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Płaskie fdiacge eukłidesowe

1. Throughout, the adjective “smooth” will refer to the class G°°.
Let a »-dimensional smooth manifold V- be gjven and let us fix a natural number 

p < «. By a p-element of contact at the point x € V we mean a p-dimensional 
subspace Mz of the tangent space T„V. The mapping M : x —» Ait is called a field of 
p-elements of contact or p-field on V. A smooth vector field X on U will be called 
tangent to Af, if for each point x £ V, Xz € M*. The set Xm of all such vector fields 
forms a submodule of the module X (V) of all smooth vector fields on V over the ring 
of smooth functions on V.

Definition 1. A smooth p-field M on V such that

(1) s x,y e xM => [x,yj e xM .*»
will be called a p-fciiation.

A smooth field cef 1-elements of contact is a 1—foliation, of course.

Definition 2. The set of all points of V which can be joined to a point xo € V 
by a piecewise smooth curve having tangent vector at each point tangent to M will 
be called a leaf X,o of the foliation M passing through the point xo.

In this paper we will consider only 1-dimensional oriented riemannian foliations. 
Such foliations are formed by the integral curves of certain smooth vector fields with­
out singularities.

We give here a definition of 1-dimsnsional riemannian foliation according to [1]. 
There are several equivalent definitions [3], [2].

Let M be a 1-foliation on V, given by the vector field X. The fcAiatidn M is said 
to be riemannian if there exists a riemannian metric on V, such that for the vector 
field X and for each local unit vector field Y orthogonal to H to denote a function 
we have

(2) 7(y,(x,yi) = o
i
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In this case 7 is called & bundle-dike metric.
Now we can give a. non-trivial example of & riemannian foliation and its bundle­

like metric.
Let (V, 7) be a riemannian manifold which admits a global Killing field X with­

out singularities. Thus X is a nowhere zero smooth vector field which is integrated 
to a 1-parameter transformation group of isometries with respect to the metric 7. 
Infinitesimally this condition can be formulated as follows [4] :

(3) X7(y,z)-7(r[x,zj)-7(^[x,ri) = o

for arbitrary smooth vector fields Y, Z on V.
Let ipt denote the flow given by the vector field X. Since ipt isometries then 

we have

(4) 7((P«Mn (^).(K))-7(y,r)=0 iorallt,

where (£>«)• is the tangent mapping of <pt-
Hence

(5) 7(J(M.<r)-ij, r)+7((^).(n

for each t # 0. When ( tends to zero we obtain

7([x,r],y) = o

and the orbits of the Killing vector field X form a riemannian 1-foliation.
We describe all riemannian foliations in E2 (with maximal domain) for which

the canonical metric is bundle-dike, and discuss with Killing fields of this metric.
3 3

If X — C -r—r + —r, then equations (5) take the form
3x* ox*

-, -

V

Integrating this system of equations we get

k — 1,2.

(7) = ax’+ a’
I Ç2 = —ax1 + o3 where a, a1, a2 6 R.

We now use the following property of riemannian foliations [3]. Let X be a 
riemannian foliation and let G be a geodesic curve (with respect to its bundle-dike 
metric) orthogonal at some point to a leaf of X. Then G is orthogonal to the leaves 
of X at each point of its domain. Next the Reinhart Lemma implies the following 
fact. If p, q are»suffidently dose in one leaf and orthogonal geodesic curves passing 
through p, 7 respectively intersect a neighbouring leaf in p', q' then arcs of these
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geodesic lines between p, p' and q, q' have the same length. It follows that two leaves 
of a riemannian foliation are locally at constant distance one from another.

2. Let X denote a smooth 1-foliation defined on an open non-empty subset 
of E2. By X we denote a non-singular vector field whose orbits are leaves of the 
foliation. From this moment we assume the maximality (with respect to the inclusion) 
of the domain of X.

Definition 3. A foliation X such that 

(8) <r,{x,y]>=o
for each local unit vector field Y orthogonal to X will be called an euclidean foliation, 
where < , > denotes the canonical metric on E2.

Such an euclidean foliation is a particular case of a riemannian foliation. The 
condition (8) is equivalent with

if X = in its domain.
Let us consider a smooth curve G without self-intersections in E2. We assume 

that <7 (open or closed) bounds a convex region in E2. By the exterior of G we mean 
the connected component of R2 \ G, which contains each tangent line to G- The 
other component of R2 \ G is called the interior of G. Such a curve G will be called 
convex.

Theorem 1. Let C be a convex curve on E1. Then the vector field X whose 
orbits are involutes of C satisfies the condition (9).

Proof. Let G be described by its support function p(o), a < a < b, and let the 
coordinate system be chosen so that its origin lies in the interior of G.

Let us consider a point (x, p) which lies in the exterior of G. The tangent line 
to G passing through the point (x,p) will be described by the angle a(x,p) which 
satisfies the implicit equation

(10) xcoscr + psino — p(a) = 0 .
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Thus the normaJ. vector field to the family of tangent lines of G has the form 

3 3
(11) X(ar,y) = coso(x,y)—+ sina(*,y) — .

Making use of the implicit function theorem we can verify that the equality (9) is 
satisfied for /(«, y) = cos o(i, y), y(x, y) = sin a(x, y).
•

3. In this paragraph we will consider the inverse problem to that occurring in 
the previous paragraph. Let Y be a smooth vector field whose orbits are leaves of a 
riemannian foliation .M defined on some open subset A of F3 and let Y — Agj + g-g^ 
on A.

By (8) we see that for any smooth nowhere-zero function f on A, the vec­
tor field fY defines the same riemannian foliation M. Fbr this reason we can take 
X = in the domain where y is nowhere-zero and f = fi/y. The
case h 0 is considered similarly and since Y is nowhere-zero the functions f, g 
do not vanish simultaneously. Let us consider the envelope of the fixed orbit $((po), 
po = (ro,ya), of the field X. The orbits of X satisfy the system of differential equar 
tions

,19; /«i=/(«},#?)
(12) .

It is easy to calculate that the curvature of the orbit (pc) is equal to

(13) '♦'Tf+F’ whe”A = ^- ‘

The evolute of the orbit $t(po) will be the envelope of its family of normal lines.

(14)

The conditions

F(x,y,•

dtdt 0 and
D(F,Ft'}

#0

are sufficient for the existence of a smooth envelope. In our case they are satisfied if 
fy and fyy never vanish. Furthermore the evolute is of the following form;

1
x(l) = *«(Po) + /,W(Po),«?(po)) ’

The curvature of this evolute is equal to

(15)
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Thus our evolute is convex. Since the leaves of riemannian foliations are of constant 
distance from each other the evolutes of different orbits coincide and do not depend 
on the choice of the point po.

We will now consider a number of singular cases:
a) Let us assume = 0. Then we have fz = 0 and f(x,y) = const. In this 

case the evolute is empty, the leaves of the foliation are parallel straight lines, and 
the domain can be taken to be the whole of F3.

b) Let us assume — 0 at some points. Then /, = 0 at the same points if 
/*, # 0 (or equivalently fti # 0) and

Hess / = —ft* — 0 .

The set of zeros of is a smooth curve. Each orbit of X and the curve have exactly 
one common point. Hence the envelope will consist of two branches.

c) Let us assums = 0. The condition (10) implies that

X — b

Thus the foliation is given by the orbits of the Killing field with a singularity at the 
point (a, 6), the leaves being just concentric circles with centre (a, à).

In this way we have shown

Theorem 3. Let X be a smooth vector field whose orbits are leaves of a rie­
mannian foliation on an open subset of the plane. Then, the boundary of the maximal 
domain of X is a regular convex curve (or two such curves, or a point, or the empty 
set) and the leaves of the foliation are involutes of this boundary (or the foliation 
consists of orbits of a Killing field with a singularity, or the foliation is a graph of 
orbits of the Killing field without a singularity).

4. We now consider an arbitrary smooth closed, convex curve G. We know by 
Theorem 1 that its involutes form a riemannian foliation. Let us choose the coordinate 
system so that the origin lies inside the curve. Let us take a smooth homotopy Ft (—), 
0 < « < 1, such that Fo = (0, 0), Fi = G and Ft, 0 < t < 1, is a convex and 
compact curve'inside of G.

Theorem 3. Let Xt be the vector field whose orbits are involutes of the convex 
curve Ft. Then we have

= + in

(or equivalently the riemannian foliations given by Xt tend to the foliation given by the 
orbits of the Killing field with the singularity, independently of the chosen homotopy).

Proof. For the given homotopy F«(—) the curves F( are described by their
support functions p< (a), 0 < a < 2x where lim p( (a) = 0. The tangent line to Ft (-*0
passing through the point («, y) which lies in the exterior of Ft will be determined by 
the angle a<(x,y) satisfying the equation

(16) «cosort(a:,/) + ysinat(®,y)-pt(at(x,y)) = 0 .

i
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The field X<(x,y) = cosa«(x, y)j^+sina»(x, >)^ is determined by the equation (16). 
Let t tends to 0. Then (16) implies

xcosa0(*,f) + f sinoo(«>f) = 0 .

Hence
, . d . . d . { d d \co.a0(x,f)- + sma0(x,,)- = / • + x-) ,

as claimed.
Now let G denote a smooth convex open curve. The origin oi the coordinate 

system will be chosen in the exterior of G. We prove an analogue ctf Theorem 3 in 
this case. In this case we have to choose deformations of the curve G in such a way 
that intermediate curves depending on t tend to infinity in some sense as t -* oo. Let 
us choc«e the homotopy Ff(—), 0 < t < oo, such that Fq = G and Ft, 0 < t < oo, is 
a convex curve contained inside of G and the exteriors of Ft form an increasing family 
of sets whose union is F1.

Theorem 4. Let Xt be a vector field whose orbits are involutes of the curve Ft.
Then t

lim X, = f # 0 in E*<—•00 OX

(the riemannian foliations tend to a Killing field without singularities, independently 
of the chosen homotopy).

Proof. For the given homotopy F<(—) the curves Ft are described by their 
support functions pe(a), a < a < b, where lim pt(a) = oo. The tangent line to Ft
passing through the point (x,y) lying in the exterior ci Ft is determined by an angle 
satisfying the condition

x cos at (x, y) + y sin o, (x, y) = pt (a<(x, >)) .

X V
Taking the limit when t tends to infinity and next determining - and - we obtain 

y *x y
- = oo, - = 0. Hence we have
V *

The above results' suggest that it might be useful to formulate a notion of rie­
mannian foliation with singularities. So far we have not found a natural way of doing 
this.

i
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, STRESZCZENIE

W pracy tej opisujemy wszystkie jednowyrrsarowe zorientowane foliacje ńemannowslde z mak­
symalna daiedśna zawarta w E?, dla których kanosuczna metryka euklideaowa jest metryka bundle- 
like. Podajezcy związki tych foliacji z polami Killinga na E1.

' . . ' /

SUMMARY

• ' fc '
In this paper all one-dimensional oriented riemannian foliations whose maximal domain is 

contained in EJ and canonical euclidean metric is bundle-like' are described A relation of Killing 
fields on E* to these foliations is exhibited

z



w

i

I

*

\

!


