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1. Introduction. Notations

This paper contains detailed proofs of some results announced in
an earlier note under the same title [2] presented to the Polish Academy
of Science. Let C(M) denote the class of functions f(2) regular and
univalent in the unit circle K = {2:|z| < 1) with f(0) = 0, |f'(0)] = 1,
mapping the circle K onto 2 convex domain f(K) = Q2(f) contained in
K(M) = {w:|lw) < M}, M >1.

It is easy to see that the boundary of Q(f) is @ simple closed convex
Jordan curve I'(f) having the one-sided tangents everywhere. Besides,
the set of points with different one-sided tangents is at most enumerable.
In fact, the intersection Q(f) ~ {w:Rw = u} (—M < u < M) if not
empty, is & single open segment. Let h(u) denote the ordinate of its
lower end point, i (u) being defined and bounded for we(a, 8) C (—M, M).
The convexity of £(f) implies that h(u) is a function convex downwards,
i. e.

Ug— U u—1

t‘
h(u,)+ ~h(ug), U, < u< Uy
Lo — Uy Ug— U,

h(w) <

This inequality involves ([6], p. 172) the continuity of h(u). An analo-
gous statement for the upper end points of 2(f) ~ {w:R(w) = u| holds,
and hence we conclude that the boundary of 2(f) is a closed Jordan
curve I'(f) consisting of two convex arcs v = g(u), v = h(u) (a < u < f3)
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and of two segments of the straight lines R(w) = a, R(w) = f which
may possibly degenerate to points. Besides, we have h(u) = [ y(t)dt,

where y(t) is a bounded and non-decreasing function ([6], p. 372). Since
the set of discontinuity points of y(t) is at most enumerable, the deri-
vative h’(u) and therefore the tangent of I'(f) exist everywhere apart
from discontinuity points of ¢(¢). Iinally, the omne-sided limits of the
monotonic function y(¢) exist everywhere and this implies the existenco
of one-sided tangents. Besides, I'(f) being a convex Jordan curve is
obviously rectifiable. In the previous paper [2] we have found by elemen-
tary methods the Koebe constant for the class C(3), i.e. the radius
(M) of the largest circular disc with the centre at the origin which is
contained in Q(f) for every feC(M). We have

(1.1) O(M) = Msin6
where 6 is the unique solution of the equation
. 4n0 2r
(1.2) (m+26)8in = —co8f, (M > 1),

4 26 M

included in the open interval (0, r/2). The extremal function f*(z, M)
for which the intersection I'(f) ~ {w:|w| = 6(M)} is not empty, maps K
onto 2° = Q*(M) = K(M)~ {w:R(w) > — 6(M)} and is unique apart
from rotations of K and 2°(M) about the origin. Supposing that
(0, M) = 1, we have

M e H(z)—6"

1.3 W = y M) = -
(1:3) w0 =P, M) = T
where
(1 —gz\ 27 -
H - 210(__ - = = 210p
(2) 6 1=7 ’ u 7120 gy

6 being defined by (1.2).

In this paper we shall deduce by variational methods precise bounds
for [f(2)], (1 —|2[2)|f" ()], |@s] = 3f"(0)] (feC(M)). In each case considered
the function f*(z, M) is extremal. The author is very much indebted to
Prof. Z. Charzynski for suggesting these problems.

2. An extremal problem connected with bounds for [f| in C(M)

Suppose that #(0 < < M) being fixed, we wish to determine such
a function feC (M) which attains the value 7 for z¢K with the least pos-
sible modulus. If the function ¢(z) so obtained is the same for every
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1e(0, M) then ¢(z) provides evidently the extremal value for the upper
bound of |f| in O(M) if |2| is fixed. Let A denote the class of closed
convex domains £ containing the points 0 and n (A4 depends on %) included
in the circle K (M) = {w:|w| < M} and such that the inner conformal
radius r(0, 2) = 1. It is easy to see that the problem of determining
supg(0,7, 2), 2¢A, is equivalent to that of determining such a ¢eC (M)
which attains the value # for ze¢ K with the least modulus. The expression
g(w, wy, 2) denotes here the classical Green’s function of 2. We may
confine ourselves to the classical Green’s function because the boundary
of 2 is a simple closed Jordan curve as pointed out in sect. 1. In fact,
if peC (M), p(re®) =5, p(K) = 2, then Q¢A. On the other hand, if
NeA, there exists a function peC(M) mapping K onto £, such that
p(re'®) = 5. Then ¢(0, 7, 2) = logr~'. Hence the problem of minimizing
r with y(re”®) = 5, peC(M) is equivalent to that of finding the domain
QeA with the greatest possible value of ¢(0, 5, £2) (4 being fixed). Simi-
larly the problem of determining the function yeC (M) which attains
the given fixed value 5(— d(M) < 5 < 0) for z with the greatest possible
modulus, may be reduced to that of finding infg(0, 5, 2), 2¢A. The
assumption — 0(M) < 5 < 0 is essential since for || > (M) the infimum
to be determined is obviously equal zero.

In order to obtain the extremal domain, we shall use the Hadamard’s
formulae for the variations of the Green’s function and of the Robin’s
constant y(f, 2) = logr(¢, 2) (see e.g. [5]). Next, we bring these for-
mulae to a form more convenient for our purposes. Let z = ¢(w) map
conformally the domain QeA, with the boundary being an analytical
curve I'; onto the unit circle K in such a way that ¢(0) = 0. Then

g(w, 7, 9) = 10g: 1 —eluin()

= log |® (1
L p(w)—e(n) e

If the relative orientations of the outward pointing normal and of the
tangent of I" are like those of the x and y axes respectively, then by ana-
lyticity of I' and by Cauchy-Riemann equations we have

00

o = 2| =)

dg 0 0
s = - log B(w)| — o argd(w)

and therefore

dg(w, n, £2)  l¢"(w)|(1—lg(n)}*

(2.1) : :
Oy lp (w)—q@(n)?

. wel,
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In view of (2.1) we may bring the Hadamard’s formulae to the following
forms

1 ;fo 0, Q)T _ )
(2.2)  dy(0) = J ELW”—’ -] on(s)ds = — ’ o’ (w)|2 on (s)ds
arm J | oy, 3 am
_ 1 pog(w,0, 2)dg(w, n, 2)
(23) 890,71, 2) = o | y =L y—T’nl- ) 8 (s)ds —
1 1— 1
[ "{w)i? lo ()l on(s)ds.

) T g o) — e

Here 0n(8) = ep(8) is the normal displacement which is to be taken
positive, if the displacement vector coincides with the outward pointing
normal, and negative, if it has the opposite direction. Besides, p(s) is
a piecewise continuous function of the arc length s on /. The above given
formulae are obviously also valid, when p(s) # 0 on a finite system of
analytic boundary ares and p(s) = 0 on the remainder of boundary
of a convex domain.

If the domain £, yields the extremal value for the Green’s function
4(0, 5, Q) within a class of domains fulfilling the condition »(0, 2) = 1
(resp. (0, 2) = logr(0, 2) = 0) there exists a constant A such that
for any variation of 2, leading to domains of the considered class, we have
dg+ Ady = 0. This implies that, if under an admissible variation dy = 0,
and in the same time 6¢ > 0, the domain £, cannot yield the extremal
value for the Green’s function. For our further considerations it is very
important that the expression

1—lp(m)F 1|z

2.4 w) = il — ,
e N pw)—p(n)2  |z—2z)

occurring in the formula (2.3) varies in a certain monotonic manner for
fixed 5 and for w moving on I". The boundary I" is & Jordan curve and
therefore there exists a homeomorphism between the boundaries of K
and Q.

The equality (2.4) involves the existence of two points w,, w, on I
dividing I" into two ares I';, I', such that o(w) decreases strictly as w
is moving on each of two arcs Iy, I, from w, to w,. The function o(w)
attains at the points w,, w, its extremal values with respect to I'. In
order to find the extremal domain with respect to a class of domains,
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we shall show that some domains cannot be extremal. We distinguish
two ares l;,l, on the houndary I' such that
(A) mineg(w) > maxag(w).

wdl Walz
The existence of such arcs is secured by the lemma 3.1 based on the above
mentioned monotonic behaviour of o(w). We now choose p(8) >0 and
p(8) < 0 on the open arcs I, and I, respectively, so that

(B) [ 1g' w)2p(s)ds = | ¢’ (w)|2[— p(s)]ds.
I )
Then the inequality (A), in view of strict monotonity of o(w) implies

(€) | ¢ (w)2a(w) dn(s)ds > | |¢’ (w)[2a(w)[— on(s)]ds
h la

(B) means that dy - 0 whereas (C) yields ¢ > 0 for the variation of

defined by p(s).

Such a process will be referred to as a construction of positive and
negative variations, on 1, and I, respectively, which do not change y (0, 2)
while increasing the Green’s function. If such a construction is possible,
the domain subject to it, cannot evidently yield the maximal value to the
Green’s function. Similarly, putting p,(8) = —p(8), p(s) being defined
a8 above, we obtain a variation of the boundary which, not changing
y(0, 2), decreases the Green’s function, and such a domain cannot mini-
mize the Green’s function.

3. Boundary variations within 4, and A. Auxilary lemmata

Let A, denote the class of closed convex polygonal domains 2 with
at most n vertices and such that 0e 2, ne2,r(0, 2) = 1; 2 C {w:|w| < M)
(ne(0, M) being fixed). To every domain Q¢A4, we may attach a function
peC (M) with %' (0) = 1 and so we may consider compact and everywhere
dense sets of domains. Clearly 4, is a compact set of domains. Thus 4,
contains an extremal domain 2, such that

g(0, 7, 2,) = supg(0, 9, 2), 2e4,.

Similarly A is a compact class and the domain £, for which g(0, 5, &)
has a maximum within 4 may be approximated by polygons, the con-
vergence being understood in the sense of nucleus convergence (see e. g.
[3], p. 373, or [4], p. 140). It is easily verified that a suitably chosen
subsequence {£, ] converges into its nucleus being the extremal domain
Q, for the class A.
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Let us suppose that DA, AB and BC are any three adjacent sides of
2¢4,, y being the remainder of the boundary and that the vertex B
is ingide the circle I (), whereas the angles at A and B are less than r.
Let us draw through B the outward perpendicular BB’ to AB so that
the angle < B”AD < = and that B’ lies inside the circle K ().
If <C ABC > =/2, then the prolongation of CB meets AB" at B’ lying
inside K (JM). We now define p(s) = MM" = AMtana (a = <t BAB")
for M AB, p(s) = 0 outside 4B, and compare the Green’s function for
and for the varying domain '’ defined by the normal displacement
ep(8) of Q. Since the Hadamard’s formula may be ohviously applied in
this case, we have

l .
oy = g(w, wy, Q") —g(w, wy, 2)+ 0(e?) = e J @’ (w)|2a(20) dn(8)ds.
™

“
ADB

If £’ is the varying domain with the boundary yDAB’'BC (B’ is the varying
point where the prolongation of CB meets the boundary of £2''); then
the difference ¢(w, w,, 2')— g(w, w,, 2'’) (w,e 2’ being fixed) is a har-
monic function of we 2’ which is equal O(e) for we BB' and vanishes on
the remainder of the boundary of Q’. By the Green’s formula we have
g(w, wy, '')— g(w, wy, 2') = O(e?) since the boundary values on the
boundary of 2’ are equal to O(e) on the segment BB’ (the length of which
is equal to O(e)), and vanish on the remainder of the boundary. Com-
paring the Green’s functions of 2 and Q’, we obtain therefore

1

2

(2.31) g0, n, ) = J @ (w)|2a (w) on (8)ds

A

where on(s) = e-MM" = e-AMtana for MeAB. If < ABC < =/2, we
put ' = Q" and the same formula holds. In both cases such a variation
leads to domains Q' within 4,, once B is an inner point of K (M), and
it will be referred to as an outward rotation of the side AB ahout A.

We can also draw BB’ — the inward perpendicular to AB — (B may
not be now an inner point of K(JM)), and define p(s) = —MM" =
= —AMtana (¢ = < BAB"”) for Me¢AB, p(s) >0 on the remainder
of the boundary of 2. The variable domain Q' will be determined by
the normal displacement ep(s) of the boundary, whereas 2’ is the varying
domain with the boundary yDAB’C (where B’ is the varying point at
which the segment BC meets the rotating side AB’’/, resp. its prolonga-
tion. Comparing the Green’s functions of 2 and ' we obtain similarly
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(2.31). Such a variation also leads to domains within 4,, and it will be
referred to 28 an inward rotation of the side AB about A.

We can define quite similarly the inward and outward rotations of
a rectilinear side for a domain the boundary of which is composed of
a system of arcs of the circumference {w:|w| = M| and of straight line
segments connecting their end points. An outward rotation of the side
AB about A may be now defined also for B situated on the circumference
fw:|w| = M}. The variable domain 2eA4 arises by adjoining to 2 the
curvilinear triangle A BB’ with variable B’ outside {2 on the circumference
lw:|w| = M}. The formula (2.31) holds also in this case. It € is an inner
point of the side A B, we shall consider a variation of boundary referred
to as an outward shifting of the point C. The function p(s) is now defined
as AMtana for M e AC and BM tanp for M « BC. The condition CBtana =
= ACtanp implies the continuity of p(s). If the boundary of Q contains
“superfluous” vertices with the angles equal to =, the outward shifting
of such a superfluous vertex provides a variation within 4,, respectively
within 4.

If the boundary of a domain Qe A contains the chord AB of the circle
K (M), we also consider a variation of boundary referred to as bending
of the side AB at the point €. The function p(s) is now defined as follows:
p(8) = CMtana for MeAC, p(8) = —CMtanp for M eCB and p(s) = 0
on the remainder of boundary, 0 < a < < n/2. Let Q' be the convex
domain the boundary of which consists of a suitable part of the boundary
of 2, of two rays with the origin at C and the varying arc A4’ of the
circumference {w:|w| = M}. We obtain quite similarly that (2.31) also
holds in this case and this gives a variation within A.

Lemma 3.1. Let ABC be a triangle with the boundary L and let o(w)
be a function defined and continuous for we L which attains its greatest and
least values at the points M and m respectively. Besides, let us suppose that
a(M) > a(m) and that o(w) decreases strictly as w is moving on L from
M to m. Then we can distinguish two closed sides L,, L, of the triangle
such that
(A1) mineo(w) = maxo(w).

weL) weLy

Proof. If both points m, M are on the same side AC, o(w) varies
monotonically on ABC and we may take L, = AB, L, = BC, or con-
versely.

Let us now suppose that m, M are on different sides of the triangle,
say MeAB,meAC, and that M s+ A (the case M = A has been already
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considered). There exists the unique point 4, A such that o(4) =
= o(A,). If A,¢BC, then L, = AB, L, = AC. 1If A,¢AC, then we can
find C;e MA such that o(C,) = o(C). Then we have

ming(w) > max o(w) < maxo(w)

weCB 10eC) AmC 1weAC
and we may take L, = BC, L, = AC. Finally, if 4,¢4B, we can find
B,eAm, B, # B, such that o(B) = s(B,). Then we have

mino(w) = min o(w) = maxag(w)
kedR 1WeBARB weRC
and we may take L, = AB, L, = B('.

Corollary. The lemma holds obviously, if we replace the triangle
ABC by three adjacent arcs of a simple closed Jordan curve. Besides,
the arcs L,, I, may be replaced by their arbitrary non void closed subsets
o

Lemma 3.2. Al the n angles of the polygon 2, providing a mazinum.
for the Green’s function ¢(0, y, Q) within A, are less than w=. At most one
vertex of £, 18 inside K (M) and all the remaining vertices are situated on
the circumference |w:|wl = M}.

Proof. We first prove that the boundary of (, cannot have two
vertices with angles less than = inside K (.M). Suppose that, contrary to
this, A and B are such vertices. Let C be an arbitrary vertex of Q, dif-
ferent from 4, B. The points A, B, C split /’,, the boundary of Q,,
into three parts and in view of lemma 3.1 there exist two polygonal
lines L, and L, each having A or B as one of its end points, such that
(A1) holds. The polygonal lines L, and L, may be replaced by two
segments !, and 1, respectively, each having 4 or B as one of its end points
and such that (A) holds. We now turn !, outwards and I, inwards about
their end points by moving A or B and the angles of rotations are chosen
so that (B) holds. Such a variation leads to domains within the class A4,
and does not change y while increasing the Green’s function. We see that
the Green’s function cannot attain a maximum within 4, for such a do-
main. Next we prove that 2, cannot have “superfluous” vertices with
angles equal to =. We choose two segments [;,1, on I, such that (A) is
fulfilled, then we remove the superfluous vertex C and situate it on I,
without changing the domain. We now shift C outwards and turn [,
inwards, p(8) being chosen so that (B) holds. Then 4y = 0, dg > 0 and
this means that the Green’s function cannot have a maximum for such
& domain. The lemma 3.2 is proved.
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4. The structure of the domain £,

In view of lenuna 3.2 the extremal domain £, has all n vertices with
angles less than =, and at most one of them is situated inside K (M).
The sequence {£2,} is a compact set of domains and therefore a convergent
subsequence {2, ] can be selected which converges into its nucleus £,
2, being the extremal domain within A. Since n,—1, resp. %, vertices
of Q,, are situated on the circumference {w:|w| = M}, the set F of accu-
mulation points of vertices of .Q,,k is a closed set all points of which (with
at most one exception) lie on [w:|w| = M}. 1f the set F is dense on an arc y
of the circumference {w:|w| = M}, the arc y must be a boundary arc
of Q,. Since M > 1, r(0, £2,) = 1, we see that 2, cannot be identical with
the closed dise K (AM). Thus the set G = {w:|w| = M} \ F is non-void and
open with respect to {w:|w! = M}. Therefore G must he an at most enu-
merable sum of open arcs. Let y be an arbitrary component of G. We
see that the chord connecting both its end points must be a part of boun-
dary of ,, with perhaps one exception, where the corresponding part
of boundary is composed of two straight line segments. Therefore the
boundary of £, consists of an at most enumerable system of rectilinear
segments and arcs of the circumference {w:|w! = A}.

We first prove that on the boundary I, of £, there are at most two
straight line segments. For suppose that, contrary to this, there are
three segments on I',. Let us split I, into three parts each of them con-
taining one segment. In view of lemma 3.1 and the corollary there exist
two segments Il,,l, such that (A) is fulfiled. We now turn I, outwards
and I, inwards and take p(s) so that (B) holds. The variation of I cor-
responding to such p(s) provides éy = 0, dg >0 which is impossible.
Therefore the set G also consists of at most two components. Thus 77
consists of at most two circular arcs on {w:|w| = M} and of at most two
rectilinear segments.

Finally, we prove that /|, cannot contain two straight line seginents.
Let o(w) attain its minimal value at m and let us suppose that I,, L,
are different boundary segments of I'y. If m is an inner point of a boun-
dary segnient, sy meL,, we shall move two points C,, C, on L, so that
a(Cy) = o(C’;) having started at m. As one of them attains the end
point of L,, the other is located at C,Ce¢L,. The point C divides L,
into two parts, one of them I, containing m. Obviously (A) holds. We
now turn l, inwards about , whereas I, is turned about one of its end
points outwards so that (B) holds. This implies éy = 0, ég > 0 which
is impossible.
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We now suppose that m is situated on {w:|w| = M}, or, that m is
the common end point of both boundary segments. It is easy to see that
in both cases o(w) varies in a strictly monotonic manner, as w is moving
on the one suitably chosen boundary segment, say on L,. We choose arbi-
trary fixed numbers a,f (0 < a < f < =/2) and a point CeL,. The
point C splits L, into two segments I, !, such that (A) holds. We now
draw two rays emanating from €, one of them going inwards £, and in-
clined at an angle § to l,, the other going outwards £, and inclined at
an angle a to I,. Both rays determine the function p(s) positive on I,,
negative on I, and equal to zero on the remainder of the boundary. We
now locate C so that the equality (B) holds. This is possible, hecause
during a contraction of l;(l,) to a point by suitable moving of C(a, g
being fixed) the right (left) hand side tends to zero, whereas the other side
tends to a positive limit. In this way we obtain a bending of the side L,
providing dy = 0, dg >0 which is impossible. We have thus proved
that the boundary of the extremal domain Q, within 4 is composed of
one rectilinear segment and, consequently, of one circular arc on
{w:|w| = M}. This implies, in view of r(0, 2,) = 1 that Q, = Q* apart
from rotations about w = 0.

Taking p(s) positive on these parts of boundary where o(w) is small,
and negative where g (w) is large, we can prove by an analogous argument.
that the same domain also minimizes the Green’s function.

Since the extremal domains in both cases do not depend on i, we
see, in view of sect. 2, that the function f*(z, M) defined in sect. 1 is ex-
tremal for upper and lower bounds of |f| within C(M), |2|] being fixed.
f*(z, M) is a circularly symmetric function (see [1]) with respect to the
positive real axis and therefore the modulus [f*(2, M)| attains, |z| = »
being fixed, its maximal and minimal values for z =7r and 2z = —7r
respectively. In view of this we obtain

Theorem 4.1. Suppose that feC(M). Then
(4.1) ~f*(—lel, M) < If (&) <[ (12, 1),
where f*(z, M) is defined by the formulae (1.3) and (1.2)
The fact that the function f* provides the upper bound for all ze K

may be used to obtain the precise upper bound for |a,|. We have

Theorem 4.2. Suppose that feC (M), f(2) = a2+ a,22-+ ..., |a,| = 1.
Then
sinf 470

(4'2) |(l,| < -Ag = AQ(M) = ﬁ -l-co8 mo
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where 0 18 the wunique solution of (1.2) contained in the open interval
(0, n/2). : .

~Proof. Put M(r,f) = sup|f(re)|, 6<0,2n); g(2) = 6"f(26") (a,f
arbitrary real numbers). Obviously geC(M) and M(r,f) = M(r,g).
After a suitable choice of a, # we have ¢'(0) = 1, 1¢(0) = |a,|, and this
implies

M(r,f) = M(r,g) = r+ |ag|r*+O(r3) < f*(r, M)
=r-+A(M)r3+0(r3).

A,(M) is a positive number because f* is a circularly symmetric function
such that f*(z, M) == z, [1], and therefore we obtain |a;| < A,(M). Now
A,(M) can be easily calculated explicitly and the inequality (4.2) fol-
lows. If M —» +o00, then 6§ - 0 and A,(M) = cos0 =1, if M — 1, then
0 - =/2 and Ay(M) - 1-+-cosw = 0 in accordance with the well known
facts.

Let us now suppose that feC(M) and 5 = f(2). If £ = f(K) then
r(n, 2) = (1—[2]*)|f'(2)|. Putting y(y, 2) = logr(n, 2) we obtain, in
wiew of (2.2), the following expression for the variation of the Robin’s
constant of Q with an analytic boundary I:

(4.3) Sy(n, @) = — f g’ (0)[2 02 (10) B (8) dix .

The same formula is valid, if a part of boundary of a convex domain
where p(8) # 0 is a finite system of analytic arcs. The function ¢%(w) has
similar property of monotonity like o(w), and an analogous argumen-
tation vields

(4.4) (11— [213)If" (2)] < 7(If(=)], 2°).
Begides, for |f(z)] < (M) we obtain
(4.5) r(—If (@), 2%) < (1—E)If ().
: i0 "
Putting G (w) = (%g) , we have for real w: |G(w) = 1 and
(4.6) ool 28) wm SN 21O~

G(w) GG

By substituting for » the value (4.6) we obtain, in view of (4.4) and (4.5)
the precise bounds for |f'(z)| which depend, however, on |f(z)| and [z|.

Annales t. XIV 1860 2
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Streszczenie

W pracy tej rozwazam klase C(M) funkeji f(z) holomorficznych
i jednolistnych w kole jednostkowym K, o rozwinigciu f(2) = a,2+ a,22+ ...
@, =1, odwzorowujacych kolo I’ na obszar wypukly Q(f) zawarty
w kole K (M) = {w:|\w| < M}, M > 1. Poslugujac si¢ wzorami waria-
cyjnymi Hadamarda, znajduje dokladne oszacowania wielkoseci [f(z),
(1— |z|2)|f"(2)], la,! dla funkeji klasy €' (M). Funkecja ekstremalng jest
przy tym funkecja f*(z, M) odwzorowujgca kolo K na obszar Q°(M) =
= K(M) ~ {w:R(w) > — (M)}, przy czym 6(M) jest stala Koebego
dla klasy C (M), ktorej wartosé liczbowa zostala przeze mnie znaleziona
poprzednio w pracy [2].

Pe3wome

(O6o3nauum vepesz C (M) rnacc GyHKuMIT BHHA f(2) = @ 24 @2° ...
(|@y] = 1), peryaApHBIX W OXHOIMCTHBIX B €TNIMYHOM Kpyre K, KoTopble
0TO6PaKaloT 3TOT KPYr HA BRIMYKIYI0 06acTh 2, 3aK/I0UYeHHYI0 B Kpvre
K(M) = {w:|w| < M}.

Hoxwaysic (popmynamn Apgamapa papuanun QyHkuuu I'puna u 1o-
croamnoi Pobena, A moiayyalo mo Metoav MHo:kuTeseil Jlarpamka cle-
JViolllMe pe3yabTaThl:

a) TOYHYI0 OIleHKY CBepXYy I CHH3Y jid [f(2)] npu VCTAHOBRIEHHOM

zell, worpa feC(M);

1) sup|a,] B Kaacce C(M);

C) CTPOryl0 OLIEHKY CBepXy M cHu3y aas (1— [z[?)|f' (2)], feC(M).

Bo Bcex 3TMX ciaydaAX 3KcTpeMalnbHaAa (QYHKIMA Ta e camana. Oua
otofpaxaer Kpyr I Ha o6macth

Q* = K(M) ~ {10:Rw > —6 (M)},

rjie o (M) ectn nocroannaa Kéde xna raacca C(M).



