Inetytut Mescontylio
 Unimestet Manai Curio-Stodomitieg

J.KUREK

On a Horisontel Lift of a Linear Connection to the Bundle of Linear Prames

O podniesieniu horyzontalnym bonelogi liniowej do wiquati reperów liniowych

The purpose of this paper is to define a horizontal lift $\stackrel{H}{\nabla}$ of a linear connection ∇ on M into the total space $F M$ of the bundle of linear frames $\Sigma: \bar{F} M \rightarrow M$.

We define n-vertical liftp X^{0} of type $v_{\alpha}, \alpha=1, \ldots n$, to $F M$ of a vector field X on M and in the standard way the harizontal lift X^{H} to $F M$ of a vector field X on M. Later, we define a harizontal lift ∇^{B} on $F M$ of a linerr connection ∇ on M similarly as K. Yano for the tangent bandle in [3]. Our definition of the horizontal lift $\stackrel{H}{\nabla}$ on $F M$ is different than the one of L.A.Cordero and \mathbf{M} de Leon in [1].

We find a tomsion tensor and a curvature tensor of the connection $\vec{\nabla}$ on $F M$. Next, we describe a geodesic curve an $F M$ and a paralled displaoement of the horizontal lift A^{B} or the vertical lifts $A^{\nu_{0}}, a=1, \ldots n$ of the vector $A \in T_{3} M$ with respect to the connection $\stackrel{冃}{\nabla}$.

We atate that if ∇ is a metric connection for the metric tensor g on M, then the horizontal lift $\stackrel{H}{\nabla}$ is a metric connection for the diagonal lift G of g to $F M$.

1. Let M be an n-dimensional Hansdorff manifodd of the class C^{∞}. Let $T_{8} M$ be the tangent space at a point x. The ordered basis $\left\{X_{a}\right\}_{o=1, \ldots, n}$ of the tangent space $T_{\theta} M$ is a linear frame at x. We treat the linear frame $\left\{X_{\alpha}\right\}_{o=1, \ldots, n}$ at x as the image of the map

$$
\begin{equation*}
\varepsilon: B^{n} \rightarrow T_{\mathrm{z}} M, \quad \varepsilon\left(e_{\alpha}\right)=X_{\alpha}, \quad \alpha=1, \ldots n \tag{1.1}
\end{equation*}
$$

where $\left\{e_{\alpha}\right\}_{\alpha=1, \ldots, n}$ is the natoral basis of \mathbf{R}^{n}.
Let $F M$ be a set of all linear frames over M and let $\pi: F M \rightarrow M, \pi(\approx)=x$, be the canonical projection. Let $\left(U, v^{3}\right)$ be a local chart on M, where U is the coordinate neighbarhood of a point x. Each vector X_{0} of the frame ε can be expressed uniquely
in local chart $\left(U, x^{i}\right)$ in the form $X_{c}=x_{\alpha}^{i} \frac{\partial}{\partial x^{i}}$. Then, the induced local chart on $F M$ is of the form $\left(x^{-1}(U), x^{i}, x_{\alpha}^{i}\right)$.

If $\left(U, x^{\circ}\right)$ and $\left(U^{\prime}, x^{\circ}\right)$ are the local charts on M and $x^{0^{\circ}}=x^{0}\left(x^{\circ}\right)$ is a change of local coordinates, then for the induced local coordinates $\left(x^{-1}(\mathbb{U}), x^{i}, x_{0}^{i}\right)$ and $\left(x^{-1}\left(D^{\prime}\right), x^{\prime}, x_{a}^{\prime}\right)$ on FM we get :

$$
\begin{equation*}
x^{i^{i}}=x^{i^{i}}\left(z^{i}\right), \quad x_{\alpha}^{i^{\prime}}=A_{i}^{i^{i}} x_{\alpha}^{i}, \quad A_{i}^{i}=\frac{\partial x^{i}}{\partial x^{i}} . \tag{1.2}
\end{equation*}
$$

Thus we obtain the change of the basis of the tangent space $T_{w} F M$:

$$
\begin{align*}
& \frac{\partial}{\partial x^{i}}=A_{i}^{i^{\prime}} \frac{\partial}{\partial x^{j 0}}+A_{i j}^{i^{\prime}} x_{a}^{j} \frac{\partial}{\partial x_{a}^{j}} \\
& \frac{\partial}{\partial x_{a}^{j}}= \tag{1.3}
\end{align*}
$$

2. Let Γ be a linear connection on M as a connection in the linear frame bundle $\pi: F M \rightarrow M$ and ∇ be its covariant derivative. The harizontal distribation $\boldsymbol{H}_{\boldsymbol{r}}$ and the vertical distribution V on $F(U)=\pi^{-1}(U)$ are spanned by vectors D_{i} and $D_{i_{a}}, i=1, \ldots n, a=1, \ldots \Omega$ defined in local induced coordinates $\left(\pi^{-1}(U), x_{i}^{i}, x_{\alpha}^{i}\right)$ by formalas respectively :

$$
\begin{equation*}
D_{i}=\frac{\partial}{\partial x^{i}}-\Gamma_{i j}^{i j} x_{a}^{j} \frac{\partial}{\partial x_{\alpha}^{k}} \quad, \quad D_{i_{a}}=\frac{\partial}{\partial x_{\alpha}^{i}} . \tag{2.1}
\end{equation*}
$$

If we change the local induced coordinates (1,2), then the vectors D_{i}, D_{i} are related in the following way :

$$
\begin{equation*}
D_{i}=A_{i}^{i^{\prime}} D_{i^{\prime}} \quad, \quad D_{i_{a}}=A_{i}^{i^{\prime}} \delta_{a}^{B} D_{i^{\prime}} \tag{2.2}
\end{equation*}
$$

The dual coframe on $\pi^{-1}(\mathbb{U})$ with reapect to the frame $\left\{D_{i}, D_{i 6}\right\}_{6, a=1, \ldots n}$ consists of the 1 - forms $\left\{\eta^{j}, \eta_{p}^{j}\right\}_{j, B=1, \ldots n}$ defined in local induced coordinates by farmulas :

$$
\begin{equation*}
\eta^{j}=d x^{j} \quad ; \quad \eta_{B}^{j}=d x_{B}^{j}+\Gamma_{i k}^{j} z_{B}^{k} d x^{i} . \tag{2.3}
\end{equation*}
$$

There are two sets: $\left\{0^{\circ}\right\}_{\alpha=1, \ldots n}$ and $\left\{\omega_{\beta}^{\alpha}\right\}_{\alpha, \beta=1, \ldots n}$ of the 1 -forms on $F M$ with local expreasion:

$$
\begin{equation*}
\theta^{\alpha}=x_{j}^{\varrho} \phi^{j} \quad, \quad \omega_{\beta}^{\varrho}=x_{j}^{\sigma} v_{\beta}^{j} . \tag{2.4}
\end{equation*}
$$

The $1-$ form $\theta=0^{\alpha} \otimes e_{\alpha}$ is a canonical 1 -form on $F M$ and $\left\{e_{\alpha}\right\}_{a=1, \ldots . n}$ is a canonical basis of \mathbf{R}^{n}.
The 1 -form $\omega=\omega_{\beta}^{\alpha} \otimes \varepsilon_{\alpha}^{\theta}$ is a connection form on $F M$ and $\left\{\varepsilon_{\alpha}^{\theta}\right\}_{\alpha, \beta=1, \ldots n n}$ is a canonical basis of the Lie algebra ol($n, \mathbf{R})$.

Definition 1. A horizontal lift of the vector field X an M into the total space $F M$ the bundle of linear frames is a vector field X^{H} on $F M$ defined by :

$$
\begin{equation*}
\pi_{0} X^{H}=X \quad, \omega\left(X^{H}\right)=0 \tag{2.5}
\end{equation*}
$$

Definition 2. A vertical lift of type $0_{a}, a=1, \ldots \pi$ of a vector field X on M into the total space $F M$ is a vector field X^{*} 。 on $F^{\prime} M$ defined by :

$$
\begin{equation*}
x_{0} X^{v_{e}}=0, \omega\left(X^{v_{e}}\right)=\left[\varepsilon^{-1}(X)\right]^{\beta} \sigma_{\beta}^{\alpha}, \tag{2.6}
\end{equation*}
$$

where $\left[\varepsilon^{-1}(X)\right]^{\beta}$ denotes β-coordinate of vector $\varepsilon^{-1}(X) \in \mathbf{R}^{n}$ with respect to the basis $\left\{c_{\alpha}\right\}_{\alpha=1}$,...n.

If a vector field X on M is of the form $X=X \frac{\dot{\theta}}{\partial x^{i}}$ in local chart $\left(U, z^{j}\right)$, then the horizontal lift $X^{\bar{\pi}}$ and the vertical lifts $X{ }^{*}, a=1, \ldots m$ in the inducod local chart $\left(x^{-1}(U), x^{i}, x_{a}^{i}\right)$ are of the form:

$$
\begin{align*}
& X^{B}=X^{i} D_{i} \tag{2.7}\\
& X^{v_{0}}=X^{i} \delta_{\beta}^{\circ} D_{i,}
\end{align*}
$$

The vertical lifts of type $v_{\alpha}, \alpha=1, \ldots n$ for the vectors $\frac{\partial}{\partial x^{i}}$ are of the form : $\left(\frac{\partial}{\partial x^{i}}\right)^{\omega}=\frac{\partial}{\partial x_{\alpha}^{i}}$.

The vertical distribution V on $F M$ is spanned by n-vertical lifts of type v_{0} : $\left(\frac{\partial}{\partial x^{i}}\right)^{v_{0}}=\frac{\partial}{\partial x_{\alpha}^{i}}$ of n vectors of the natural basis.

We have:
Proposition 1. For the horizontal lift X^{H} and the vertical lifts $X^{V} \sigma, \alpha=1, \ldots \pi$ into $F M$ of vector fields X, Y on M, we have the relations:

$$
\begin{array}{ll}
{\left[X^{H}, Y^{B}\right]=[X, Y]^{H}-\gamma R(X, Y),} & {\left[X^{H}, Y^{v p}\right]=\left(\nabla_{X} Y\right)^{v_{p}}} \\
{\left[X^{v \rho}, Y^{H}\right]=[X, Y]^{\nu}-\left(\nabla_{X} Y\right)^{v},} & {\left[X^{v}, Y^{v p}\right]=0} \tag{2.8}
\end{array}
$$

where $\gamma R(X, Y)=R_{i j k}^{l} x_{o}^{k} X^{i} Y^{j} D_{l_{0}}$ and $R_{i j k}^{l}$ are the components of the curvature tensor of the linear connection Γ with the covariant derivative ∇.
3. Let ∇ be a covariant derivative on M of the linear connection Γ.

Definition 3. A horizontal lift of a linear connection ∇ on M into the total space $F M$ the bandle of linear frames is a linear connection $\stackrel{H}{\nabla}$ defined by :

$$
\begin{array}{ll}
{\stackrel{H}{\nabla_{X}}} Y^{H}=\left(\nabla_{X} Y\right)^{H}, & \nabla_{X R} Y^{0_{0}}=\left(\nabla_{X} Y\right)^{V_{e}} \tag{3.1}\\
\nabla_{X{ }_{a}} Y^{H}=0 & , \nabla_{X \nabla_{0}} Y^{v_{0}}=0
\end{array}
$$

for all vector fields X and Y on M.
The components of the horizontal lift $\boldsymbol{\nabla}$ of a connection ∇ an M with components $\Gamma_{i j}$ in the natural frame $\left\{\frac{\partial}{\partial x^{i}}\right\}$ are of the form in the adapted frame $\left\{D_{i}, D_{i_{0}}\right\}=D_{J_{1}}$
$\stackrel{B}{\nabla}_{D_{J}} D_{K}={ }_{\Gamma}^{\Gamma_{J K}} D_{L}$

We have the relations :

$$
\begin{align*}
\left(D_{i}, D_{i_{\alpha}}\right) & =\left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x_{\beta}^{j}}\right) \cdot\left[\begin{array}{cc}
\delta_{i}^{j} & 0 \\
-\Gamma_{i j}^{j} x_{b}^{k} & \delta_{j}^{j} \delta_{\beta}^{\alpha}
\end{array}\right] \tag{3.3}\\
D_{J} & =\partial_{\mu} \cdot B_{j}^{\mu}
\end{align*}
$$

Thus, the components of the linear connection ${ }^{H}$ in the natural frame $\partial_{\mu}=\left(\frac{\partial}{\partial z^{i}}, \frac{\partial}{\partial x_{\alpha}^{i}}\right)$ are of the form: $\nabla_{O_{\nu}} \partial_{\nu}=\stackrel{H}{F}_{\mu \nu}^{r} \partial_{r}$,

$$
\begin{align*}
& \stackrel{H}{F}_{\mu \nu}^{r}=B_{K}^{r} \stackrel{H}{\Gamma}{ }_{K}^{K} \tilde{B}_{\mu}^{J} \tilde{B}_{\nu}^{L}-\left(D_{J} B_{L}^{r}\right) \tilde{B}_{\mu}^{\prime} \dot{B}_{\nu}^{L}, \quad B_{J}^{\mu} \tilde{B}_{\nu}^{J}=\delta_{\nu}^{\mu} \text {, } \\
& {\stackrel{H}{F_{i j}}}_{k}^{k}=\Gamma_{i j}^{k}, \quad \stackrel{H}{F}_{i j}^{k_{0}}=\partial_{i} \Gamma_{j i}^{k} x_{a}^{j}+\Gamma_{i j}^{k} \Gamma_{j m}^{j} x_{a}^{m}-\Gamma_{l m}^{k} \Gamma_{i j}^{\prime} x_{a}^{m}, \tag{3.4}
\end{align*}
$$

A tonsion tensor ${ }^{\frac{B}{T}}$ of the linear connection $\stackrel{B}{\nabla}$ is of the form :

$$
\begin{array}{ll}
{ }_{T}^{H}\left(X^{H}, Y^{H}\right)=(T(X, Y))^{R}+\gamma R(X, Y) & ,{ }_{T}^{H}\left(X^{H}, Y^{\varphi \rho}\right)=0 \\
T\left(X^{\varphi}, Y^{H}\right)=(T(X, Y))^{\varphi /} & ,{ }_{T}^{H}\left(X^{\nu}, Y^{\nu \rho}\right)=0 . \tag{3.5}
\end{array}
$$

A curvature tensor ${ }^{R} R$ of the linear connection ${ }^{\nabla}{ }_{\nabla}$ is of the form :

$$
\begin{aligned}
& { }_{R}^{H}\left(X^{H}, Y^{H}\right) Z^{H}=(R(X, Y) Z)^{H} \quad, \quad{ }_{R}^{H}\left(X^{H}, Y^{H}\right) Z^{\varphi \theta}=(R(X, Y) Z)^{0} \\
& \stackrel{H}{R}\left(X^{0_{0}}, Y^{B}\right) Z^{H}=0 \quad, \quad{ }_{R}^{H}\left(X^{H}, Y^{\nu_{0}}\right) Z^{H}=0 \\
& \stackrel{H}{R}\left(X^{\nu_{0}}, Y^{\nu_{\rho}}\right) Z^{H}=0 \quad, \stackrel{H}{R}\left(X^{\nu_{0}}, Y^{\nu_{\rho}}\right) Z^{\nu_{7}}=0
\end{aligned}
$$

Thus, we have:
Proposition 2. The horizontal lift $\bar{\nabla}$ is torsionless connection on $F M$ iff a linear connection ∇ on M sactisfies : $T=0$ and $R=0$. A curvature tensor $\stackrel{A}{R}$ of the
horizontal lifs $\stackrel{H}{\nabla}$ on $F M$ vanishes iff a curvature tensor R of a linear connection ∇ on M vanishes.
4. Let \dot{C} be a geodesic curve on the total space $\overline{F M}$ with respect to the horirontal lift $\stackrel{R}{\nabla}$. In indụced coordinates the equations of a geodeaic carve $C^{\mathcal{C}}: I \rightarrow F M$ $\bar{C}: t \rightarrow \delta^{\delta}(t)=\left(x^{\hat{c}}(t), x_{0}^{i}(t)\right)=\left(x^{\lambda}(t)\right)$ are of the form :

$$
\begin{equation*}
\frac{e^{\lambda}}{d t^{2}}+F_{\mu \nu}^{H} \frac{d x^{\nu}}{d t} \frac{d x^{\nu}}{d t}=0 . \tag{4.1}
\end{equation*}
$$

Thus, using the formulas $(3,4)$ for $F_{\mu \nu} \lambda_{\nu}$ we get :

$$
\begin{align*}
& \frac{d^{2} x^{j}}{d t^{2}}+\Gamma_{j k}^{i} \frac{d x^{j}}{d \xi} \frac{d x^{k}}{d \xi}=0 \\
& \frac{d^{3} x_{\alpha}^{j}}{d t^{2}}+\left(\partial_{l} \Gamma_{m k}^{i} x_{\alpha}^{k}+\Gamma_{j l}^{i} \Gamma_{m k}^{j} x_{\alpha}^{k}-\Gamma_{j k}^{i} \Gamma_{l m}^{j} x_{\alpha}^{h}\right) \frac{d x^{k}}{d t} \frac{d x^{m}}{d t}+ \tag{4.2}\\
& \quad+\Gamma_{l m}^{i} \frac{d x^{s}}{d t} \frac{d x_{\alpha}^{m}}{d t}+\Gamma_{m l}^{i} \frac{d x_{\alpha}^{m}}{d t} \frac{d x^{b}}{d t}=0
\end{align*}
$$

We denote :

$$
\begin{equation*}
\frac{D x_{\alpha}^{i}}{d l}=\frac{d x_{\alpha}^{i}}{d t}+\Gamma_{i m}^{i} x_{a}^{m} \frac{d x^{t}}{d t} . \tag{4.3}
\end{equation*}
$$

Then if we assume that :

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{3}}+\Gamma_{j k} \frac{d x^{j}}{d t} \frac{d x^{k}}{d t}=0 \quad, \quad \Gamma_{j k}^{i}=\Gamma_{k j}^{i} \tag{4.4}
\end{equation*}
$$

we obrain :

$$
\begin{align*}
\frac{D^{2} x_{\alpha}^{0}}{d b^{2}} & =\frac{D}{d b}\left(\frac{D x_{\alpha}^{i}}{d \ell}\right)= \\
& =\frac{d^{2} x_{\alpha}^{j}}{d^{2}}+\left(\partial_{l} \Gamma_{m k}^{i}+\Gamma_{m j}^{i} \Gamma_{u k}^{j}-\Gamma_{j k}^{i} \Gamma_{l m}^{j}\right) x_{\alpha}^{k} \frac{d x^{l}}{d b} \frac{d x^{m}}{d b}+ \tag{4.5}\\
& +\Gamma_{l m}^{i} \frac{d x^{b}}{d b} \frac{d x_{\alpha}^{m}}{d t}+\Gamma_{m l}^{i} \frac{d x_{\alpha}^{m}}{d t} \frac{d x^{l}}{d l} .
\end{align*}
$$

Thas, we have :
Proposition 3. A geodesic curve on the total space FM with respect to the horizontal lift ${ }^{H}$ of a linear connection ∇ on M with tensor torsion $T=0$, has in induced coordinates on FM the equations of the form:

$$
\begin{equation*}
\frac{E^{x^{i}}}{d t^{2}}+\Gamma_{i m}^{i} \frac{d x^{l}}{d t} \frac{d x^{m}}{d t}=0 \quad, \quad \frac{D^{2} x_{a}^{i}}{d t^{2}}=0 . \tag{4.6}
\end{equation*}
$$

Proposition 4. A curve \tilde{C} on the total space $F M$ of the bundle of linear frames is a geodesic curve with respect to the horizontal lift $\stackrel{H}{\nabla}$, if projection $C=\pi(\bar{C})$ on M is a geodesic curve on M with respeet to ∇ and the second covariant derivative of each vector $X_{\alpha}(t)=\left.x_{\alpha}^{k}(t) \frac{\partial}{\partial x^{k}}\right|_{C(t)}$ of the frame u along C defined by \tilde{O}° vanishes.

Let \bar{X} be a vector field defined along the carve \tilde{O} on $F M$. The vector field $\dot{X}=\tilde{X}^{\lambda} \frac{\partial}{\partial x^{\lambda}}$ along the curve $\tilde{\tilde{O}}(t)=\left(\tilde{X}^{\lambda}(t)\right)$ is parallel with respect to the horizontal lift ${ }^{H}$ if the equations are satisfied :

$$
\begin{equation*}
\frac{d \tilde{X}^{\lambda}}{d t}+\stackrel{H}{F}_{\mu \nu}^{\lambda} \frac{d x^{\mu}}{d t} \tilde{X}^{\nu}=0 . \tag{4.7}
\end{equation*}
$$

If a vector field $\tilde{X}=X \frac{\partial}{\partial x_{\alpha}^{i}}$ on $F M$ is the vertical lift of type v_{α} of a vector field $X=X \frac{\partial}{\partial x^{7}}$ on M, then the equations $(4,7)$ reduce to:

$$
\begin{equation*}
\frac{d X^{\prime}}{d}+\Gamma_{j h}^{j} X^{k} \frac{d x^{j}}{d l}=0 . \tag{4.8}
\end{equation*}
$$

If a vector field $\tilde{X}=X^{i} D_{i}$ an $F M$ is the horizontal lift of a vector field $X=X^{i} \frac{\partial}{\partial x^{i}}$ on M, then the equations $(4,7)$ reduce to :

$$
\begin{align*}
& \frac{d X^{i}}{d l}+\Gamma_{j k}^{j} X^{k} \frac{d x^{j}}{d l}=0, \\
& -\Gamma_{j k}^{i} x_{o}^{k}\left(\frac{d X^{j}}{d l}+\Gamma_{l m}^{j} X^{m} \frac{d z^{z}}{d t}\right)=0 . \tag{4.9}
\end{align*}
$$

Thus, we have :
Proposition 5. The parallel displacement of the vertical lift A^{ν} of type v_{α} or the horizontal lift A^{B} of a vector $A \in T_{C(0)} M$ along the curve C on $F M$ with respect to the horizontal lift of a linear connection ∇ coincides with the vertical lift of type v_{α} or the horizonsal lift of the parallel displacement of a vector A along the curve $C=\pi(\tilde{C})$ with respect to a linear connection ∇ on M :

$$
\begin{equation*}
\tilde{C}\left(A^{\nu_{0}}\right)=(C(A))^{v_{e}}, \quad \tilde{C}\left(A^{H}\right)=(C(A))^{H} . \tag{4.10}
\end{equation*}
$$

5. Let g be a metric tensor on M. We consider a diagonal lift G of g to $F M$ with respect to a linear connection ∇. If in local chart $\left(U, x^{i}\right)$ the metric tensor g is of the form $g=g_{i j} d x^{i} \otimes d x^{j}$, then the diagonal lift G of g with reapect to adapted coframe $(2,3)$: $\left\{\eta^{\prime}, \eta_{0}^{j}\right\}$ on $F M$ is of the form:

$$
\begin{equation*}
G=g_{i j} \eta^{i} \otimes \eta^{j}+\delta^{\alpha \beta} g_{i j} \eta_{\alpha}^{i} \otimes \eta_{\beta}^{j} . \tag{5.1}
\end{equation*}
$$

We have the following formalas for the covariant derivative of the diagonal lift G of g with respect to the horizontal lift $\stackrel{H}{\nabla}$ of ∇ :

$$
\begin{align*}
& \left(\nabla_{X^{H}} G\right)\left(Y^{H}, Z^{H}\right)=\left(\nabla_{X g}\right)(Y, Z) \quad, \quad\left(\nabla_{X^{H}} G\right)\left(Y^{v_{e}}, Z^{R}\right)=0 \\
& \left(\nabla_{X^{H}} G\right)\left(Y^{v_{\bullet}}, Z^{v_{\rho}}\right)=\delta^{\alpha \beta}\left(\nabla_{X g}\right)(Y, Z) \quad, \quad\left(\nabla_{X-G}\right)\left(Y^{H}, Z^{H}\right)=0 \tag{5.2}\\
& \left(\nabla_{X \cdot G} G\right)\left(Y^{\nu}, Z^{H}\right)=0 \\
& \text {, } \left.\stackrel{H}{\nabla}_{X=} G\right)\left(Y^{*}, Z^{\nu^{\gamma}}\right)=0 \text {. }
\end{align*}
$$

Thus, we have :
Proposition 6. If g is a metric tensor on a manifold M and ∇ is its metric connection, then the horizontal lift $\stackrel{H}{\nabla}$ is a metric connection on $F M$ for the diagonal lift G of g.

REFERENCES

[1] Cordero, LA, de Leon , M. .Horisoneal lifi of connection to the frame bendle, Boll. Un. Mat. Ital., 6 (1984), 223-240
[2] Kurek, J., On a horizontal lift of a linear connection into linearised tangent bundle of second onder, An. Ştūņ. Univ. "Al. L Cuxip" Lasi Sect. I a Mat. (N.S.), to appear.
[3] Yano, K. , Isihara, S. , Tangent and Cotangent Bendles, Marod Dokker Inc., Now York 1973

STRESZCZENIE

W pracy tej dafiniuje cie podniecianie horyzomtalno $\stackrel{\|}{\nabla}$ konelaji liniomej ∇ na rommitofaci M do wiazti reperów liniowych FM analogicanie jak K. Yaso [3] do wieztio ntyomej.

W tym celu olcefla ain w nowy uposobb de pola moltorowego X na M a podnieried mand tylalaych $\mathrm{X}^{\mathrm{V}_{0}}, a=1, \ldots n$ oras w standardowy sposbb podriesiecie horymontalne X^{H}
 niesienia horyzontalnogo $\stackrel{H}{\nabla}$ ma $F M$.

SUMMARY

In this paper a borizontal lifi $\stackrel{B}{\nabla}$ of a linoar connoction ∇ on a manifold M into she total apece $F M$ of the bundle of linear frames $\pi: F M \rightarrow M$, in a way similar to that of K. Yano, is defined.

The torsion tensor and the curvature wneor of the connection $\stackrel{H}{\nabla}$ has boen deternined, es wall a geodesios and paralled dieplacammat of the horisontal lift with reapect to $\stackrel{H}{\nabla}$ are determined

