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Convolutions of Pre—starlike Functions with Negative Coefficients

Sploty funkcji pregwiazdzistych o ujemnych wap&czynnikach

(=]
Let S denote the class of functions of the form f(z) = 3 + Y anz" that are
n=3
analytic and univalent in the unit disc E = {2 : |3| < 1}. Let S*(A, B) denote the
class of fanctions f € S such that
1) zf'(s) _1+Aw(s)
f(a) ~ 1+Bu(a)’
for all z in E, where w(z) is analytic in £ with w(0) = 0 and |w(z)| < I, 3 € E.
oo 00
By the convolution (f » g) of two functions f(2) = ¥ @n3” and g(z) = ¥ dnz”, we
nm( n=(

-1<A<B<1,

mean the Hadamard product (f s 9)(z) = ozo: 8nby2". We say that f € R,(4,B),
n=0

0<a<l, if fesy € S*(A,B) where o5 =3/(1- :)’(';°’, the extremal function
for the dlass of functions starlike of order a. Let Rq[A, B| denote the class of functions
f € Ra(A, B) such that

f(z)=s—f:c,.s”. 8, 20.
nm=m3

We investigate, in this paper, the family Ra[A, B} in terms of its coefficients, and
then determine extreme paints, radii of univalence, starlikeness, and convexity, and
order of starlikeness. We also prove distartion theorems. Sharp results are obtained
in each case. From our results many of the results of earlier papers can be deduced.

We observe that for B=3and A =8(2y-1),(0€y<1, 0 <3< 1), the
dass Ra|A, B| reduces to the class of functions f which are a—prestarlike of arder 5
and type @ investigated in 1} and for B = 1, A = 24 — 1, the dass R,(A. B) reduces
to the ciass of prestarlike functions of order v, introduced by St.Ruscheweyh [3]. H
a=4, B=fandA=5(2y-1),(0 <7<, 0<B<1), then the dass R,[4,5|
is the class of functions f which are starlike of order 4 and type 8 studied in [2}. The
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dam R,[2y-1,1] = R[] was studied in [5]. Alsofora=4, B=1,and 4 =27-1,
(0 < v < 1), the dass Ry[A, B] becomes the family S*[4] studied in [4].
00

6a(z) may be rewritten in the form eo(2) =z + Y ¢(a,n)s", where
nm3

) da,m)= [J(k-2a)/(r-1) (n=2,8,...).
bm3

Note that ¢(a,n) is a decreasing function of @ , 0 S & € 1, with

o, a<}
"l_i‘ncxoc(a,u)=<-| Iyerae= b,
(0, a>}

Coefficient Inequalities. We begin by proving a characterization thearem for
the class Ro[4,B).

Theorern 1. [ € Ry|A,B| if and only if .

o [n(B + 1) = (A + 1)]e(a,n) an .
(3) > <1,
e B-A

Proof. Suppose f € Ry[A,B]. Then, setting g(z) = (f ¢ 84)(2), we have

29'(z) _ 1+ Aw(z)

E , -1€<A4<B<1,
glz) 1+ Buw(z)

where w is analytic in E with w(0) =0 and |w(z)| < 1, s € E. Thus we get

g9(z) - =¢'(2)
Big'(s)— Ag(z)

w(z)=

and |w(z)| < 1 implies

ﬁ (»— 1) e(a,n) 8pz""!

(4) I L <l1.

B-A- g (Bn— A)c(a,n) apz""!

n=3
Thnﬂ
f: (» = 1) e(a,n) anz""!

(5) Re [ n=l ] <1

(B - A)- Z’(Bn — A)ela,n)ansnt.
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We consider reai values of s aud take s = ¢ with 0 € r < 1. Then, for r = 0,
denominator of (5) is positive and so it is positive for all r with 0 < r < 1, since it
cannot vanish for z € E becanse w(s) is analytic for |s| < 1. Then (5) gives

i(a—l)e(a.n)c,.r"" <(B-A)- i(Bn—A)c(a,u)l,.r"" ,
i e s=r,0<r<],.
Letting 7 — 1 we get (3). i
Conversely, suppcee f(z) = z — 'E’an”, &n 2 0, satisfies (3). For |3| = r,
0 < r <1, we have, since "~ < 1,

f:[l(B +1) - (A+ Dje(a,n)enr""' < B -4

by (3). So we have

i(u = 1) e(a, ») c,.z""l < Z(s - 1) e(a,n) 8™ <
nml nm=l y

<(B-4)- i(B“ —A)e(a,m) e, <

< !(B - A)- i(Bs - A)e(a,n) e, .

Hence (4) holds and therefore follows that

3(f 0 00)(3) Sl Aw(z)
(fesa)(z) 14+ Buw(z)

where w is regular in E, w(0) =0 and |w(z)| < 1. That is, f € R,|4,B].

Corollary 1. If f(z)=3— 3 6ns" is in Rajd,B], then
an S (B-A)/in(B+1)-(A+ l)r:(:r, n) , 8 2 2, with equality for functions of the

form

Inlz)=2—(B—A)s"[|n(B +1) - (A+1)|e(ayn) .
Corollary 2. f€ S*[8] , 0 < 9 < 1, if and only if

Y n-ajen<i-yn.
n=3

Proof. The Carallary follows on choosing A = (23 —-1) , (0SS 9 <1) ,B =1
and @ = { in Thearem 1. Cordllary 2 is nothing but Thearem 2 in [4].
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Theorem 2. Let fi(3) = 5 - f an 3", f,(;) =z- }'f 8n 32" be in the
same class Ra[A,B],0 <a < }. Then (i w1 ],)(z) =z- E 8n,18n,32" is also in
the class Ro|A, BY.

Proof. By Theorem 1,

i MEwL = (Afjnd“")'”" <i, i=l3.

Therefore, noting that e(a,n) 2 ¢(a,2) for 8 22, a< 4, we gt

i B-A ;
(2B — A+ 1) e(a,2)

Using Theorem 1 and the above inequality we obtain

an="1420

3
SoIn(B+1) = (A+ 1) e(am) amyans S o e e

o (B - AP = 1
= P -AF)i-a P 4 frass.

Hence f) #; f € Ro[A,B),0<5a < }.

Theorem 8. The class Rq|A, B} is closed under conves linear combinationa.

Proof. Let f,9 € Ro|A,B] and let f(z) =z — E ans®, 9(3) = 3 - z: bas".
For g such that 0 < g < 1, it suffices to show that h(x)— 1- Q)f(z)+9'(x) : :eE
is also a function of Rq[A,B]. Now k(s) = 3 — E’[(l = 9)en + qbn]s". Applying
Theorem 1 to f,g € R,[A, B], we have
v [MB+1) — (A+1) el n){(1 - g)an+ub) _

— B-A
i‘: [»(B+1) 1(;4 + 1)} e(a, n) - V [w(B + 1) - ;.4 +Al)] e(a,n) b
A

n(l—q)

S(l-9)+n=1
This implies A € Ra[A, B].

It is shown in the following theorem that the extreme paints of the closed convex
hull of R,|A, B] are those that maximize the coefficients.

Theoremn 4. Define

(6) filz)=2 and  fa(s)=35—(B - A)"/[w(B+1) - (4+))|e(a,n),
n=23,4,....
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Then f € Ro|A,B] if and only if | can be expressed as f(z) = 3° mnfu(s), where
nml

o0
Bn20and ) ma=1.

Proof. I {(s) = }:“.‘ Bafn(s), then

[w(B +1) — (A + 1)]e(a,n) "B-A
Z B-4 P @B +1) - A+ Dle(arn) Z"“ ot

and hence f € R,[A, B).

Conversely, let f(z)=s— 3. 6n3™ € Ru|A, B].Define p, _[n(B+1) - (A+1)le(an)an
n=3

B-a
0D

n =23,..., and define p; = 1 — ¥ pn. We see from Theorem 1 that Epnsl
n=3 : nm)

and 80 gy 2 0. Since Bnfn(3) = Baz — €ns", 'z:l Bafa(s) =3— §"n3" = f(2)-

Distortion Theorerms. Now we determine bounds oo the modulus of f and f'
for £ € Ru|A, B).

Theorem §5. If f € RojA,B] , -1 € A < B <1, and aitherr <
3B-A+2 SB-A+4

= < =
S3@E=A+D) "050"2(3_-—.4-!-2) , then for |zl =r ,

[ 4
(B - A)” (B- A
M“{"‘" Ni-a)@B - A+ 1)} SVeNsr+ s g@s-a+10
(B - A)2

The bounds are sharp for the extremal function f3(3) = s — M =a)@B~A+T) "

Proof. Since [f(3)| € £ palfa(s)| < maxifa(s)l, we have

(B - A}

V@) < v+ max N T+ eten)

| ad

()] = |2 i fala) [ <ihe

R mB-y

2 [R(B+1) = (A+1)e(a,n)| ™
S gies (B— A)™ X
n [n(B+1)—(A+1)le(a.n)

Therefore to prove the thearem it is enough to show that

(M #(A,B,a,r,n) = (B = A)r"/[n(B +1) = (A +D]ele,n)
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is a decreasing fanction of s for 8 2 2 under the given conditions for & and r. From
the definition of ¢(a,s) in (2) we have e¢(a,n + 1) = [(» + 1 = 2a)/n]¢(a,n). Now
®(A,B,a,r,n) > &(A,B,a,r,n + 1) if and only if

(8) A(A, B,a,r,n) = (n+1-2a)[(n+1)(B+1)—=(A+1)]-ra|n(B+1)—(A+1)] 2 0.

For A and B fixed, the function A is a decreasing function of @ and r is an in-
creasing function of n. Hence A(4,B,a,r,n) > A(4A, B,ﬁﬁ-‘- 1,2) = 0 for
0 €< a < nﬁ-‘—% ,* < 1and a > 2. Similardy, A(4,B,a,rn) >
2 A(A,B,1, ,-{ﬁ,—-ﬁin.z) Ofor0<Sa<l,r< gM=4%E., and n 2 2. Therefare
m&}Q(A B,a,r,n) is attained for s = 2. This completes the proof of the theorem.
Rermark.The fanction f3(3)=0 in Theorem §, when 3=3(1-a)(2B-A+1)/(B-A).
Let z — 1~, we obtain |[f(z)| 2 r— (B - 4)?/2(1—a)(2B—A+1) forall sin B i
and only if 0 a< (3B - A+2)/2(2B—-A+1).

The upper bound for |f| when a > ﬂﬁz_ﬁ and r > (3B—-A+2)/2(2B—A+1)
is not kmown by the above theorem. We deal with this case in the following theorem.

(mo+1-32a){(mo+1)(B+1)— (A+1)]
mo[no(B +1) — (4 +1)|

Theorem 8. Define r(mno, A, B,a) =
I/f € Ra[A,B] ,-1SA<BZ1,
(200 +3)(B+1)—(A+1)

Ao +2) B+ -(A+1)]
(mo =2,3,...)

(2no +1)(B+1) - (A+1)

= APt DB +1) - (AP "S

and r(no, A,B,a) < r < 1, then
If(z)] S ¢+ (B—A)"¥ f[(mo + 1)(B+1) - (A+1)]e(amo+1) (ls]=7).

Equality holds for functions fn,41 given in (6).

Proof. To prove the theorem we have to determine when &(A4, B, a, r,8) defined
by (7), is maximized for # = ng + 1 > 2. The function @ attains its maximum value
at 8 = ng + 1 if the function, defined by (8), is negative for 8 = ny and positive
for s = no + 1, which occurs for r(no, 4, B,a) < r < r(no + 1,4, B,a). However,
r(no,A,B,a) < 1 if and only if @ > a¢ and r(mo + 1,4,B,a) 2 1 for a € a.
Therefore, m:.xQ(A,B,a,r,u) is attained at 8 = ng + 1 for r(ng,4,B,a) <r < 1

aad ap < o < a). Hence the theorem is proved.

Theorem 7. UIER,[A.B],-1$A<B$1,andeitherOSas-;-or
3B-A+2

r< m, then

o (B—A)r (B - A)r
(1-a)(2B-A4+1) Sfelstt (1-a)3B-A+1) "’
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(B — A)2?
2(1-a)(@B-A+1)°
Proof. By Theorem 4, we have

Equality holds for f3(z) = z ~

n(B — A)r"~ a(B - A)r"!

I PET) -+ l)lc(a SV ()l <1+ max S B +1) - (A + Dje(ayn)

) - n(B - A)r"!
It is sufficient to show tha.t V(A,B,a,r,n) = PE+) (A1 l)]c(a,n) a de-
creasing function of » for n 2 2. V¥ is a decreasing function if and only if

ki (A, B,a,r,n) = (»+1-2a){(n+1)(B+1)—(A+1)]-(»+1)r[n(B+1)—(A+1)] 2 0.

The function h; is a decreasing function of r and a for o < ;- and is an increasing
fanction of n. Therefore we have

bl(Aanavf’“)Z "l(A!B|%|192)=A+120
for0Sa<},r<landn22 Also

3B-A+12

> —— =
hl(A,B,d,f,u)_kl(A.B,l, 3(23_4-'-1),2) 0
faor0<a<l,r< ;ﬁ{ﬁy and n > 2. Hence x:g:W(A,E,a,r,n) is attained for

n = 2. This completes the proof.

Remark . Since Ay(4, B,1,r,2) <0 for r> dﬁ% and ¥(A, B, a,l,n) >

> V(A, B, a, 1,2) for each fixed @ > } and n = n(a) sufficiently large, Theorem 7 is
the best passible.

Radii of Univalence, Starlikeness, and Convexity. The function fa(z) =0,
in Theorem 5, when z = 2(1 — a)(2B — A + 1)/(B — A). It is, therefore, possible to
have f(z9) =0, 0 < |z0| < 1 for f in Ry[A,B]. Hence if f € R,{A, B], then f need
not be univalent. The next theorem discusses the question of univalence of members
of Ra|A, B).

Theorem 8. Ru[A,B|c S ifandonlyif 0SS &

Proof. Leta(*a.ndletf(z)—z—za,.z € R,[A, B]. Smcez+2 e,z €S

if E n|ans| < 1 (Theorem 1 in [4]), by Theorem 1, it is suffident to show for @ <
nm=3
that

9) [R(B + 1) = (A + lle(a.n)/(B-A)2n forn=2.3,4.... .

Bntxfa<;,c(a ») 2 ¢(3.8) =1 So it is enough to prove (9) for @ = §. When
a—;,(9)become.s

n(A+1)2A4A+1
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which is true for all s 2 2.
To prove the converse, we take fn(s) defined by (6). Then we have

fig)=1—-n(B - A" /[a(B+1)- (A+1)]e(a,n) =0

for
"1 = [8(B +1) = (A + 1)] e(a,n)/n(B - 4) ,

which is less than 1 for » sufficiently large becanse as 8 —.c0 , ¢(a, ) — 0 for @ > §.
Hence, fn(z) is not univalent for @ > } and s = n(a) sufficiently large. The proof is
complete.

Corollary 8. f € Ru|A, B] ia starlike if and only if 0S o < }.

o0
Proof. Since functions of the form s — ¥ a,2" , 8, > 0, are starlike if and
nm)
only if they are univalent [4], the cordllary followu by Theorem &
p We now proceed to determine the largest disc centred at the origin for functions
in R,[A,B] ,0<ag }, to be starike of specified arder g ,0 < g < 1.
o0
Theorem 9. Iff(s) =2~} 6ns" € Ra|A,B|,-1<A<B<1,0<a<{,
nm)
then [ is starkike of orderq ,0 < g < 1, in the disc |3| < ro, uhere
[u = 9)(n(B +1) - (A + D]e(a,m) ]/
(B—A)(n-1n) ;
Equality holds for the functions fn(3) defined in (6).

Proof. It suffices to show that |(zf'/f) — 1| < 1 — g for |z| < ry. But

E (»— l)‘nl"n-l b
I‘(_ <l-9 (|z|=r)
1- ‘E aq|s™!

zf'

if and only if

Zmlﬂr"_d(l

By Theorem 1 and Carollary 2, we need only find values of r for which

(:—')rn 1 (B —B(f:l)]c(a,u) o A

The above inequality will be true when r < ry. This completes the proof.

Corollary 4. [l / € R4|A,B| , -1 SA<B<L1,0<a<}, then f is conver
of ordery ,0< g < 1, in the disc |z| < r, where

_ e[l =m)n(B +1) = (A + 1)]e(a,n) 1fin=1)
n —mf[ 5= AInla s
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o0
Proof. Since f = z+ }_ a,2" is convex of order g if and anly if 2+ }m: na,z"=zf"
n=2

n=l
is starlike of order g, the proof fallows that of Theorem 9, with a,, replaced by na,,.
By taking § = 0 in Theorem 9, we may determine the radius of univalence (and
stailikeness) of Ra[A4, B] when a > {.

Corollary 6. If f € RalA.B) , -1 S A<B<1,}<a<,then f is
univalent and starlike for |z| < r3, where

n(B+1)-(4+ x)lc(a,.)ll M=y ‘

e S w(B — 4)

4

Order of Starlikeness. Since functions in R[4, B] , 0 < & < }, are stadike,
it i8 of interest to determine the order of starlikeness of this class of fanctions.

Theorem 10. UIGRQ[A,B],—ISA<B$I,OSGS;-, then [ is
starlike of order

_ (3B-A+1)(1-a)-(B-4A)
T (2B-A+1)(1-a)-(B-4)/2"°
(B~ A)z*
(1-a)2B-4+1) .
Proof. From Theorem 1 and Cordllary 2 , it is suffident to show , for

16 == £ ans” € Rald, B, thas bof nB+ Y- (4 + Dclovm)en oy i

6

Equality Aolds for the functions f3(z) = 3 — 2

) i .
(=——=)8n < 1. This will be true if

nm3 1-a

[n(B + 1) = (4 + 1)] elex, n)(1 — &) 20

#(A.B,a,n) = (B—A)(l—s) Z

»=23,...).

For fixed A and B, ¢ is a decreasing fanction of @ , 0 € &« < }, and an increasing
fanction of n , » > 2. So that

'(A,B,a.l) 2 ’(A'B| *,2) =1

for 0 < @ < } and » > 2. The Theorem is proved.
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STRESZCZENIE

Niech f(z) = 3 — z: 8n3" , @ 2 0, bedade funkcjy analitycany w kole jednostkowym i

niech 84 (z) = s/(l-s]’“"“’ 0 < & < 1. Autorsy badaje dase Ra[4, B| funkcji f takich, 2e
pochodna logarytmicana splotu f # 8, jest podpormdiowana homografii z (l+Az)/(l+Bz)
sme—1< A<B<I

SUMMARY

Lotf(z)-rz—za,.z , Gn 2 0, be analytic in the unit disk and let 85(2) =

= z/(l - z)’“"" 0 < a < 1. The authom are concerned with the dass RQIA B] of functions
f such that the logarithmic derivative of the convolution f 84 is subordinate to the homographry
2 (14 Az)/(14+ Bs),where =1 < A< B <1




