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New Remarks on Some Univalence Criteria

Nowe uwagi o pewnych kryteriach jednalistnoéci ‘

1. Introduction. This paper contains an improvement and extension of some
univalence criteria contained in my earlier papers [1] and [2]. Section 2 of this article
contains general results while Section 3 includes some corallaries. We conclude with
remarks and information about some misprints contained in [1] and [2], although they
were of no consequence for all results of the above mentioned articles.

We begin with some notations : C is the complex plane ; 4, BA denote the
dosure or the boundary of the set A € € = CU {00}, respectively ; R = (~o00, 00);
K(S;R) is an open disc of centre S and radius R ; E, = {2 : |x|<r}, r € (0:1],
E,=E; E'={we€O0:|w|>r21}, E{ =E°.

3. Main results. Before the formmlation of general results we shall give a trivial
but useful

Remark 1. Let D € C be a convex domain such that 8D does not contain any
rectilinear segment. Suppose that A € D and w(Ao) = AoA + (1 — Ao)B € D, where
A # B are fixed pointa. Then it is easy to see, that

a) [do€(0;1)] = w(A)€D  for each A € (A0;1),
b) [Ae>1] =>w(d)€D foreachd€(};l).
“boomnawtotheﬁxnmlaﬁonmdpmodsdgenqﬂx;sulu

Theorem 1. Lete21/2,e=a+6i, a>0, 8 €R be fired numbers and
let f(z) = 5+ a3z +--- and g(z) be regular in E with f'(z) # 0 for 3 € E. Suppose
that the follounng inegualities

1) 3f'(s) ae| _ ajo|

f&)e(z) a|~ o ° g
and b
Jaste 310)° oy [1£08)  200)] _ o] ol
@ s 2Lk (1 jepe < s

f(x) e al|”
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hold for s € E. ‘Thenj is univalent in E.

Proof. Thearem 1 was proved in [1] for @ > 1/2 by using Pommerenke’s subor-
dinations chains. It remains to prove Theorem 1 in the limit case a = 1/2 for which
the mentioned method cannot be applied directly. In this case from (1) and (2) we

obtain : .
/') _o| s
o TGle(s) " 3al < 2a
and
e 2Lz xf'(z) /o xf‘(z) :"(s)'l _|a_|
O T -kl )[I(z) 20| " 30| 7a

Let us put f,(z) = v~ f(rz), gr(2) = g(rz) where r € (0;1) is & fixed number. Then
(4) implies the fallowing ineguality

l"llla ‘f;(’) l"llla)[ f‘("} l":'(z) 8
fr(‘)’r(‘) fe(2) gr(z) 2

Let us set A,(z) = 5 f1(2)/[fr(3)gr(2)] » Br(2) = 5 f(2)/fr(2)+029.(2)/9.(z). From
the definition and by (3) 4,(z) € K (a/Za, {s|/2a) for 2 € E. Applying Remark 1,a)
with D = K(s/2a;[s|/2a) , A= A,(z), B=B.(z), Ao = |rz|'/® to conditions (3)
and (4) we obtain the following ineqnality

Jld

= 2a

()

4124 () + (1 1) B (5) - of20] 20

(6)

which is equivalent to the following one

(M

Is*/*[A.(z) = B (2)] + Ne(2) +1 - 0/20’ < lo}/2a

where N, (z) = B,(z) — 1. In what follows we will show that there exists ¢ € (0;1)
such that the inequalities '

ol TS
® ey - 5202 i
©) I+ 4, )+ (1 - |:|('+"/°)B,(z) - o/2a] < ll/2a

hold for z € E. In such a case by Theorem 1 for ¢ = (1 + ¢)/2 > 1/2
Jr(z) would be univalent in E. Inequality (8) %s an easy consequence of (3). From
(5) by Remark 1,a) we obtain (9) for |z| 2> £!/* becanse |rz|'/* < [zI(”‘)/" and
K(s/2a;|s|/2a) c K((1 + €)s/2a; (1 + €)|s|/2a) for each € € (0;1). Now in order
to complete the proaf we ought to show that there exists ¢ € (0;1) such that (9)
halds for [z] € r/°. From (3) we obtain z~!f(z)g(z) # 0 for z € E and hence

37 f,(2)gr(z) # 0 in E. Thus there exists M(r) > 0 such that |A(z) — B(z)| < M(r),

-




New Rermarks on Some Univalence Criteria 45

[N(s)] € M(r) . Moreover in view of N(0) = 0 and the Schwarz lemma
IN(z)] € M(r)|z]. Similady as (6) and (7) inequality (9) is equivalent to the fal-
lowing one

(10)

|s|**+9/2[A,(z) — B, (z)] + No(3) + 1 - (1 + €)o/2a| £ (1 + ¢)|e|/2a .

It fallows from the above considerations that

|2|**Y/=[4,(z) = B, (s)] + Ne(5)| S M(r)(Is|" )/ + |2]) < M(r)(|s]"/ + |2])

and (10) will be fulfilled for |z| S r*/® if M(r)(|2|'/® + |2|) is smaller than the distance
d(e) of the point w = 1 from the boundary of K((1+ ¢)e/2a; (1 + ¢)|s|/2a) and if the
point w = 1 is in that disc. Further we have d(¢) = (1 + ¢)|o|/2a - |(1 +&)o/2a—- 1| =
=26/ [(14¢) (VI+{B]a)i+/(T = &) ](1+e)? + (B]a]?)] > ¢/((1+¢) 1+ (B]a)?]=
= ecosy/(1+¢) wherey = args € (—x/2;x/2), ¢ = a+iB. Hence we deduce that the
paint w = 1 lies in the mentioned disc and d(e) > scos /2. Since o<§2m(b‘/z) =0
for 0 < b < 1 we obtain M(r)(}5|"/* + |3]) S M(r)(r'/** + r*/¢) < e coev/2 < d(e)
for |s| < £*/* and for sufficently small ¢ € (0;1). Thus (10) and so (9) is fulfilled in
E for this ¢ and then f, is univalent there. Obviously f(z) = um Jr(2) is univalent
in E as well. The proof of Theorem 1 has been completed.

Theorem 3.  Suppose that g(w) = © + bp + byw™! 4+ ... | g'(w) £ 0,

h(w) =14 ¢aw™" + .- are regular in E®\ {00} or E® respectively. For some fized
numbersa > 1/2, s=a+iB, a>0, B €R, let the following inequalities

vg(w) as|_ s
2t - s

b als

' oo/ 21 (®) — lole/e '!’(") 2N (®)] as
(1) el a(w)lﬂ(-v)'*(1 el )[g(w) h(ow) | o

Aold for w € E°. Then g is univalent in E°.

a

The main toal in our proof is the following

Porrmmerenke’s lesrama (3). Let ro € (0;1] and let f(3,¢t) = & (t)a +--- ,
ay(t) # 0, be regular in E,  for each t € [0;00) and locally absolutely continuous
in [0; 00), local uniformly in E,,. Suppose that for almost allt € [0;00) f satisfies
the equation fi(2,t) = zf.(z,t)p(z,¢) for z € E,,, where p(z,t) is regular in E and
Rep(z) > 0 for z € E. If |ay(t)] = oo for t — oo and if {f(z,t)/a1(t)} forms a
normal family in E,,, then for each t € [0;00) f(z,t) has a regular and univalent
extension to the whole disc E.

Proof of Theoremn 2. From the normalizations of ¢ and A we infer that (11')
has the form

3

|w|u/a[(’“ —1)en0™" + o(o"")] +14+O0(®™!) - — ﬂa_l w0 — 00
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and this in turn implies the fallowing inequality
(11%) & < naf2

From ¢’(w) # 0 for w € E° and (11) we obtain g(w)h(w) # 0 in E®. For ¢ € [0;00)
let us put formally

(12) f(l,‘) = '—(‘“—l,_-qll = (1 = .—iut)h(cnt‘.q)]—o i s€E.

Then we have

Ly e® =
(13) ’(C“I l)=7+h+h’¢ i TR ’
h(c"z") =1+ cnz'lc"'” +.--

Putting A(z;a,0,t) =1 = (1—¢"2%)A(e"s™!) = 7% — (I'— e~ 7%)(cpz"e™ """ +..)
we obtain that A(z;a,s,t) # 0 for s € E,, and for each t € [0; ), where ry € (0;1] is
a fixed number. For example r; may be chosen so that [e,2z" +c,.+,z"+' <1

for z € E,,. Then |A(s; 6,0,t)| 2 e~ — (1 — e=2%)e™o" =

= e 29[1 - (1 = e77%¢)e(39="2)] > 0 for t € [0; 00) becanse 2z — na < 0 by (11”)
Hence, for each fixed ¢t € [0; 00), each fixed single-valued bramch of f(z,t) is reg-
ular in E,,. Further from (13) we obtain &;(t) = [¢*¢?***]°. In what follows we
choose that fixed branch of power in ay(t) for which [ay(t)] = e™**¢?*®!, Thus
|ay(¢)] = e1**=119" — o0 a8 ¢t — 00 because @ > 1/2 and @ > 0. By the deﬁmtxon of
A(z; a,0,t) and (12), (13) we obtain

f(z,¢) 7
(14) _al(t) =

" (1+bpe="z + bysde=2% +...)[1 - (2 - l)(c..z"c"""‘ + eaprzem(nthes 4 g]"

It follows from (14) and from (11”) that there exists rp, 0 < ryp < 1y such that
{f(z,t)/as(t)} forms a normal family in E,,. Furthermgre, from the definition of
f(z,t), its regularty in E,, it follows that f{(z,¢) is uniformly bounded in B, for
t € [0;T], where T > 0 is an arbitrarily chosen fixed number. Thus f(z,t) is absalutely
continuous in [0; T}, unformly in E,,. Now fram (12) after some computations we
obtain '

fi(=,t)
5 filz,t)

=-0+4

=pla, )=

2a9e= 30! '(-‘u)*-(mu)
wet?g'(wet?)[1 — (1 — =39tk (wet?)| —.l[(l — e~39t)petog(wet?)A' (we'?)|

where w = ™! Thus

: F R ; 2a9
(1¢') P(z,t) = —o + 31 A(wet?) + (1 — e391) B(wet?)
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where A(s) = sg/()/s(h(=)], B(s) = sg(s)/s(s) + suh(s)/Ms). (1) imr
plies that A(we'®) € K(as/a;al0|/a) for each w € E° and t € [0;00). Mareover
A(w) # 0, because f'(w) # 0 for © € E°. It follows from (11') that the quantity
|m"|"f°A(wc") + (1 — |w[>*/2)B(we**) lies in K(as/a;ale|/a), and in addition
jwe*[3e/e = |w|ie/aeIat > g2e¢, Hence, by Remark 1,b) with Ag = |we!*[2*/® and
A = ¢®** we see that the denominator € of the r.h.s. of (14 ') lies in K (ao/a;a|s|/a)
for each w € E® and t € (0; ). Thus p(s,t) is regular in E° for each t € [0; o). The
inequality Rep(s,¢) > 0 and the relation d € K(es/a; a|s|/a) are equivalent by (14").
Then Rep(s,t) > 0 for 3 € E and ¢t € (0;00). Thus we see from the above consi-
derations that all assumptions of Pommerenke's lemma are fulfilled. Hence f(z,t) is
univalent in E for each ¢ € [0; 00) and s0 is g becanse f(3,0) = 1/g(s~"). The proof
of Theorem 2 has been completed.
In the specal case s = 2 Theorem 2 was proved in [2].

3. Corolleries. We infer from (1) that there exists a function w which is regular
in E and |w(z)| £ 1, w(z) # 1there and such that [1-w(z)]as/a = = f'(2)/1f(z)g(z)]
for 2 € E. Taking logarithm of both sides of the last equality and differentiating we
obtain by (2) after simple calculation the fallowing equivalent form of Theorem 1

Theorem 8. Let](:)—s+qx ceo, f'(3) #0, be regular in E. If there
exists a function w regular in E with |w(s)] £ 1, w(2) # 1 for 2 € E and such that
the inequality

prowe)=(1-fspere) {250 & [ 2 S (L8 2B Y <o

holds for some fized numbersa 2 1/2, s=a+if, a>0, BER then [ is
univalent in E. :

H we assume A(w) = v ¢/(w)/g(w) m Theorem 2 then by simple calculation we
obtain

Corollary 1.‘ Suppose that g(w) = 0 + by + b©~! +- - is regular in E° \ {oo}
and ¢’ (w) # 0 there. For some fired numbersa > 1/2, s=a+if, a>0, SER
let the followsing inequalbity

15) [fo/e + (1= fopre) (1 - o) 20D . (n+",7:‘3")1 e

alof
a

<

Rolds for w € E°. Then g is unvalent in E°.

Note that inequality (11) is satisfied automatically in this case because
0K (as/a; a|e|/a) passes through the paints w = 0, w = 2a and this in turn im-
plien that w ¢'(w)/[g(@)A(w0)] = 1 € K (as/ax; alo| /).
Now we will give Theorem 4 which is equivalent to Theorem 2. (11) implies that
there exists a function w, |[w(w)| €1, w(w) # 1, regular in E° and such that

2(1-w(w)) = o ()
(16) —(1-w( ))———g—,(_,),,(,,)
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Thus by simple calculation we obtain from (11’) and (16), similarly as previously, the
following
Theorem4. Letg(v) = o+b+bo~'+.--, ¢(v) #0, be regular in E°\ {0}

and let w(w), |w(w)] €1, w(w) # 1, be regular in E°. If for some fixed numbers
a>1/2, e=a+if, a>0, B€R the follouing ineguality

/o (o)

e L CaC ) |

holds for w € E° then ¢ is univalent in E°.

It is easily seen from (16) that w(oo) = 1 — ar/as. If we assume in Theorem 4
w(w) = const =1 — a/as then we obtain

Corollary 2. For the previous assumptions let the inequality
(17)

o111 afae) - (1 - o) {22 + 21— ) 2Dy 2 ON N

@) )
holds in E°. Then g is univalent in E°.

In the case # = @ = a = 1 we obtain from (17) the well known Becker’s univalence
cntenon, clp.ex [3], p.173.

Similarly as in Theorem 1 we come now to present the limit case @ = 1/2 in Theo-
" rem 2. It mmst be emphasized that this limit case is somewhat different than the men-
tioned one of Theorem 1. By definition of g and A we obtain w ¢’(w)/[g(w)h(w)] = 1
at the paint @ = oco. A simple geometrical observation tells us that the point
s = 1 lies on the 8K(o/2a, |sl/2¢). Thus (11) and the regularity of the quantity
w ¢’'(v)/[g(0)A(w)] in E® implies that A(w) = w ¢’(w)/g(w) in E°. This leads to the
limit case @ = 1/2of the Corollary 1. Hence (15) implies the following inequality

(18) "luc_}_ (- le"")[(l o) =23l :(’()) (1+ '::(')’])] - 8f2a

Let A(w) denote the expression in square bracket of (18). The function A(w) is
regular in E° and A(c0) = 1. If A(w) # 1 then there exists a wy € E° \ {00} such
that A(wg) = 1 — & for some ¢ € (0; 1). Further we obtain from (18)
|'0|"°+(1‘|001"°)A("0) = |wo|*/* + (1~ |wo|"/*)(1-€) = 1+e(jwo|*/* ~1) > 1.
Thus |wo'/® + (1 - |oo|‘/")A(wo) lies outside the disc K(s/2a;|s|/2a) in spite of
(18). Therefore A(n) = 1 in E°. Salving the suitable differential equation we obtain
#(v) = (¢+0'/*)" with |¢| < 1. These functions are regular in E°\{oo} and univalent
in E° if and only if ¢ = 0 or s = 1. Thus we obtain

< |o)/2ax .

Corollary 3. Fora=1/2, e=a+if, a>0, B € R only the function
#(w) = w satisfies Theorem 2 and in addition for s =1 g(w) = w + ¢; does s0.
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4. Conduding remerks.

Remmark 2. We infer from (2) and (11) for 3 = 0 or w = oo respectively that
1 € K(as/a;6sle|/a) if a 2 1/2 but this cannot be true if 0 < @ < 1/2. Then the
assumption @ 2> 1/2 is essential in our previous considerations.

Remmark 3. We shall iist here misprints in paper [1]. They are _
8813, £1(0,1) = 1° = 15 886.¢1" (¢)/1£ (¢)g(s)] 1 892, 21" (2)/ 1'(2)—2w' (2) /I —w(2)] 3
924,2/"(2)/ [ (s) 593", |o|* 5 93%,0/(2a—1) 3 93°,21"(2)/f' (2) - 2w’ (2} /e —w(3)] .
They ought to be replaced by f;(0,0) = 1° = 1 ; ¢f'(s)/f(s) 5 2f"(2)/f'(z) +
+3w'(2)/[€7=w(s)] 3 14217 (3)/f'(2) 5 |5 5 @/ (28—a) 5 21"(2)/ '(2)+ 2" (2) [ -
—w(z)] , respectively.

Remark 4. Similarly, there is b3 + b122¢~* on p.179'! and s € E° on p.180°
in the paper [2]. It should be boze™" + byz?e~2" and z € E, respectively.
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STRESZCZENIE

Waandniej w pracach (1] i {2] otrsymano dwa nastqpujece giéwne wynilki, ktére cytujo mg tutaj
agodme 3 omaczemam prayjetym w tych pracach. Dia ustalonych licsb @ > 1/2, s=a+18,
a>0, BE (-oo;oo), g = 24/0 prawdmwe sy twierdsema

Twierdzenie 3(1]. Mech f(z) = s + @323 + ---, f'(3) # 0, i g(2) beds funkeram
regularagme wE = {2 : |2] € 1} takime, 3¢ |z /'(z)/[Y(z)g(x)] —u/al <a|o|/a daz EE.
Jesels procs tego smachods mierdumosc

e 3S) e [£10) | 2gG)] _ae| _ aisl
(A) o e+ (1= o) [ M] | ok

dlaz €L to [ jest yednohsina w E

Twierdzenie 2(3]. Mechg(s) = ¢+bo+bis~ 4+, 9'(¢) # 0, 1b(s) = I+eas™24---
bedo fenkcrams regularnyme w E®\ {eo} = {¢ : [ > 1}\ {0} takme i [5¢(s)/Ig(s)R(s)] - -



50 Z.Lewandowska

—as/a| < als|/a dla¢ € E°. Jeiels procs tego sachodn nieroumosc

« $9'(s) 2y [s6) _ sH()] _ a0
(8) I ity * 4 bl [k <777 e

dla¢ EE® ia < @ tog jest jednoliatna w E°.

W nimiejsmej pracy I siq te wyniki dowodsac, e twierdaenie 2[1] zachodz réwnies
w praypadku granicanym @ = 1/2 (twierdzenie 1) oras, 3e twierdzenie 2{2] zachodz réwmies w
praypadku ogéloym, gdy h(¢) = 1 + €a¢™™ +-:-, 8 = 1,2,... . Réwnies dla twierdzenia 2
rozwaia siq preypadek granicany 6 = 1/2. W p.3 podaje sig pewne wnioski oras twierdzenia 3 i 4
réwnowasine, odpowiednio, twierdseniu 1 i 3. W zakodicaeniu fornmuje sig pewne uwag: oraz podaje
sig usterld drukarslie jakie znajdujy si¢ w pracach [1] i [2].

SUMMARY

In the papems (1],[2] the following results have been obtained. For fixed 6 > 1/2, 8 = a+18,
a> 0, B € (—oo;0), & = 2a/a we have .

Theorem 2(1]. Let f(z) = z+a3z? + -+, f'(z) # 0 and g(z) be regular in E = {z :
|2] < 1} and such that |2 f'(2)/[f(2)9(2)] — as/a| < a|s|/a for z € E. If the inequality (A)
holds for allz € E then f s snsvalent in E

Theorem 2(3). Letg(s) = ¢+8o+bis™ "+, 9'(s) # 0 and h(g) = 14+ea¢™3+- -+ be
regular in B\ {00} = {¢ : [¢| > 1}\ {00} and sech that ¢ l’(fl/[t(c)h(c)l-at/al < alo|/a
for ali¢ € E°. Then. if the mequality (B) Aolds for ¢ € E° and @ < @, the function g e
unsvalent in E°.

In this paper the above mentioned results are extended as follows. Theorem 2(1] holds in the
limiting case @ = 1/2 (Thm. 1) and Theorem 2{2] holds for A(¢) = l4+e€n¢ ™"+ -- . n = 1,2,...
Also the limiting case @ = 1/2 is considered. In Sect.3 some condusions and Thms 3,4 equivalent
to Thmms 1,2, resp. are given. Finally some misprints appearing in [1] and [2] are corrected.




