ANNALES UNIVERSITATIS MARIAE CURIE-SKLODOWSKA

LUBLIN-POLONIA

VOL XII, 4

SECTIO A

1987

Instytut Matematyki Umwegytet Marii Curie-Skłodowskiej

J.KUREK

On a Horisontal Lift of a Linear Connection to the Bundle of Linear Frames

O podniesieniu horyzontalnym koneksji liniowej do wiązki reperów liniowych

The purpose of this paper is to define a horizontal lift ∇ of a linear connection ∇ on M into the total space FM of the bundle of linear frames $\pi : FM \to M$.

We define *n*-vertical lifts $X^{*\circ}$ of type v_{α} , $\alpha = 1, ..., n$, to *FM* of a vector field X on M and in the standard way the horizontal lift X^H to *FM* of a vector field X on M. Later, we define a horizontal lift ∇ on *FM* of a linear connection ∇ on M similarly as K. Y and for the tangent bundle in [3]. Our definition of the horizontal lift ∇ on *FM* is different than the one of L. A. Cordero and M. de Leon in [1].

We find a tomion tensor and a curvature tensor of the connection ∇ on FM. Next, we describe a geodesic curve on FM and a parallel displacement of the horizontal lift A^H or the vector $A \in T_sM$ with respect to the connection ∇ .

We state that if ∇ is a metric connection for the metric tensor g on M, then the horizontal lift $\stackrel{H}{\nabla}$ is a metric connection for the diagonal lift G of g to FM.

1. Let M be an *n*-dimensional Hansdorff manifold of the class C^{∞} . Let $T_{x}M$ be the tangent space at a point x. The ordered basis $\{X_{\alpha}\}_{\alpha=1,...,n}$ of the tangent space $T_{\alpha}M$ is a linear frame at x. We treat the linear frame $\{X_{\alpha}\}_{\alpha=1,...,n}$ at x as the image of the map

(1.1) $\mathbf{u}: \mathbb{R}^n \longrightarrow T_s M$, $\mathbf{u}(e_\alpha) = X_\alpha$, $\alpha = 1, \dots n$

where $\{e_{\alpha}\}_{\alpha=1,\dots,n}$ is the natural basis of \mathbb{R}^{n} .

Let FM be a set of all linear frames over M and let $\pi : FM \to M$, $\pi(u) = x$, be the canonical projection. Let (U, x') be a local chart on M, where U is the coordinate neighborhood of a point x. Each vector X_{α} of the frame u can be expressed uniquely

in local chart (U, z^i) in the form $X_{\alpha} = z^i_{\alpha} \frac{\partial}{\partial z^i}$. Then, the induced local chart on FM is of the form $(\pi^{-1}(U), z^i, z^i_{\alpha})$.

If (U, x^i) and $(U', x^{i'})$ are the local charts on M and $x^{i'} = x^{i'}(x^i)$ is a change of local coordinates, then for the induced local coordinates $(\pi^{-1}(U), x^i, x^i_{\alpha})$ and $(\pi^{-1}(U'), x^{i'}, x^{i'}_{\alpha})$ on FM we get:

(1.2)
$$x^{i'} = x^{i'}(x^i) \quad , \quad x^{i''}_{\alpha} = A^{i'}_i x^i_{\alpha} \quad , \quad A^{i'}_i = \frac{\partial x^{i'}}{\partial x^i}$$

Thus we obtain the change of the basis of the tangent space $T_u FM$:

(1.3)
$$\begin{aligned} \frac{\partial}{\partial x^{i}} &= A^{i'}_{i} \frac{\partial}{\partial x^{i'}} + A^{i'}_{ij} x^{j}_{\alpha} \frac{\partial}{\partial x^{i'}_{\alpha}} \\ \frac{\partial}{\partial x^{i}_{\alpha}} &= A^{i'}_{i} \delta^{\beta}_{\alpha} \frac{\partial}{\partial x^{i'}_{\beta}} \end{aligned}$$

2. Let Γ be a linear connection on M as a connection in the linear frame bundle $\pi : FM \to M$ and ∇ be its covariant derivative. The horizontal distribution H_{Γ} and the vertical distribution V on $F(U) = \pi^{-1}(U)$ are spanned by vectors D_i and $D_{i_{\alpha}}, i = 1, ..., \alpha = 1, ..., \alpha$ defined in local induced coordinates $(\pi^{-1}(U), x^i, x^i_{\alpha})$ by formulas respectively:

(2.1)
$$D_i = \frac{\partial}{\partial x^i} - \Gamma_{ij}^{\ \ k} x^j_{\alpha} \frac{\partial}{\partial x^k_{\alpha}} , \quad D_{i_{\alpha}} = \frac{\partial}{\partial x^i_{\alpha}}$$

If we change the local induced coordinates (1,2), then the vectors D_i , D_{i_o} are related in the following way:

$$(2.2) D_i = A_i^{i'} D_{i'} , D_{i_{\alpha}} = A_i^{i'} \delta_{\alpha}^{\beta} D_{i'_{\alpha}}$$

The dual coframe on $\pi^{-1}(U)$ with respect to the frame $\{D_i, D_{i_0}\}_{i_0=1,...,n}$ consists of the 1- forms $\{\eta^j, \eta^j_k\}_{j_0=1,...,n}$ defined in local induced coordinates by formulas :

(2.3)
$$\eta^{j} = dx^{j} \quad ; \quad \eta^{j}_{\beta} = dx^{j}_{\beta} + \Gamma^{j}_{ik} x^{k}_{\beta} dx^{i}$$

There are two sets : $\{\theta^{\alpha}\}_{\alpha=1,...n}$ and $\{\omega_{\beta}^{\alpha}\}_{\alpha,\beta=1,...n}$ of the 1-forms on FM with local expression :

(2.4)
$$\theta^{\alpha} = x_{j}^{\alpha} \pi^{j} , \quad \omega_{\beta}^{\alpha} = x_{j}^{\alpha} \pi_{\beta}^{j}$$

The 1-form $\theta = \theta^{\alpha} \otimes e_{\alpha}$ is a canonical 1-form on FM and $\{e_{\alpha}\}_{\alpha=1,...,n}$ is a canonical basis of \mathbb{R}^{n} .

The 1-form $\omega = \omega_{\beta}^{\alpha} \otimes r_{\alpha}^{\beta}$ is a connection form on FM and $\{r_{\alpha}^{\beta}\}_{\alpha,\beta=1,...,n}$ is a canonical basis of the Lie algebra $gl(n, \mathbb{R})$.

Definition 1. A horizontal lift of the vector field X on M into the total space FM the bundle of linear frames is a vector field X^H on FM defined by :

$$(2.5) \qquad \pi_{\bullet} X^{H} = X \quad , \quad \omega(X^{H}) = 0$$

Definition 2. A vertical lift of type v_{α} , $\alpha = 1, \ldots n$ of a vector field X on M into the total space FM is a vector field $X^{v_{\alpha}}$ on FM defined by :

(2.6)
$$\boldsymbol{\varepsilon}_{\bullet} X^{\boldsymbol{v}_{\bullet}} = 0$$
, $\boldsymbol{\omega}(X^{\boldsymbol{v}_{\bullet}}) = [\boldsymbol{u}^{-1}(X)]^{\beta} \boldsymbol{\varepsilon}_{\beta}^{\alpha}$

where $[s^{-1}(X)]^{\beta}$ denotes β -coordinate of vector $s^{-1}(X) \in \mathbb{R}^n$ with respect to the basis $\{c_{\alpha}\}_{\alpha=1,\dots,n}$.

If a vector field X on M is of the form $X = X^i \frac{\partial}{\partial x^i}$ in local chart (U, x^i) , then the horizontal lift X^{ii} and the vertical lifts X^{i_α} , $\alpha = 1, \ldots$ in the induced local chart $(\pi^{-1}(U), x^i, x^i_\alpha)$ are of the form:

(2.7)
$$\begin{aligned} X^{H} &= X^{*}D_{i} \\ X^{v_{\bullet}} &= X^{i}\delta^{o}_{\beta}D_{i} \end{aligned}$$

The vertical lifts of type v_{α} , $\alpha = 1, \dots n$ for the vectors $\frac{\partial}{\partial x^i}$ are of the form : $\left(\frac{\partial}{\partial x^i}\right)^{v_{\alpha}} = \frac{\partial}{\partial x^i_{\alpha}}$.

The vertical distribution V on FM is spanned by n-vertical lifts of type v_a : $\left(\frac{\partial}{\partial x^i}\right)^{v_a} = \frac{\partial}{\partial x^i_{\alpha}}$ of n vectors of the natural basis.

We have :

(3.1)

Proposition 1. For the horizontal lift X^H and the vertical lifts X^{v_o} , $\alpha = 1, ..., n$ into FM of vector fields X, Y on M, we have the relations:

(2.8) $[X^{H}, Y^{H}] = [X, Y]^{H} - \gamma R(X, Y) , \qquad [X^{H}, Y^{v_{\theta}}] = (\nabla_{X} Y)^{v_{\theta}}$ $[X^{v_{\theta}}, Y^{H}] = [X, Y]^{v_{\theta}} - (\nabla_{X} Y)^{v_{\theta}} , \qquad [X^{v_{\alpha}}, Y^{v_{\theta}}] = 0$

where $\gamma R(X,Y) = R_{ijk} x_{\alpha}^{k} X^{i} Y^{j} D_{l_{\alpha}}$ and R_{ijk}^{l} are the components of the curvature tensor of the linear connection Γ with the covariant derivative ∇ .

3. Let ∇ be a covariant derivative on M of the linear connection Γ .

Definition 3. A horizontal lift of a linear connection ∇ on M into the total space FM the bundle of linear frames is a linear connection ∇ defined by :

$$\begin{aligned} \overset{H}{\nabla}_{X^{H}}Y^{H} &= (\nabla_{X}Y)^{H} \quad , \qquad \overset{H}{\nabla}_{X^{H}}Y^{\bullet_{a}} &= (\nabla_{X}Y)^{t} \\ \overset{H}{\nabla}_{X^{\bullet_{a}}}Y^{H} &= 0 \qquad , \qquad \overset{H}{\nabla}_{X^{\bullet_{a}}}Y^{\bullet_{\beta}} &= 0 \end{aligned}$$

for all vector fields X and Y on M.

The components of the horizontal lift ∇ of a connection ∇ on M with components $\Gamma_{ij}^{\ b}$ in the natural frame $\left\{\frac{\partial}{\partial x^i}\right\}$ are of the form in the adapted frame $\{D_i, D_{i_*}\} = D_J$,

 $\begin{array}{l} \overset{H}{\nabla}_{D_{J}}D_{K} = \overset{H}{\Gamma}_{JK}^{L}D_{L} \\ (3.2) \qquad \qquad \overset{H}{\Gamma}_{ij}^{h} = \Gamma_{ij}^{h} , \quad \overset{H}{\Gamma}_{ij}^{h,\rho} = \overset{H}{\Gamma}_{ija}^{h} = 0 , \quad \overset{H}{\Gamma}_{ija}^{h,\rho} = \delta_{\alpha}^{\beta}\Gamma_{ij}^{h} , \\ \overset{H}{\Gamma}_{iaj}^{h} = 0 , \quad \overset{H}{\Gamma}_{iaj}^{h,\rho} = 0 , \quad \overset{H}{\Gamma}_{iaj\rho}^{h} = 0 , \quad \overset{H}{\Gamma}_{iaj\rho}^{h,\rho} = 0 \end{array}$

We have the relations :

(3.3)
$$(D_i, D_{i_n}) = \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial x^j_{\beta}}\right) \cdot \begin{bmatrix} \delta_i^j & 0\\ -\Gamma_{ik}^j x^k_{\beta} & \delta_i^j \delta_{\beta}^{\alpha} \end{bmatrix}$$
$$D_J = \partial_{\mu} \cdot B_J^{\mu}$$

Thus, the components of the linear connection $\stackrel{H}{\nabla}$ in the natural frame $\partial_{\mu} = \left(\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial x^{i}}\right)$ are of the form : $\stackrel{H}{\nabla}_{\partial_{\mu}}\partial_{\nu} = \stackrel{H}{F}_{\mu\nu}\partial_{\tau}$,

$$\begin{array}{rcl} & & & \stackrel{H}{F}{}_{\mu\nu}^{r} = B_{K}^{r} \Gamma_{fL}^{H} \tilde{B}_{\mu}^{J} \tilde{B}_{\nu}^{L} - (D_{J} B_{L}^{r}) \tilde{B}_{\mu}^{J} \tilde{B}_{\nu}^{L} &, & B_{J}^{\mu} \tilde{B}_{\nu}^{J} = \delta_{\nu}^{\mu} &, \\ & & & \stackrel{H}{F}{}_{ij}^{k} = \Gamma_{ij}^{k} &, & \stackrel{H}{F}{}_{ij}^{ka} = \partial_{i} \Gamma_{ji}^{k} x_{\alpha}^{j} + \Gamma_{li}^{k} \Gamma_{jm}^{l} x_{\alpha}^{m} - \Gamma_{lm}^{k} \Gamma_{ij}^{l} x_{\alpha}^{m} \\ & & \stackrel{H}{F}{}_{ijg}^{k} = \Gamma_{ij}^{k} \delta_{\alpha}^{\beta} &, & \stackrel{H}{F}{}_{igj}^{ka} = \Gamma_{ij}^{k} \delta_{\alpha}^{\beta} &, \\ & & \stackrel{H}{F}{}_{ija}^{k} = 0 &, & \stackrel{H}{F}{}_{iajg}^{k} = 0 &, & \stackrel{H}{F}{}_{iajg}^{k} = 0 &. \end{array}$$

A torsion tensor T of the linear connection ∇ is of the form :

(3.5)
$$\begin{array}{l} \overset{H}{T}(X^{H},Y^{H}) = (T(X,Y))^{H} + \gamma R(X,Y) , & \overset{H}{T}(X^{H},Y^{v_{\theta}}) = 0 \\ \overset{H}{T}(X^{v_{\theta}},Y^{H}) = (T(X,Y))^{v_{\theta}} , & \overset{H}{T}(X^{v_{u}},Y^{v_{\theta}}) = 0 \end{array}$$

A curvature tensor $\stackrel{H}{R}$ of the linear connection $\stackrel{H}{\nabla}$ is of the form :

$$R(X^{H}, Y^{H})Z^{H} = (R(X, Y)Z)^{H} , \quad R(X^{H}, Y^{H})Z^{*g} = (R(X, Y)Z)^{*g}$$

$$R(X^{*a}, Y^{H})Z^{H} = 0 , \quad R(X^{H}, Y^{*a})Z^{H} = 0$$

$$R(X^{*a}, Y^{*g})Z^{H} = 0 , \quad R(X^{*a}, Y^{*g})Z^{*g} = 0$$

Thus, we have :

Proposition 2. The horizontal lift ∇ is torsionless connection on FM iff a linear connection ∇ on M satisfies : T = 0 and R = 0. A curvature tensor $\stackrel{H}{R}$ of the

34

horizontal lift $\stackrel{H}{\nabla}$ on FM vanishes iff a curvature tensor R of a linear connection ∇ on M vanishes.

4. Let \tilde{C} be a geodesic curve on the total space FM with respect to the horizontal $\stackrel{H}{\nabla}$. In induced coordinates the equations of a geodesic curve $\tilde{C} : I \longrightarrow FM$ $\tilde{C} : t \longrightarrow \tilde{C}(t) = (x^i(t), x^i_\alpha(t)) = (x^\lambda(t))$ are of the form :

(4.1)
$$\frac{d^2 x^{\lambda}}{dt^2} + \frac{H}{F}_{\mu\nu} \frac{dx^{\mu}}{dt} \frac{dx^{\nu}}{dt} = 0.$$

Thus, using the formulas (3,4) for $F_{\mu\nu}^{\lambda}$ we get :

$$\frac{d^{2}x^{i}}{dt^{2}} + \Gamma_{jk}^{i}\frac{dx^{j}}{dt}\frac{dx^{k}}{dt} = 0$$

$$\frac{d^{2}x^{i}}{dt^{2}} + \left(\partial_{l}\Gamma_{mk}^{i}x^{k}_{\alpha} + \Gamma_{jl}^{i}\Gamma_{mk}^{j}x^{k}_{\alpha} - \Gamma_{jk}^{i}\Gamma_{lm}^{j}x^{k}_{\alpha}\right)\frac{dx^{k}}{dt}\frac{dx^{m}}{dt} + \Gamma_{lm}^{i}\frac{dx^{l}}{dt}\frac{dx^{m}}{dt} + \Gamma_{ml}^{i}\frac{dx^{m}}{dt}\frac{dx^{l}}{dt} = 0$$

We denote :

(4.3)
$$\frac{Dx_{\alpha}^{i}}{dt} = \frac{dx_{\alpha}^{i}}{dt} + \Gamma_{lm}^{i} x_{\alpha}^{m} \frac{dx^{l}}{dt}$$

Then if we assume that :

(4.4)
$$\frac{d^2x^i}{dt^3} + \Gamma_{jk}^{\ i} \frac{dx^j}{dt} \frac{dx^k}{dt} = 0 \quad , \quad \Gamma_{jk}^{\ i} = \Gamma_{kj}^{\ i}$$

we obtain :

$$(4.5) \qquad \frac{D^2 x_{\alpha}^i}{dt^2} = \frac{D}{dt} \left(\frac{D x_{\alpha}^i}{dt} \right) = \\ = \frac{d^2 x_{\alpha}^i}{dt^2} + \left(\partial_l \Gamma_{mk}^i + \Gamma_{mj}^i \Gamma_{lk}^j - \Gamma_{jk}^i \Gamma_{lm}^j \right) x_{\alpha}^k \frac{dx^l}{dt} \frac{dx^m}{dt} + \\ + \Gamma_{lm}^i \frac{dx^l}{dt} \frac{dx_{\alpha}^m}{dt} + \Gamma_{ml}^i \frac{dx_{\alpha}^m}{dt} \frac{dx^l}{dt} \quad .$$

Thus, we have :

Proposition 3. A geodesic curve on the total space FM with respect to the horizontal lift ∇ of a linear connection ∇ on M with tensor torsion T = 0, has in induced coordinates on FM the equations of the form :

(4.6)
$$\frac{d^2 x^i}{dt^2} + \Gamma_{lm}^{i} \frac{dx^l}{dt} \frac{dx^m}{dt} = 0 \quad , \quad \frac{D^2 x_{\alpha}^i}{dt^2} = 0$$

Proposition 4. A curve \bar{C} on the total space FM of the bundle of linear frames is a geodesic curve with respect to the horizontal lift ∇ , if projection $C = \pi(\bar{C})$ on M is a geodesic curve on M with respect to ∇ and the second covariant derivative of each vector $X_{\alpha}(t) = x_{\alpha}^{h}(t) \frac{\partial}{\partial x^{k}}\Big|_{C(t)}$ of the frame u along C defined by \bar{C} vanishes.

Let \tilde{X} be a vector field defined along the curve \tilde{O} on FM. The vector field $\tilde{X} = \tilde{X}^{\lambda} \frac{\partial}{\partial x^{\lambda}}$ along the curve $\tilde{O}(t) = (x^{\lambda}(t))$ is parallel with respect to the horizontal lift $\stackrel{H}{\nabla}$ if the equations are satisfied :

(4.7)
$$\frac{d\bar{X}^{\lambda}}{dt} + F^{\lambda}_{\mu\nu}\frac{dx^{\mu}}{dt}\bar{X}^{\nu} = 0$$

If a vector field $\bar{X} = X^i \frac{\partial}{\partial x^i_{\alpha}}$ on FM is the vertical lift of type v_{α} of a vector field $X = X^i \frac{\partial}{\partial x^i}$ on M, then the equations (4,7) reduce to:

(4.8)
$$\frac{dX^i}{dt} + \Gamma^i_{jk} X^k \frac{dx^i}{dt} = 0$$

If a vector field $\bar{X} = X^i D_i$ on FM is the horizontal lift of a vector field $X = X^i \frac{\partial}{\partial x^i}$ on M, then the equations (4,7) reduce to :

(4.9)
$$\frac{dX^{i}}{dt} + \Gamma_{jk}^{i} X^{k} \frac{dx^{j}}{dt} = 0 \quad ,$$
$$-\Gamma_{jk}^{i} x_{\alpha}^{k} \left(\frac{dX^{j}}{dt} + \Gamma_{lm}^{j} X^{m} \frac{dx^{i}}{dt}\right) = 0 \; .$$

Thus, we have :

Proposition 5. The parallel displacement of the vertical lift A^{v_o} of type v_o or the horizontal lift A^H of a vector $A \in T_{C(0)}M$ along the curve C on FM with respect to the horizontal lift of a linear connection ∇ coincides with the vertical lift of type v_o or the horizontal lift of the parallel displacement of a vector A along the curve $C = \pi(\tilde{C})$ with respect to a linear connection ∇ on M:

(4.10)
$$\tilde{C}(A^{v_{\alpha}}) = (C(A))^{v_{\alpha}} , \quad \tilde{C}(A^{H}) = (C(A))^{H}$$

5. Let g be a metric tensor on M. We consider a diagonal lift G of g to FM with respect to a linear connection ∇ . If in local chart (U, x^i) the metric tensor g is of the form $g = g_{ij} dx^i \otimes dx^j$, then the diagonal lift G of g with respect to adapted coframe $(2,3): \{\eta^i, \eta^i_\alpha\}$ on FM is of the form :

(5.1)
$$G = g_{ij} \, \eta^i \otimes \eta^j + \delta^{\alpha\beta} g_{ij} \, \eta^i_\alpha \otimes \eta^j_\beta$$

We have the following formulas for the covariant derivative of the diagonal lift G of qwith respect to the horizontal lift ∇ of ∇ :

$$(\stackrel{\mathsf{T}}{\nabla}_{X^H}G)(Y^H, Z^H) = (\stackrel{\mathsf{T}}{\nabla}_{Xg})(Y, Z) , \quad (\stackrel{\mathsf{T}}{\nabla}_{X^H}G)(Y^{v_e}, Z^H) = 0$$

$$(\stackrel{\mathsf{T}}{\nabla}_{X^H}G)(Y^{v_e}, Z^{v_g}) = \delta^{\alpha\beta}(\stackrel{\mathsf{T}}{\nabla}_{Xg})(Y, Z) , \quad (\stackrel{\mathsf{T}}{\nabla}_{X^{v_e}}G)(Y^H, Z^H) = 0$$

$$(\stackrel{\mathsf{T}}{\nabla}_{X^{v_e}}G)(Y^{v_g}, Z^H) = 0 , \quad (\stackrel{\mathsf{T}}{\nabla}_{X^{v_e}}G)(Y^{v_g}, Z^{v_g}) = 0$$

Thus, we have :

Proposition 6. If g is a metric tensor on a manifold M and ∇ is its metric connection, then the horizontal lift ∇ is a metric connection on FM for the diagonal lift G of g.

REFERENCES

- Cordero, L.A., de Leon, M., Horizontal lift of connection to the frame bundle, Boll. Un. Mat. Ital., 6 (1984), 223-240
- [2] Kurek, J., On a horizontal lift of a linear connection into linearized tangent bundle of second order, An. Stüng. Univ. "Al. L Cuzz" Lagi Soci. I a Mat. (N.S.), to appear.
- [3] Yano, K., Isihara, S., Tangent and Cotangent Bundles, Marcal Dekker Inc., New York 1973

STRESZCZENIE

W pracy tej definiuje się podniesienie horyzontalne $\overline{\nabla}$ koneksji liniowej $\overline{\nabla}$ na rozmaitości M do wiązki reperów liniowych FM analogicznie jak K.Yano [3] do wiązki stycznej.

W tym celu określa się w nowy sposób dla pola wektorowego X na M z podniesień wertykalnych X^{v_n} , $\alpha = 1, \dots$ z oraz w standardowy sposób podniesienie horyzontalne X^H .

Wyznacza się tensor skręcenia, tensor krzywizny, geodezyjne, przeniesienie równolegie dla podniesienia horyzontalnego ∇ na FM.

SUMMARY

In this paper a horizontal lift ∇ of a linear connection ∇ on a manifold M into the total space FM of the bundle of linear frames $\pi: FM \to M$, in a way similar to that of K.Yano, is defined.

The torsion tensor and the curvature tensor of the connection ∇ has been determined, as well as geodesics and parallel displacement of the horizontal lift with respect to ∇ are determined.

1.