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The Visotropy Geometry of Curves
Geometria visotropowa krzywych
1. Introduction. In the paper [1] a complemented group of the isotropy group
of a non-zero vector v € R™ has been considered. Here this group will be called the

visotropy group and denoted by Ba(v).
We recall that matrices which belong to By(v) are of the form

(1) 6+,
where ¢ € R, det[&} +01c‘] = 14+ < v,e ># 0 and <, > denotes the euclidean

scalar product in R".

Affine mappings in R® z — Az +a , where A € B,(v) and a € R", will be
called visotropy mappings.

It is easy to verify that .
2) <v,Az>=detA < v,z >

for the arbitrary 4 € B,(v) and z € R™.
For ay,...,8, € R™ we put

(3) - (@140 ,8p) = dct[c';-] .
Let us consider a curve t — z(t) € R™ of the dass C*t!. We note that the quantity
[ ty : (n=1).\ Y (n?=n)
0 l/((—_(_;—)) #. . Sransmkl,
0 for <o,z>=0

does not depend on parametrization and centrovisotropy mappings.
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Similarly, the quantity .

3/(n*In-3)
&, 2, . :
l ./ ( ) d for<o,2>#0,

<0, E>
. for < 0,2>=0
does not depend on parametrization and visotropy mappings.
Using the invariants (4) and (5) we construct a theory of curves; the invariants
will be found by the prolongation [3] of the visotropy group.
2. Theory of plane curves.
a. The visotropy arc length. The visotropy mappings in R? are of the form
[Xi=(1+0'e" )X+ oY +p
v = v@X ¥ (1+0%a?)Y +p7,
where a,p € R? and 1+ < 0,8 >#0.

Now we find the arc length of a curve X — Y (X). To do this we introduce the
notations C = v! + v?Y’, A = a'. By pralongation of (6) we obtain

(6)

l , Y +Cd?
1= T¥0x \
(7 ,,_l+<v,¢>Y,,
T 1+ 0a)
Since
(8) dX; =(1+Cr)dX ,

so from the system of the equations (7) we must find A. Then we have
C'Y"A® +3C%Y{'2? + (8C?Y[ - Co'Y" - v2CYY")A+
+0Y - CY" +o’Y'Y" - o?YY" =0.
Substituting A = } g into the above equalit; we can write down
(9) CY{g" +30Y{' p? + (3CY)" - o'Y" - o*Y}Y")u+
+CY" —CY" +0?Y'Y" - YY" = 0.

Itlaeasytoseethatpo=—luamotdtheeqnmon(9)udwecanmnte(9)m
the following form

(r+1)(CY{"s? + 2CY'n + CY — 0'Y" - 0?Y{Y") =0 .
Simple calculations show that

0 g "

A Fl=-l"‘/?:ﬁv—v
BRI,

p3 = 1+ I’I' ’
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where C; = o' + 23Y].
Substituting g3 to the formmla (8) we see that
vy v

c‘dX|= Fdx

Hence we obtain the visotropy arc length of a curve X — Y (X) as

] Y"
(10) d. = V UT:W dX .

v 1 '.
H a curve is given in the parametric form ¢ = z(t) = [:,g; , then the formmmla (10)
" .

(&3 7
(11) “*(ﬁ) dt .
The forrmla (11) coincides with (5) for'm = 2.

1
b. The curvature of a plane curve and its geometric interpretation.

1° The centrovisotropy curvature. Consider a curve t — z{t) € R? such
that < v,z ># 0 and (2,%) # 0. Let

oK)
(12) w=[ ;’1]-
It ig easy to see that

(13) < 2,0 >=(z.v)

for every z € R2. \
For the natural centrovisotropy parameter s we have the identity

(14) (z.2)

=],
<v,z>

where ' denotes differentiation with respect to the natural parameter.
Fram (13) and (14) it follows immediately

(2,2’ —w0)=0
and
(15) ' =kz+w.
Hence I
(16) (e, ')
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or in an initial parametrization
(v,2)
{17) Ko = =3

the function &, will be called a centrovisotropy curvature.
Now we will give a geometric interpretation of the centrovisotropy curvature.
Let

(18) so==2(ta) 4 Ex=t{to+h).

0

We will show that

sarea ACAPB

(19) &e(to) = Bh-?A sarea AAOB '’

where sarea APQR = !-(a!', Q?)
Using the Taylor expansion zj = zg + Zoh + - - - we obtain

= sarea ACAB _ (w,zp — x0) PR (w,20)h +--- _ (w,20) i, (to)
B—A sareaAAOB ~ h—0 (2g,2))  h—0 (zo,Zo)h + - (zoy20) ~ Fat, .

2° The visotropy curvature. Far the natural visotropy parameter ¢ we have

irat Nt
AT I
<v,z2 >
Hence
(2" -w)=0
and

(20) " =xt'+w0;
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the function & will be called a visotropy curvature.

Conaider the indicatrix of tangents of the curve z { if the initial points of all the
tangert vectors are shifted to the origin, their new end paints trace out a curve called
the indicatrix of tangents [2)§ {3] ). Let's denote by i and &, the centrovisotropy arc *
length and curvature of the indicatrix. Using (20) we obtain

dé (z',f;:’) y (z',xz' + w) I3
o (Fo) (@w)

Thus the visotropy arc length of a curve ccindde ( up to a constant ) with the
centrovisotropy arc length of its indicatrix.
Moreover we have

(tn,f-z‘) (n,n:’+v]

b ) @ 7)

It means that the visotropy curvature of a curve caincides with the centrovisotropy
of its indicatrix.

c. Counterpart of Frenet formulas of plane curves. Let

t=o
it
Then with respect to (20) we obtain
{t’:xt+l
n'=0

They are “Frenet formmlas” of the plane visotropy geometry. Now we will prove the
fundamental theorem of the visotropy theory of plane curves.

Theorem 1. Let € be the function defined in an open interval I that contains 0.

Further, letng = [',] be a non-zero vector and zo € R’ Then forv = [ v’]
there exists a curve z defined in I such that: 3

1° z(0)=
2° ———“'") =1 in I where t the movi
<uts - in I, where t, n are the moving frame of z,

3%  the visotropy curvature & of z is equal £.
Proof. Consider a system of the differential equations
{ t'=¢€t+n

R’ =0
it an it . : {torno) _
wi anxmhalcondmomn(O)=no.‘o="-It“‘ea’ymweu‘u<.,g >_la.nd
%0
( (¢,m) \

<”>) =0. It implies 2°.
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By simple verification we can show that

z(e) = / t(s)du + zq
0
18 a required curve. .
d. Curves with a constant visotropy curvature. Assume that & = 0.
_ Integrating (20) we obtain
(21) ' z(e) = %a’w+oa+b
or '
X= —éa’u’ +o0al +b

(22) 1
Y= 50’0‘ +0a® + 87,

where < v,a ># 0.
If v} # 0, then from (22) we have
(23) v (0')2X? + (0?)%Y? + 20! (v?)2 XY +
+ (=20'0? < 0,0 > +20%a? < 0,8 >)X+
+ (-2(v?)? < v,b > ~2a'v? < 0,8 >)Y+
+02<0,b>? +2e! <v,b><0,a> -2} <v,6>?=0.

The equation (23) represents a parabola.
Now we assume that & = cdnst # 0. By itegration of {20) we obtain

(24) z(.) = —-Em + éel"‘_'_ b -

or

XLt + LI + &
(25) 1 1‘
Y= —:u' B :c‘"-’-n’ :

where < v,8 ># 0.
Example. Let’s consider the logarithmic curve :
/

E [z @)=t
: e l2(t)=Ilnt fort>0.
Because

_ 1

(3vz)=—"'§'

: 1
<v,z'>=v'+v’i ;

P LI S
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then we can take a vector v, which satisfies the inequality < v,z > < 0.
We will conasider two cases:
L ol=0.

Since o! = 0, we mnst take v? < 0. Let p = —¢?. Then we have

[ (%3 \ 11

Hence we obtain

Thus the logarithmic curve, in the natural visotropy parametrization, has the follow-
ing form

[z‘(l) = 'El’
1 2(o) =ln(%o’) fore>0.

1
From these equations we can calculate the visotropy curvature: & = -5 <0.

IL o2=0.
©? = 0 implies that v! < 0. For ¢ = v—67 we have

and

.=llnt o, it =1lef%x
q
By that we obtain the parametrized form of the logarithmic curve

(z'(0) =

: 20 =a.

We can verify that &k = ¢. Thus the logarithmic curve has a constant visotropy
curvature & = /=1, for every vector v such that o! < 0 and v? =0. .
We note that by substituting 8! = % =0, a! = x = /=07, a? = 0 into the
formmla (25), we obtain our logarithmic curve, as well.
In the same way we can show that the exponential curve Y = ¢X has a constant
| visotropy curvature for every vector v such that o! = 0 and »? > 0.

3. Theory of curves in the 3—dimensional space.
a. The visotropy curvature and torsion. Let's consider a curve
® — z(s)'€ R® such that < v, 2’ ># 0. Differentiating the identity

(26) M:I
<v,z >
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we can find
(27) 2Y = ar + Bz" + 4=
where

l’h_(j”_’"_’ﬂl

<o,z >

28 9
(28) l - <u,3">

P <o, 2> /

' We can verify that
(29) o=+ () -
From the above formmlas it fallows that a, 8, v are invariants of visotropy mappings
and parametrizations.

We will denote by z Ay the vector product of vectors 2,y € R®. Vow we can
rewrite the formmia (26) as fallows < z’,z" A 2" — ¢ >= 0. Hence
(30) AT —o=kd AL + A5 A .

)

It is easy to see that

K=
(31) ‘\___<v,z”'>
T <o, >
The function & is said to be a visotropy curvature. Moreover, we can verify that
(32) A+’ +&2=0
The formmlae (31) and (32) follow from (30).
The function
(33) :  r=8+a

will be called a visotropy torsion.
b. Counterpart of Frenet formules in the visotropy geometry. Let

1
(34) P e Ry

1
b= —— J LU
= v, 7 oA (z Az )

The vectors t,n, b are linearly indep2ndent, because '

(t,n,b) #( 0,0 >#£0.
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The formmlas (27)(34) imply
t'=0
(35) (In'=—cll+b
i (b'=ra+cxb.

They are “Frene: formmias” of the visotropy geometry.

Now we prove the main thearem of cur theory. Let / denote an open interval
that contains 0.

Theorem 2. Let’s assume that

- the functions £,9 are defined in I, € has a continuous first derivative dut g is
continuous ;

- the vectors ng, by are linearly independent and o = o A by ;

— the veetor c satisfies a condition < tg,e ># 0.

Then for v = to there exists one and only one curve z defined in I, which passes
through the arbitrary fized point in R®, with following properties:

1°  z has the natural visotropy parameter, £(0) = ¢ ;

2 t0)=¢ and(:’."bl_l L where t,n, b are the moving frame of z ;
a’

3% the visotropy curvature & and the wisotropy torsion r of the curve z satisfy
s=§ 1=9.

Proof. Let’s consider a system of differential equations

t'=0
(36) {n'=-¢n+b
lh’:qn+£b.

Since to = ng A b and o = ¢o, 80 (80,20, by = 1.
<o,8 >
We note that (n Ab)’ =0, so a A b = const. We put

(87) o=t =RAb=t,.
Now we have (t,m,b) =< v,t >=< 0,0 >3 0. Thus the solution of (36) is a system
of linearly independent vectors.

We define a curve = by the differential equation

(38) Z(0) = --(—)- ‘l(l)l(l) du+e,

sy = e (= [ cwrdn) .

r
<v,:’>=-—% [ B<e,m>+ <o,e>=<0,e>#£0.
'l

where

Since < o,n >= 0, s0
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From (36) and (38) we can find
(39) M =¢z'-n.

It implies that £ = £. Then in the same way we obtain

(40) 2" =(+x)3s' -b
and herce

A=« -—x?.
Now we are able to show that

(a2 _

Loty Lol

Using the formmlas (39) and (40) we see that
(z',2" 2") = (2',€2' —n,—-A2 — b) = (¢,n,b) =< Z,aAb>=< 70> .
Differentiating (40) and then making use of (36), (39), (40) we get

AV = (=M= AT+ (A-a)n—Eb = _@2"dY) @b —a)m)

<o,z > <v, >
= () —qlEamb)
== ')<n,z‘>_' B
It means that r = 4. It ends our proof
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STRESZCZENIE

W pracy tej podajemy teorie krsywych plaskich i tréjwymiarowych w pewnej podgeomstaii
geometrii afinicznej. W badanej geometrii okreflono w sposdb miezmiennicsy parametr naturalmy,
krzywizng i skreceme lrsywych oraz dowiedsiono,se olxeflajy one krsywy s odpowiednia doldad-
noéag.
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SUMMARY

In this paper a theory of plane and space curves in a subgeommstry of affine geometry is de-
veloped. Natural paramster, as ‘well as curvature and torsion are defined which are invarant and
define the curve to some extent.
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