ANNALES

UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. XIV, 7 SECTIO A 1960

Z Katedry Zespołowej Matematyki Wydziału Mat.-Fiz.-Chem. UMCS Kierownik: prof. dr A. Bielecki

ADAM BIELECKI et CZESŁAW KLUCZNY

Sur une généralisation d'un théorème de H. Kneser

O uogólnieniu twierdzenia H. Knesera

Обобщение одной теоремы Г. Кнезера

1. Hypothèses et notations

Nous désignons par X l'espace cartésien à n dimensions des points $x = (x_1, x_2, \ldots, x_n)$, $y = (y_1, y_2, \ldots, y_n)$ etc. Les points de l'espace $X^* = (-\infty, \infty) \times X$ seront désignés par les symboles: $P = (t, x) = (t, x_1, x_2, \ldots, x_n)$, R = (s, y) etc. Nous admettons les hypothèses suivantes:

Hypothèses. La frontière d'un ensemble $\omega \subset X^*$, non vide et ouvert est la somme de deux ensembles disjoints Φ et Ψ , l'ensemble Ψ étant fermé. Une fonction f(t,x), à valeurs dans l'espace X, est définie et continue dans l'ensemble $\Delta = \omega + \Phi$. Les intégrales de l'équation différentielle ordinaire vectorielle x' = f(t,x), que nous appellerons tout court intégrales, jouissent de la propriété suivante: Si une intégrale $x = \varphi(t)$, $\alpha \leq t \leq \beta$, issue d'un point $P = (\alpha, \xi) \in \omega$ aboutit en un point $R = (\beta, \eta) \in \Phi$, alors elle ne peut plus être prolongée au-delà de ce point(1).

Nous allons encore introduire quelques définitions et notations.

Le symbole Π_{σ} désignera l'hyperplan $t=\sigma$ et E(P) — la zone d'émission (positive) du point $P=(\tau,\xi)$, c'est-à-dire l'ensemble de tous les points situés sur les intégrales $x=\varphi(t), \, \tau\leqslant t\leqslant a, \, \tau\leqslant a$, satisfaisant à la condition $\varphi(\tau)=\xi$; $e(P)=E(P)\cdot \Phi$.

⁽¹⁾ Cette condition coincide avec celle que tout point "de sortie" est un point "de sortie forte", dans la note [2], p. 46.

Une intégrale issue d'un point $P \in \omega$ contenue dans ω et saturée à droite, c'est-à-dire ne pouvant plus être prolongée dans le sens positif de l'axe t, sera appelée asymptotique; ef. [2], p. 50, ou bien [5], p. 301.

Nous dirons que la suite d'intégrales $x=\varphi_i(t),\,t\,\epsilon\,\delta_i,\,$ où $i=1,\,2,\,3,\,\ldots$ et les δ_i désignent des intervalles, converge vers l'arc $x=\varphi_0(t),\,t\,\epsilon\,\delta_0$ si, pour tout intervalle fermé $\langle\mu,\,r\rangle$, contenu dans l'intérieur de $\delta_0,\,$ il existe un entier positif N tel que la suite de fonctions $\varphi_i(t),\,i=N,\,N+1,\,\ldots$ converge uniformément vers la fonction $\varphi_0(t)$ dans l'intervalle $\langle\mu,\,r\rangle$. Il est bien connu que, si une suite d'intégrales est contenue dans un ensemble compact $\Delta'\subset\Delta$, on peut en extraire une suite partielle d'intégrales convergente vers une intégrale qui peut se réduire à un point; cf. [2], p. 42-45.

Enfin nous désignons par A_i , i=1,2,3,..., l'ensemble des points appartenant à A, dont les distances à l'origine ne surpassent pas le nombre i et les distances à l'ensemble Ψ ne sont pas inférieures à 1/i. Évidemment, ces ensembles sont bornés et fermés, $A_i \subset A_{i+1}$ et $\sum A_i = A$. Nous posons encore $\Phi_i = \omega$. Front A_i .

2. Théorèmes

Théorème 1. Dans les hypothèses énoncées au N° 1, si par un point $P = (\tau, \xi) \in \omega$ il ne passe aucune intégrale asymptotique, il existe un entier positif k tel que $E(P) \subset A_k$.

En effet, s'il n'en était pas ainsi, il existerait une suite infinie d'intégrales $x = \varphi_i(t), \ \tau \leqslant t \leqslant a_i, \ i = m, m+1, \ldots,$ satisfaisant aux conditions: $\varphi_i(\tau) = \xi$, l'arc $\varphi_i \subset \Delta_i$ et $(\alpha_i, \varphi_i(\alpha_i)) \in \Phi_i$. L'ensemble Δ_m étant compact, on pourrait en extraire une suite partielle d'intégrales que dont les portions contenues dans A_m formeraient une suite convergente vers une intégrale $x = \psi_m(t)$, $\tau \leqslant t \leqslant \beta_m$, joignant dans Δ_m le point P à un point $(\beta_m, \psi_m(\beta_m)) \in \overline{\Phi}_m$. Pareillement, on pourrait extraire de la suite φ_m^m une nouvelle suite partielle d'intégrales, convergente, dans Δ_{m+1} , vers une intégrale $x = \psi_{m+1}(t), \tau \leq t \leq \beta_{m+1}$, joignant le point P à l'ensemble Φ_{m+1} . Évidemment $\beta_{m+1} \geqslant \beta_m$ et $\psi_{m+1}(t) = \psi_m(t)$ pour $\tau \leqslant t \leqslant \beta_m$. En répétant ce procédé, on obtiendrait une suite infinie d'intégrales $x = \psi_i(t)$, $\tau \leqslant t \leqslant \beta_i, \ i=m,m+1,...,$ issues du point P et jouissant des propriétés suivantes: $\psi_i(t) = \psi_i(t)$, pour $\tau \leqslant t \leqslant \beta_i$ et $i \leqslant j$, et $(\beta_i, \psi_i(\beta_i)) \epsilon$ $\epsilon \Phi_i$. On constate sans peine que, en vertu de l'hypothèse du N° 1, l'intégrale $x = \psi(t)$, que nous définissons comme la somme de toutes les intégrales ψ_m , devrait être saturée à droite et contenue dans ω , contrairement à l'hypothèse de l'énoncé du théorème, d'après laquelle il n'existe aucune intégrale asymptotique issue du point P. Cette contradiction achève la démonstration.

Théorème 2. Dans les hypothèses du théorème 1 les ensembles E(P) et e(P) sont non vides, bornés et fermés.

En effet, fixons un indice k tel que $E(P) \subset \Delta_k$ et supposons que R soit un point appartenant à la fermeture de l'ensemble E(P). Donc il existe une suite de points $R_i = (\sigma_i, \eta_i) \in E(P), i = 1, 2, 3, \ldots$, convergente vers le point R et une suite d'intégrales $x = \varphi_i(t), \tau \leq t \leq \alpha_i$, contenues dans E(P) et telles que $\varphi_i(\tau) = \xi$ et $\varphi_i(\sigma_i) = \eta_i$. L'ensemble Δ_k étant compact, on peut en extraire une suite partielle d'intégrales, convergente vers une intégrale joignant les points P et R. Donc $R \in E(P)$, d'où il s'ensuit que l'ensemble E(P) est fermé.

L'ensemble e(P) est non vide, car dans le cas contraire toute intégrale passant par le point P et saturée à droite serait asymptotique, contrairement à l'hypothèse. Puisque $E(P) \subset \Delta_k$, l'ensemble $e(P) = E(P) \cdot \Phi = E(P) \cdot [\Delta_k \cdot (\Phi + \Psi)]$ est borné et fermé, comme produit de deux ensembles bornés et fermés.

Théorème 3. Dans les hypothèses du théorème 1 l'ensemble e(P) est connexe.

Supposons, en effet, que l'ensemble e(P) ne soit pas connexe. Il en résulte que e(P) = a + b, où a et b sont deux ensembles non vides, fermés et n'ayant pas de points communs.

Désignons par Θ l'ensemble des nombres s satisfaisant à cette condition:

Il existe deux intégrales $x = \varphi(t), \ t \in \langle s, \alpha \rangle$ et $x = \psi(t), \ t \in \langle s, \beta \rangle$ telles que $(s, \varphi(s)) = (s, \psi(s)) \in E(P), \ (\alpha, \varphi(\alpha)) \in a$ et $(\beta, \varphi(\beta)) \in b$.

Or, il est clair que $\tau \in \Theta$ et, par conséquent, l'ensemble Θ est non vide. Il est borné puisqu'il en était ainsi de l'ensemble E(P). Donc il existe une borne supérieure θ de l'ensemble Θ et $\theta \geqslant \tau$. Nous allons voir que $\theta \in \Theta$.

En effet, il existe une suite de points $R_i = (\theta_i, \zeta_i) \epsilon E(P), i = 1, 2, 3, ...$, et deux suites d'intégrales $\varphi_i(t)$, $\theta_i \leqslant t \leqslant \alpha_i$ et $\psi_i(t)$, $\theta_i \leqslant t \leqslant \beta_i$, contenues dans la zone d'émission E(P) et telles que $\varphi_i(\theta_i) = \psi_i(\theta_i) = \zeta_i$, $(\alpha_i, \varphi_i(\alpha_i)) \epsilon a$, $(\beta_i, \psi_i(\beta_i)) \epsilon b$ et $\theta_i \to \theta$ lorsque i augmente indéfiniment. Comme l'ensemble E(P) est compact, on peut en extraire deux suites partielles d'intégrales, convergentes vers deux intégrales qui joignent un point $R = (\theta, \zeta) \epsilon E(P)$ aux ensembles a et b; donc $\theta \epsilon \Theta$. Fixons un tel point R.

D'après ce que nous avons déjà établi, il existe une intégrale joignant les points P et R qui peut être prolongée jusqu'à un point A de l'ensemble

 $a \subset \Phi$. Comme $P \in \omega$, tous les points de cette intégrale, situés entre P et A, doivent appartenir à l'ensemble ω , en vertu de l'hypothèse du \mathbb{N}° 1, et, par conséquent, $R \in \omega$ ou bien $R = A \in a$. Mais, dans le cas où $R \notin \omega$, on aurait non seulement $R \in a$, mais aussi $R \in b$, d'où $a \cdot b \neq 0$, contrairement à l'hypothèse $a \cdot b = 0$, admise au début. Nous avons ainsi démontré que $R \in \omega$.

Soit $E_{\sigma}=\Pi_{\sigma}\cdot E(R)$. En vertu d'un théorème bien connu de H. Kneser [4], voir aussi [3], il existe un nombre $\sigma>\theta$ tel que l'ensemble E_{σ} est un continu borné, c'est-à-dire un ensemble non vide, borné, fermé et connexe. D'autre part $E_{\sigma}=a_{\sigma}+b_{\sigma}$, où a_{σ} (resp. b_{σ}) désigne l'ensemble des points de E_{σ} qui sont les origines d'intégrales aboutissant à l'ensemble a (resp. b). Comme $\sigma>\theta$, il s'ensuit des définitions de l'ensemble θ et du nombre θ que ces ensembles a_{σ} et b_{σ} sont disjoints. Nous allons montrer qu'ils doivent être fermés.

Dans ce but, supposons que $V \in \overline{a}_{\sigma}$. Il existe donc une suite de points $V_i \in a_{\sigma}$, $i=1,2,3,\ldots$, telle que $V_i \to V$ pour $i \to \infty$, et une suite d'intégrales φ_i issues des points correspondants V_i dont chacune aboutit à l'ensemble a. Comme auparavant, on en extrait une suite partielle d'intégrales convergente vers une intégrale joignant le point V à l'ensemble a et, ainsi, on constate que $V \in a_{\sigma}$. Donc $\overline{a}_{\sigma} \subset a_{\sigma}$, c'est-à-dire l'ensemble a_{σ} est fermé. Pareillement on prouve que l'ensemble b_{σ} est fermé.

Nous sommes ainsi arrivés à la conclusion que l'ensemble E_{σ} est une somme de deux ensembles séparés, ce qui est impossible, l'ensemble E_{σ} étant un continu. Cette contradiction montre bien que l'ensemble e(P) devait aussi être connexe, ce qui achève notre démonstration.

3. Corollaires

Supposons que l'ensemble ω soit un domaine limité par deux hyperplans: $\tau < t < \beta$, que l'ensemble Φ soit l'hyperplan $t = \beta$ et que toute intégrale issue d'un point $P = (\tau, \xi) \in \omega$ dans une direction dans laquelle l'argument t croît, aboutit à un point de l'hyperplan Π_{β} . Dans ce cas particulier, l'intersection e(P) de la zone d'émission E(P) avec l'hyperplan Π_{β} est, d'après nos théorèmes 1-3, un continu borné. Nous voyons donc que le théorème bien connu de H. Kneser [4] que nous venons d'appliquer dans la démonstration du théorème 3, aussi bien que sa généralisation due à E. Kamke [3], sont des conséquences immédiates de nos théorèmes.

D'autre part, les théorèmes 1-3 se prêtent encore à une généralisation. On peut, notamment, remplacer dans les énoncés de ces théorèmes les intégrales d'une équation différentielle ordinaire (vectorielle) par les solutions d'une équation au paratingent; pour la théorie de telles équations voir [1], [2], [6] et [7]. Les démonstrations subsistent grâce au fait que les solutions d'une équation au paratingent jouissent de propriétés qui étaient essentielles dans nos raisonnements.

Le problème envisagé dans cette note s'est imposé à l'occasion des recherches de l'un des auteurs (2) qui a étudié l'allure asymptotique des intégrales des équations différentielles moyennant certaines méthodes topologiques inspirées par le travail bien connu de T. Ważewski [5].

BIBLIOGRAPHIE

- [1] Bielecki, A., Sur certaines conditions nécessaires et suffisantes pour l'unicité des solutions des systèmes d'équations différentielles ordinaires et des équations au paratingent, Ann. Univ. Mariae Curie-Sklodowska, Sectio A, 2 (1947, 1948), p. 49-106.
- [2] Extension de la méthode du rétracte de T. Ważewski aux équations au paratingent, Ann. Univ. Mariae Curie-Skłodowska, Sectio A, 9 (1955, 1958), p. 37-61.
- [3] Kamke, E., Zur Theorie der Systeme gewöhnlicher Differentialgleichungen, IIs Acta Math. (Upsala), 58 (1932), p. 57-85.
- [4] Kneser, H., Über die Lösungen eines Systems gewöhnlicher Differentialgleichungen dass der Lipschitz-Bedingung nicht genügt, Sitz.-Ber. Preuss. Akad. Wiss., Phys.-Mat. Kl., 1923, p. 171-174.
- [5] Ważewski, T., Sur un principe topologique de l'examen de l'allure asymptotique des intégrales des équations différentielles ordinaires, Ann. Soc. Polon. Math., 20 (1947), p. 279-313.
- [6] Zaremba, S. K., Sur les équations au paratingent, Bull. Sci. Math., 60, 2 (1936), p. 139-160.
- [7] O równaniach paratyngensowych (en polonais), Ann. Soc. Polon. Math., Suppl. 9 (1935).

Streszczenie

W przestrzeni (n+1)-wymiarowej punktów $P=(t,x)=(t,x_1,x_2,\ldots,\ldots,x_n)$ zawarty jest zbiór otwarty ω ; Front $\omega=\Phi+\Psi$, zbiór Ψ jest domknięty, $\Delta=\omega+\Phi$. Funkcja f(t,x), przyjmująca wartości z przestrzeni n-wymiarowej punktów $x=(x_1,x_2,\ldots,x_n)$, jest określona i ciągła w Δ . Całki: $x=\varphi(t)$, równania różniczkowego zwyczajnego (wektorowego) x'=f(t,x) mają tę własność, że jeśli którakolwiek z nich wychodzi z punktu zbioru ω , w kierunku rosnącego t, i dociera do jakiegoś punktu zbioru Φ , to poza ten punkt przedłużyć się nie daje.

⁽²⁾ En préparation un travail de C. Kluczny sur ce sujet.

Dowodzi się, że jeśli punkt $P \in \omega$ i nie wychodzi zeń żadna całka asymptotyczna, t.j. wysycona w kierunku rosnącego t i zawarta całkowicie w ω , to zbiór $e(P) = E(P) \cdot \Phi$, gdzie E(P) oznacza dodatnią strefę emisji punktu P ze względu na rozważane równanie różniczkowe, jest kontinuum ograniczonym. Jest to uogólnienie znanego twierdzenia H. Knesera o przekrojach, prostopadłych do osi t, stref emisji punktów. Wynik ten uogólnia się na równania paratyngensowe z zachowaniem metody dowodu.

Резюме

В (n+1)-мерном пространстве точек $P=(t,x)=(t,x_1,x_2,\ldots,x_n)$ заключено открытое множество ω . Ограничение его Front $\omega=$ $= \Phi + \Psi, \Psi$ множество замкнутое, $\Delta=\omega + \Phi$. Функция f(t,x), принимающая значения из n-мерного пространства точек $x=(x_1,x_2,\ldots,x_n)$ определена и непрерывна на множестве Δ . Решения $x=\varphi(t)$ обыкновенного дифференциального уравнения (векторного) x'=f(t,x) обладают тем свойством, что, если любой из них выходит из точек множества ω в направлении растущего t и достигает какую-нибудь точку множества Φ , то за эту точку не может он быть продолжен.

Доказано, что, если точка $P \in \omega$ и из неё не выходит никакой асимптотический, т. е. непродолжимый, интеграл в направлении возрастающих t, заключенный полностью в ω , то множество $e(P) = E(P) \cdot \Phi$, где E(P) обозначает положительную зону эмиссии точки P для рассматриваемого дифференциального уравнения, является ограниченным континуумом.

Это обобщение известной теории Киезера о перпендикулярных κ оси t разрезах зон эмиссии точек. Этот результат обобщается на паратингентные уравнения с сохранением метода доказательства.