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Euciidean Plane Foliations

Plaskie {aliacje euklidesowe

1. Throughout, the adjective “smooth” will refer to the class C*.

Let a n—dimensional smooth manifold V- be given and let us fix a natural number
P < n. By a p—element of contact at the paint 2 € V we mean a p—dimenaional
subspace M, of the tangent space T,V. The mapping M : z — M, is called a field of
p—elements of contact or p—field on V. A smooth vector field X on U will be called
tangent to M, if for each paint z € V', X; € M.. The set Iy of all such vector fields

forms a submodule of the module I'(V) of all samooth vector fields on V over the ring
of smooth functions an V.

Deflnition 1. A smooth p—field M on V such that
(1) ‘ ' XY € Iy = [X,Y]€ Xn
will be cal.ied a p—foliation. . )
A smooth field of 1-elements of contact is a 1-faliation, of course.

Definition 2. The set of all points of V which can bejoined.to apaintzg €V
by a piecewise smooth curve having tangent vector at each point tangent to M will
be called a leaf M., of the faliation M passing through the paint zo.

In this paper we will consider anly 1-dimensional oriented riemannian foliations.
Such faliations are formed by the integral curves of certain smooth vector fields with-
out singularities.

We give here a definition of 1-dimensional riemannian foljation accarding to {1].
There are several equivalent definitions (3], [2]-

Let M be a 1-foliation on V, given by the vector fild X. The faliatién M is said
to be riemannian if there exists a riemannian metric 4 on V. such that for the vector

field X and for each local unit vector field Y orthogonal to M to denote a fanction
we have

(2) _ WY, (X, Y =0
1
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In this case 4 is called a bundle—like metric.

Now we can give a non—trivial eaample of a riemannian foliation and its bundle—-
like metdc.

Let (V,) be a riemannian manifold which admits a global Killing field X with-
out singularities. Thus X is a nowhere zero smooth vector field which is integrated
to a 1-parameter transformation group of isometries with respect to the metric 7.
Infinitesimally this condition can be formmlated as follows [4] :

) X1(¥,2) - +(Y[X,2]) - +(Z,[X,Y]) =0

for arbitrary smooth vector fields Y, Z on V.
Let p; denote the flow given by the vector field X. Since ¢ are isometries then
we have

(4) 1((pe)e(Y), (pe)e(Y)) = 4(Y,¥) =0 foralle,
where (1) is the tangent mapping of p¢.
Hence

© ({0 -¥), ¥) +2(e0ut0), 1001~ ¥)) =0
for each ¢t # 0. When ¢ tends to zero we obtain
'T(IX!YLY) =0

and the orbits of the Killing vector field X form a riemannian 1-faliation.
We describe all riemannian foliations in E? (with maximal domain) for which
the canonical metric is bundle-like, and discuss with Killing fields of this metric.

f X = € -2 + £ 57, then equations (5) take the form

(6) ! .33'
—_— =0, k=12

Integrating this nya;em of equations we get

) el
' | €3 = —az! + a? where a,a8!,a® € R.

" We now use the following property of demannian foliations [3]. Let M be a
riemannian foliation and let G be a geodesic curve (with respect to its bundle-like
metric) orthogonal at same paint to a leaf of M. Then G is orthogonal to the leaves
of M at each paint of its dormmin. Next the Reinhart Lemma implies the following
fact. If p, g arevsuffidently close in one leaf and orthogonal geodesic curves passing
through p, ¢ respectively intersect a neighbouring leaf in p’, ¢’ then arcs of these
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geodesic lines between p, p’ and g, ¢’ have the same length. It follows that two leaves
of a iemannian f{oliation are locally at constant distance one from another.

3. Let M denote a smooth 1-foliation defined on an open non-empty subset
of 3. By X we denote a non-singular vector field whose orbits are leaves of the
foliation. From this moment we assume the maximality (with respect to the inclusion)
of the domain of X.

Deflnition 3. A foliation M such that
(8) <Y,[X,Y]>=0
for each local unit vector field Y orthogonal to X will be called an euclidean faliation,
where < , > denotes the canonical metric on E3.

Such an eudlidean foliation i8 a particular case of a riemannian foliation. The
condition (8) is equivalent with

. af dg af ag
(9) . f('g;ﬂ'fa') 9(‘5;9— 5;),

fX=fi +¢f- in its domain.

. Let us consider a smooth curve C wnhont seli-intersections in E?. We assume
that C (open or closed) bounds a convex region in E2. By the exterior of C we mean
the connected component of R? \ C. which contains each tangent line to C. The

other component of R?\ C is called the interior of C. Such a curve C will be called
convex.

Theorem 1. Let C be a convez curve on E?. Then the vector field X whose
orbits are involutes of C satisfies the eondition (9).

Proof. Let C be described by its support fanction p(e), & < o < b, and let the
coordinate system be chosen so that its origin lies in the interior of C.

i

Let us consider a paint (z,y) which lies in the exterior of C. The tangent line
to C passing through the paint (z,y) will be described by the angle a(z,y) which
satigfies the implicit equation

(10) " zcosa +ysina — p(a) =0.
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Thus the normal vector field to the family of tangent lines of C has the form
1 X = EL B s
(11) (z,5) = cos a(z,y)g; + sin oz, §) By

Making use of the implicit function theorem we can verify that the equality (9) is
satisfied for f(z,y) = cosa(z,y), ¢g(z,y) = dna(z,y).

3. In this paragraph we will consider the inverse problem to that occurring in
the previous paragraph.' Let Y be a smooth vector field whose orbits are leaves of a
riemannian foliation M defined on some open subset A of E? and let ¥ = Az + ¢4
on A.

By (8) we see that for any smooth nowhere—zero function f on A, the vec-
tor field fY defines the same riemannian foliation M. For this reason we can take
AGE il' = [f; s 3‘-’; in the domain where g is nowhere—zero and f = h/g. The
case h # 0 is considered similarly and since Y is nowhere—zero the functions f, ¢
do not vanish simnltaneounsly. Let us consider the envelope of the fixed orbit ®(po),
Po = (zo,y0), of the field X. The orbits of X satisfy the system of differential equa-
tions

(1) { o = f(32,91)

5?:1.

It is easy to calculate that the curvature of the orbit &{(py) is equal to

(13) Ko = ——-—&— where f, = 3_]'_ . y

Vitf' oy
The evolute of the orbit $¢(po) will be the envelope of its family of normal lines.
(14) Flz,9,t) = (2= 8})/ (%}, 9]) +y - &] .

The conditions

B’F D(F,Fl')
a0 Dy 7°

are sufficient for the existence of a smooth envelope. In our case they are satisfied if

Jy and fyy never vanish. Furthermore the evolute is of the fallowing form:
. J )

i 1
i =Nt F @, w6
aee (@ (z), 83 (m))
: ¥(0) = 8ileo) ~ £ T o), o))

The curvature of this evalute is equal to

g.,:...-‘a >0.
[Tl
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Thus our evolute is convex. Since the leaves of nemannian foliations are of constant
distance from each other the evalutes of different orbits ccincdde and do not depend
on the choice of the point py.

We will now consider a number of singular cases:

a) Let us assume f, = 0. Then we have f; = 0 and f(z,y) = const. In this
case the evolute is empty, the leaves of the foliation are parallel straight lines, and
the domain can be taken to be the whale of E?.

b) Let us assume fy; = 0 at some pointa. Then f; = 0 at the same points if
Jzy # 0 (or equivalently fy, # 0) and

Hess f=—f,=0.

The set of zeros of fy is a smooth curve. Bach orbit of X and the curve have exactly
one common paint. Hence the envelope will consist of two branches.
c) Let us assume f;, = 0. The condition (10) implies that

fap) =212

Thus the foliation is given by the orbits of the Killing field with a singularity at the
point (a,b), the leaves being just concentric cirdes with centre (a, b).
In this way we have shown

Theorem 3. Let X be a smooth vector field whose orbdits are leaves of a rie-
mannian foliation on an open subset of the plane. Then the boundary of the marimal
domain of X is a regular convez curve (or two such curves, or a point, or the empty
set) and the leaves of the foliation are involutes of this boundary (or the foliation
consists ‘of orbits of a Killing field with a singularity, or the foliation is a graph of
orbits of the Killing field without a singularity).

4. We now oconsider an arbitrary smooth closed, convex curve C. We know by
Theorem 1 that its involutes form a riemannian foliation. Let us choose the coordinate
system s0 that the origin lies inside the curve. Let us take a smooth homotopy Fi(—),
0<t<1, such that F; = (0,0), F; = 0 and F;, 0 <t < 1, is a convex and
compact curve'inside of C.

Theorem 3. Let X, be the vector field whose orbits are involutes of the convexr
curve F,. Then we have

;iﬂ]x.=;.(-,;;=+z%) f#0 in R?\(0,0)

(o"‘cquivalently the riemannian foliations given by X; tend to the foliation given by the
orbits of the Killing field uith the singularity, independently of the chosen homotopy).

Proof. For the given homotopy Fy(—) the curves F, are described by their
support functions py(a), 0 € a < 2x where ‘lmtxl pe(a) = 0. The tangent line to F
passing through the point (z,y) which lies in the exterior of F; will be determined by
the angle a((z, y) satisfying the equation

(16) zcos aq(z,9) + ysin ae(z,y) — pe(ai(z,9)) =0 .
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The field X¢(z,y) = cos a¢(z, y),%-f-sin acfz, y)f; is determined by the equation (16).
Let ¢t tends to 0. Then (16) implies

- zcos ao(z,y) + yein ap(z,9) =0

Hence i 2 3 K
“"00(3'1)5 + lilmvo(al,!)a—’r =/ (-15 +za—’) )

as claimed.

Now let'C denote a smooth convex open curve. The origin of the coadma.te
systemn will be chosen in the exterior of C. We prove an analogue of Theorem 3 in
this case. In this case we have to choose deformations of the curve C in such a way
that intermediate curves depending on ¢ tend to infinity in some sense as ¢ — oo. Let
us choose the homotopy Fy(—), 0 S ¢ < oo, such that Fo = C and Fy, 0 < ¢ < o0, is
a convex curve contained inside of C and the exteriors of F, form an increasing family
of sets whose union is E3.

Theorem 4. Let X be a vector field whose ordits are involutes of the curve Fy.
Then

=;6% f#£0 in E?

(the memannian foliations tend to a Killing field uithout singularities, independently
of the chosen homotopy).

t—eco

Proof. For the given homotopy Fi(—) the curves F; are described by their
support functions pi(a), @ < a < b, where lim pi(a) = oo. The tangent line to F

passing through the paint (z,y) lying in the extenor of F; is determined by an angle
satisfying the condition '

zcosa(z,y) + ysinay(z,5) = pr(ae(z.9)) -

Taking the limit when ¢ tends to infinity and next determining 2 and 5 we obtain

f:oo, Y — 0. Hence we have

¥y z
: a a a
i Xiteup) =1 (157 + 05 ) = 15

The above results suggest that it might be useful to formmlate a notion of rie-
mannian foliation with singularities. So far we have not found a natural way of daing
this.
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4 STRESZCZENIE

W pracy tej opisujemy wsaysthkie jednowymiarowe zonientowane foliacje nemannowskie z mak-
symalng daiedzing awarty w E?, dla ktérych kanoniczna metryla euklidesown jest metryks bundle-
like. Podajerny swigaki tych foliacji s polami Killinga na E2.

SUMMARY

In this paper all one—dimensional oriented nemanmian foliations whose maximal domain is
contained in E? and canonical endidean metric is bundle-like are described. A relation of Killing
fids on E? to these foliations is exhibited.
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