17) we obtain
e+Re( —ﬂ)*—'nc( '(,))<J<c+-l-

whence (3) and (4) are satisfied. (19) shows that (16) is fulfilled. Thus conditions in
Theorem B are all satisfied and the condusion follows as an application of Theorem B.

Remark 4. If we put ¢ = @ = 1 we obtain Theorem 1 of S.S.Miller ,
P.T.Mocanu, and M.O.Reade [3].

We now prove a thearem which serves as an example to Theorem 3.

Theorem 4. Suppose f € S° and |A| £ go where go is the positive root of
(e +1/a)e® + (2¢ - 1/a)g® — (4c® + 8¢+ 1/a)e+1/a =0, Iyl'ng in (0,1). Then

F defined by F(z) = {(c t+1/a)(1+As)° ¢ b f""(t)dl} , 2 € E belongs

2* 3 (14 at)H?

to S°.
Proof. Chomg(z):r:i;,]kl=a< 1 in Theorem 3. The condition
cRezﬂﬂslbecom
9(z)
4 e e
< </J

(20) 1+Az " 1-¢°

and the condition Re{(c— l)lJ—)'F 1+:$((—)!} 2 J = A(J) becomes

e—1 1-)z e=1 1l—-p e-
Re >
(1+.\;+1+,\z)-1+e+1+¢ 1+ e

_24+J—-(e+1/a)
5 2J

(21)

H we take J:ﬁ,thentheaboveinequlitywﬂlhddif

(12_"0)’ _-(f"'l/ﬂ’s __(_C_ﬂ
orT(g) = (c+1/a)d® + (2¢ — 1/a)? — (4> + 3¢+ 1/a)p+ 1/a 2 0. Let gy be the
positive root of T(g) = 0, in (0,1). Then for 0 € ¢ < gn the inequality T'(g) 2 0 halds
and 80 (20) and (21) hold. Also
' 1
ca+1

@ <

This implies that for ¢ £ {0, 0] , @ <
fallows from Theorem 3.

. ==-J<e+i. Hence Theorem 4
eca+1 a
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STRESZCZENIE

W pracy tej autorsy sajmuje sie operatorem catkowym Ag(f) = F, okreslonym waorem (1),
i dsialajacym na funkeje f holomorficzne w kale jednostiowym E. Znajdujs warunki na funkcjq g
i staly ¢ we waorse (1) zapewniajace prawdsiwodé implilacyi : f € My = F € M, , gdme M,
jest klasy Mocanu. Analogicany wymik otrsymujs dla klasy S® funkcji gwiasdsistych.

SUMMARY

The authocs deal with the integral operatar Ag(f) = F defined by the formula (1) and acting
on f halomorphic in the unit disk . They find conditions on the function g and the constant ¢ in
the formula (1) for the implication : f € M, = F € M, to be satisfied, where M, denotes the
Mocanu dass. An analogous result for the class S° of starlike functions was obtained.






