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The Visotropy Geometry of Curves 

Geometria viaotiopowa krzywych

1. Introduction. In the paper [1] a complemented group of the iaotropy group 
of a non-zero vector v € Rn has been considered. Here this group will be called the 
visotropy group and denoted by Bn(v).

We recall that matrices which belong to £n(c) are of the form

(1) + r,e‘],

where e 6 Rn , detfd* + tPe’l = 1+ < v,c 0 and <, > denotes the euclidean 
scalar product in /?".

Affine mappings in Rn x -* Ax + a , where A € Bn(v) and a € Rn, will be 
called visotropy mappings.

It is easy to verify that ,

(2) < e, Ax >= det A < e,x >

for the arbitrary A € £„(») and x € Rn.
Fbr at,..., a„ 6 Rn we put

(3) («!,...,«„) = det[o’] .

Let us consider a curve t —> r(t) € Rn ai the class Gn+1. We note that the quantity

. (4) for < o,x 0 ,

for < v,x >= 0

does not depend on parametrization and centrovisotropy mappings.
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Similarly, the quantity .
>/(«’+»-1)

(5)
dl for < v,x >/ 0 ,

for < o,z >= 0

does not depend on parametrization and visotropy mappings.
Using the invariants (4) and (5) we construct a theory of curves; the invariants

will be found by the prolongation [3] of the viaotropy group.

(6)

3. Theory of plane curves.
a. The visotropy arc length. The viaotropy mappings in R2 are of the form 

Xi = (1 + »*«1)X + v2alY +pJrx,= 
lK. = la2X + (l + e’fl’jy+p1,

where a,p& R2 and 1+ < v, o 0.
Now we find the arc length of a curve X->Y (X). lb do this we introduce the 

notations G = tr1 + v2Y\ A = a1. By prolongation of (6) we obtain

(7)

Y' + Co2 
1 + GX

Y» — 1+ yh
(1 + <7A)»

Since

(8) dXi = (l + CX)dX ,

so from the system of the equations (7) we must find A. Then we have

G*Yi"A’ + 3G3Y"X* + (SC’Tf - ColY" - v2CY{Y")X+
+ gy" - gy" + ?rr* - u’y/y* = o.

\ •
Substituting X—^rfi into the above equality we can write down

(9) gy" p3 + aoy/'p’ + (3cy," - »*y* - «¿y,%*)/«+
+ or," - gy" + e’y'y" - o’y/y" = o.

It is easy to see that po = -1 is a root of the equation* (9) and we can rewrite (9) in 
the following form

(p + 1)(CT,'>’ + 2CT,"/i + CT* - vlY" - e2Y{Y") = 0 .

Simple calculations show that

Pi =-l

Pa = -1 +

\
<7 ’ 

yF 

G ’
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where <3i = »* + d’Y/.
Substituting p? to the formula (8) we see that

Hence we obtain the visotropy arc length of a curve X —♦ Y (X) as

(10) /Y"
dl~\ „i + V2Y> & '

If a curve is given in parametric form t -♦ x(<)
is

(11)
\< »,* >/

, then the formula (10)

The formula (11) coincides with (5) for n = 2.
<

b- The curvature of a plane curve and its geometric interpretation.
1° The centrovisotropy curvature. Consider a curve t —♦ x(t) e R1 such

that < v.x >:£ 0 and (*,x) # 0. Let

(12)

It is easy to see that 

(13)

«J =
-„»1

< X,D >= (x,10)

for every x e R*.
For the natural centrovisotropy parameter « we have the identity

(H) (*^) _ ,
< v,x > ’

where ’ denotes differentiation with respect to the natural parameter. 
From (13) and (14) it follows immediately

(x,x' — ») = 0

and

(15)

Hence

X = KkX ■+• V

«.*')*C = ----- r(w,s)
(16)

/
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or in an initial parametrization

(17) K -hiii. 
/ • \ 1 (*»*)

the function xe will be called a centrovisotropy curvature.
Now we will give a geometric interpretation of the centrovisotropy curvature.

Let

(18) *o = *(<o) *h = *(<o + fc) ■

We will show that

(19) *c(to) = Jim
«areaACAP

b—a «areaAAOP

where ♦areaAPQP = QR).
Using the Thylor expansion xi, = xq + ioh + • • • we obtain

lim *areaA(7AP
fl—a *aiea.&AOB h—»0

(«p, Jh - rp) 
(«0.»*)

tun ^)h±— =
h-*0 (xo,io)k + • • •

(to,r0)
(*o,*o) — <tc(lo) •

2° The visotropy curvature. For the natural visotropy parameter « we have

1'..
(*-*) _j 

< VyX1 >

Hence /
(x',x"-w) = Q

and

(20) x" = kx' + « ;
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the function k will be called a viaotropy curvature.
Consider the indicatrix of tangents of the curve x ( if the initial points of all the

tangent vectors are shifted to the origin, their new end points trace out a curve called 
the indicatrix of tangents [2j, [3] ). Let’s denote by i and ae the centrovisotropy arc ' 
length and curvature of the indicatrix. Using (20) we obtain

ds _ « & _ (s'.Ks' + to) _
dt (»',») (*',«)

Thus the visotropy arc length of a curve coincide ( up to a constant ) with the 
centrovisotropy arc length of its indicatrix.

Moreover we have

. _ (w< Ti **) _ (»1^ + _
(w,a/> (w,x/)

It means that the visotropy curvature of a curve coincides with the centrovisotropy 
of its indicatrix.

c. Counterpart of Frenet formulas of plane curves. Let

B = « .

Then with respect to (20) we obtain

t' = ist + n 
n' = 0.

They are “FYenet formulas” cf the plane visotropy geometry. Now we will prove the 
fundamental theorem of the visotropy theory of plane curves.

Theorem 1. Let £ be the function defined in an open interval I that contains 0.
Further, let no = j be a non-zero vector and xq € R2 ■ Then for v = [ *, j

there emits a curve x defined in I such that:
1° x(0) = xo,
«>0 (*'“) .

- = 1 \n I, where t, n are the moving frame of x,

3° the visotropy curvature n of x is equal

Proof. Consider a system of the differential equations

ft' = O + a 
(n' = 0

with an initial condition n(0) = no , to — v. It is easy to see that 

/ (t,n) \*
= °-11 impiies 2°-

(tp,Po)
< e,to >

= 1 and
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By simple verification we can show that

»(*)=/ *(«)«<« + »0 

Jo

is a required curve.

d. Curves with a constant visotropy curvature. Assume that k = 0. 
Integrating (20) we obtain

(21)

or

(22)

«(•) = £•’» + •«+ 6

X = --.J«7, + »«l+h 
*

Y — —s^e1 + saJ + »
¿t

where < r,a >#0.
If r1 0, then from (22) we have

(23) v2(v')2X2 + («,’)’¥’ + 2nl(vi)iXy+
+ (—2clrJ < o,i > +2ciai < o,a >)X+
+ (-2(c’)3 <v,b> -2a1vi < v,«>)y+
+ v2 < o,b >J +2«1 < v,b >< v,a > —251 < t>,« >’= 0

The equation (23) represents a parabola.
Now we assume that k = const / 0. By itegration of (20) we obtain

(24)

or

(25)

x(.) = ~Uw + -e*\» + 5 
K K

X = -•»’ + —e**«1 + b1
K K

l K K

where < v,a >-jt 0.

Example. Let’s consider the logarithmic curve :

y =lnX,
i«1«)=‘
(x3(t)=:lnt fort>0

Because

(i.i) = ~p

i »1< 0,«> = 01 +e’- ,
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then we can take a vector e, which satisfies the inequality < o,x > < 0. 
We will consider two cases:

L o’ = 0.
Since ol = 0, we most take cJ < 0. Let p = — ®3. Then we have

/ (*,j) yz> _ _1_ 1
y/py/i

Hence we obtain
• = and t = J»’ .

y/P *
Thus the logarithmic curve, in the natural visotropy parametrization, has the follow­
ing form

(*■<•>=I»1

| **(#) = ln( j»1) for » > 0 .

Ftom these equations we can calculate the visotropy curvature: k = -1 < 0.

u. »’ = o.
— 0 implies that »* < 0- Fbr 4 = y/-«1 we have

/'JilLV'’ = 1

\<v,x>J qt

and

« = -Ini or t = «’• . 
«

By that we obtain the parametrized form of the logarithmic curve

i ,»(.) = e- 
, I **(•) = 4«.

We can verify that k = 4. Thus the logarithmic curve has a constant visotropy 
curvature « = for every vector r such that u1 < 0 and v2 = 0.

We note that by substituting bl = b2 = 0, a’ = k — ¡/—v1, a3 = 0 into the 
formula (25), we obtain our logarithmic curve, as well.

In the same way we can show that the exponential curve Y = e* has a constant 
visotropy curvature for every vector o such that u1 = 0 and v2 > 0.

3. Theory of curves in the 3—dimensional space.
a. The visotropy curvature and torsion. Let’s consider a curve

• -+ »(•)'€ R3 such that < », x1 0. Differentiating the identity

V, _
< e,x' >

(26)
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we can find

(27) x,v=ox'+0x" + 7x'"

where

(28)

«s'",?*) 
< r,«7 >

< p,x" >
7 ~ < »,«* > '

W; can verify that 

(29)

From the above formulas it follows that a, ft, 7 are invariants of visotropy mappings 
and parametrizations.

We will denote by x A y the vector product of vectors x, y € R9. Now we can 
rewrite the formula (26) as fallows < x', x* A xm — 0 >= 0. Hence 

(30) x" A x'" - » = «/ A x'" + Ax' A x" .

It is easy to see that

(31) <x,xw>
< o,*1 >

/

The function k is said to be a visotropy curvature. Moreover, we can verify that

(32) A + «' + xl = 0

The formulae (31) and (32) follow from (30).
The function

(33) r = 0+A

will be called a visotropy torsion.

b. Counterpart of Frenet formulas in the visotropy geometry. Let

n =-----^-7— c A (x* A x*)
< B,x' >

b =-----L_vA(x'Ax*»)
<»,x'> v ■

The vectors t, n, b are linearly independent, because 

(t,n,b) =< v,v ># 0 .

(34)
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The formulas (27)-(34) imply

f t' = o
(36) < a' = -kb + b

( b' = r b + sb .

They are “Bbenet formulas” of the viaotropy geometry.
Now we prove the main theorem of oar theory. Let I denote an open interval

that contains 0.

Theorem 3. Let’s assume that
- the functions £,if are defined in I, £ has a continuous first derivative but q is 

continuous ;
- the vectors Do, bo are linearly independent and t0 = Bo A bo ;
- the vector c satisfies a condition < to»« >#
Then for v as to there exists one and only one curve x defined in I, which passes 

through the arbitrary fixed point in JZ*, with following properties:
1° x has the natural visotropy parameter, x*(0) = e ;
2° t(0) = to and ■*’ = 1 in L where t, n, b are the moving frame of x ;

< e,t >
3° the visotropy eurvature k and the visotropy torsion r of the curve x satisfy 

*={, t = n •

Proof. Let's aonsider a system af differential equations 

(t' = 0
(36) < n' = -fn + b

(b' = JB + fb.

Since to = Bo A bo and v = to, so (*0’n°’^>?) — i.
< e,t0 >

We note that (n A b)' = 0, so n A b = const. We put 

(3f) v=t = BAb=:to.

Now we have (t,n, b) =< s,t >=< »,» ># 0. Thus the solution of (36) is a system 
ci linearly independent vectors.

We define a curve x by the differential equation

(“) «*(•) = ~ £ *»<•)*<•)+ e ’ 

where
#»(•) = <(•)*») •

Since <e,ii >= 0, so

< e,x' >= -- / p< e,n > + < o,e >=< v,c ># 0 .
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From (36) and (38) we can find

(39) *" = <»'-■.

It implies that k = (. Then in the same way we obtain

(40) s*s(/ + «V-h 

and hence
A = —a* — a’ .

Now we are able to show that

Using the fornmlas (38) and (40) we see that

x'") = (*', (x' - a,-Ax' - b) = (*\n,b) =< /,a A b >=< «*,»>.

Differentiating (40) and then making use of (36), (39), (40) we get

*IV = (—A' - A«/ + (A - w)n - <b =
(x',xm,xl'v) _ (*',b,(A-n)n) 
<v,x‘> <o,xt>

It means that r = f. It ends our proof.
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STRESZCZENIE

W pracy tej podajeny teorie krzywych płaskich i trójwyrrsarowych w pewnej podgeometrii 
geometrii ałuńcznęj W badanej geometrii okreflono w sposób niezmienniczy parametr naturalny, 
krzywizn« i skręcenie krzywych oraz dowiedziono,że określaj« one krzyw« z odpowiedni« dokład­
ności«.

/
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SUMMARY

Id thi* paper a theory of plane and space curve* in a «ubgeometry of affine geometry is de­
veloped. Natural parameter, a* well a* curvature and torsion are defined which are invariant and 
define the curve to some extent.



I


