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Introduction

The classical distortion theorems for univalent functions such as the
one-quarter theorem and the theorems concerning the bounds for moduli
of function and its derivate still hold, as pointed out by W.K. Hayman
[2], [3], for more general classes of functions, e.g. for circumferentially
mean univalent functions introduced by M. Biernacki {1] and even
for a less restrictive class of weakly univalent functions [3].

That generalisation is inasmuch of importance, as it provides imme-
diately distortion theorems for p-valent functions. The main advantage
of Biernacki and Ha yman classes is their behaviour under taking

the P-th root: if F(2)==2°+A,,,2z°*1+ .. is weakly (resp. circumferen-
tially mean) p-valent in |z|<1, then

(F@)]V? =2+ %Apﬂz“-

is weakly (resp. circumferentially mean) univalent in |z|<<1. The p-valent
functions do not generally posses an analogous property. However, if the
extremal functions obtained for the more general class of weakly p-valent
functions are p-valent in the ordinary sense, the problem for p-valent
functions can be settled in this way.

On the other hand, G. Pick [6] obtained some distortion theorems
for bounded, univalent functions. In these theorems the extremal Pick
function w = f (M, 2) = fu(2) =z +2 (1 — 1/M)z2+... mapping |z|<1 onto



30 Jan Krzyz

|w| <M slit along the negative real axis from — M to — r(M)==
[2M —1—2y M (M —1)] plays a similar role as the Koebe function
w = z/(1 — z)? for unbounded functions.

In this paper we shall obtain distortion theorems for the class SY of
functions regular, weakly univalent and bounded in the unit circle and
such that f(z)=2z + a;22 + ..., |f(2)|<< M for |z|<1. This is an obvious
generalisation of G. Pick results concerning the univalent functions.
By taking p-th root as above, distortion theorems for the class "S{’
(F)=2z"+Ap.,2" .., |[F(2)|< M) of regular bounded, weakly p-valent
functions can be obtained. Making M — oo, we obtain some Hayman’s
results for unbounded weakly univalent and weakly p-valent functions.

1. A generalisation of the one-quarter theorem

A starting point in our considerations will be an analogue of the ‘“one-
quarter theorem” for bounded, weakly univalent functions. An extremely
simple and elegant method of proof valid for this and similar problems
has been introduced by Hayman [2]. For the sake of completeness and in
regard of the fact that {2] is scarcely accessible ,we shall here sketch
the proof.

The Hayman's method is based on the notion of inner conformal
radius of a Riemann surface and on the determination of its maximal
value by using the properties of circular symmetrization, a geometrical
operation introduced by G. P61y a. If g (W, P, Py) is the Green function
of the Riemann surface W with the pole at P, and w, (resp. w) is the
value of local uniformizing parameter for P, (resp. for P), then
g9 (W, P, Pg)=1log |w—wpy| ! + logr(W,Py) ~ o(l) for P— Py and this
equality defines the inner conformal radius r (W, Py) of W with respect
to Py. If W is the biunivoque conformal map of |z|<<1 by a regular func-
tion f (2), then

z(w) — 2z (w,)
[1—2z(w)z(w,) I’

g(W,P,P,)=—log flz(w)] = w,

and this implies r (W, Pg) = (1 —|2y|?)|f(z9)| for P, being the map of z,.

Let now W be a Riemann surface over the w plane being the map of
|z| <1 by a regular weakly univalent function w==f(2). This means
that every circle |w|=1r is either covered simply by the points of W, or
it leaves at least one point over this circumference uncovered. This implies
(in view of the fact that univalency on the boundary involves the uni-
valency in the interior of boundary) that the Riemann surface of a regular,
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weakly univalent function contains a simply covered circular disc |w|<< 8
and at least one point over each circumference |w|=r> 4 remains
uncovered. Let now W be the Riemann surface being the map of |z|<1
under f(z), feS}). We shall prove that

d-r(M)=M[2M—1—2)yMM—1)].

Let Wy be a simply covered (but generally multiply connected) domain
obtained by identifying the multiply covered points of W. The boundary
of Wy is contained in the boundary of W and hence, by the Lindelsf’s
principle, g (W, P, Py) == g (W, P, Py) and therefore r (W, 0) = r (W.0)=1.
The circular symmetrization of W, with respect to the positive real axis
(for definition and properties see: [2], [4], [5]) increases the inner
conformal radius with respect to points on the symmetrization axis, and
so, for the obtained simply connected domain W*, we have r(W* 0)=>
=1 (W,, 0) = 1. Since the enlargement of domain increases the Green
function and thus the inner conformal radius, too, we finally obtain
T(Ky. 0) =1, where K, is the circular disc |w|<<M slit along the seg-
ment [— M, —é], of the real axis. An easy calculation gives r (K, 0) ==
==406M* (M+4)2. Since r (Ku, 0) = 1, we have 8= M [2M—1—2 } M(M—1)}
and this is the desired result.

Added in proof: the method of majorization of the inner conformal radius is l

presented in W. K. Hayman, Multivalent Functions, Cambridge 1958, and the
above given value of r (M) may be derived immediately from the theorem 4.14, p. 88.

2. The lower bound for f(z)

Theorem 2.1. If fe(SY), then we have
(2.1)

—f(M,—|2}) < [f(2)|

where f (M, z) is the Pick function (defined in Introduction). The obtained
lower bound is sharp and is attained for f—=7fn and real, megative =z,
—1<z<o.

Proof. Since for —1 <<z <0 we have 0 < — f (M, z) < r (M) is suffices
to prove the theorem for z such that |f (z)|—=|d|<< r (M). We may suppose
that |f(z)| attains its minimum on |z|=g just for r——p. We have
therefore f(—p)=d, |d|<<7y, 0<<p<1. The circle |z| <1, slit along
the negative real axis from — 1 to — g, is mapped by w = f (M, z) onto
the circle |w|<< M slit along the negative real axis from — M to f (M, — g).
The transformation given implicitely as follows:

2w Ldipamenel B S
(1—2z? (1492 Q—t .
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represents conformally the circle |z|<<1 slit along the negative real axis
from — 1 to — o onto the circular disc |t|<<1 (since both domains are
mapped conformally onto the o plane slit along the negative real axis
from — 00 to — o/(1+p)?. The above given transformation has the form:
z2=2(t)=—40(1+0)"%t+... The resulting transformation ¢ (t)=f [z(t)]
takes the form:

@(t)= t+---=At+--- where 0<A= [ &5 <l

4e
1+ 0)?
and defines a regular, weakly univalent function of t, |t|<<1. Its modulus
is bounded there by M, besides, it does not take the value d in |t| <1.
Since the function A~!¢(t) =t+... belongs to S}, and does not take the
value A—'d in the circle |t| <1, we have

A'|d| >r(M/A)=MA~' [2MA~'—1—2) MA—'(MA—'—1)|
and this implies
lf(—p) =!d| > MA~' [2M—A—2} M(M— A)|.
But

12+zM ' (1—2) *—y1li4+2zM '(1—2) °

(2.2) f(M,z2) =M 20—

(we take here this branch of radical that is equal to 1’2 for z=—20) and
therefore

—f(M,—p)=A 'M[2M— A—2}yM(M— A4)|

with A=49(1+0) % This proves that f(—p)| >— f(M,— ). The ine-
quality (2.1) is proved.

3. The upper bound for f(2)

We now solve the following extremal problem. Given a Riemann
surface W, being the map of |t|<<1 under the transformation z=— ¢(t),
where ¢(t) is regular and weakly univalent in |t|<<1 and does not attain
the value z=—0 there, and, besides, | ¢ (t)|]<<1. We shall determine
the maximal value of the inner conformal radius of such a surface Wy,
(having at least one inner point over zg, 2 being fixed, 0 <<|zy|<<1) with
respect to a point lying over z,. The succesive operations of identifying
the different sheets of the Riemann surface, then the circular symmetriza-
tion with respect to the axis emanating from z=—0 through 2z, applied
quite similarly as in sect. 1, increase the inner conformal radius at z,.
Finally we obtain a simply connected domain which does not contain the
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radius of the unit circle |2|<<1 opposite to z,. The subsequent enlargement
of domain increases the inner conformal radius, and therefore we see
that it attains greatest possible value for Wy being the circular disc slit
along the radius being the prolongation of the radius containing zy. We can
take zj such that 0 <z, <1 and then the extremal function is defined by
the relation z/(1 —z)2=(1+1)2/(1 —t)> and represents the unit circle
|t|<<1 onto the unit circle |z|<1 slit along the negative real axis. We
have 7(Wg, 2,) = (1— [t|?) |dg/dt| and therefore r(Wg, 2,)=42,(1—2,)/(1+2,)
is the desired maximal value.

If we consider an analogous problem for Riemann surfaces contained
in the circle |w|<M (M =1), it is easy to see that the maximal value
of the inner conformal radius of such a surface W; with respect to the
point lying over wy is equal to 4|wp|(1 — M—!|wy|) (I +Mt|wy|). The

obtained maximal value at once gives us an upper bound for the logarith-
mic derivative:

Theorem 3.1. If w=w(t) is a regular, weakly univalent and bounded
function of t, where |t| <1, such that 0 |w(t)|<M for |t|<1,

3.1) 1 dw . 4 1—M"1|w(t)]
‘w(t) | dt 1—it)2 1+ M w(t)"

The obtained upper bound is sharp, the equality being attained for w (t)
mapping the unit circle |t|<<1 onto |w|<<M slit along the radius and for
t such that the corresponding value of w is situated on the prolongation
of the slit.

Let us now suppose that f(z) is an arbitrary, bounded and weakly
univalent function, such that |f )| <M for any z in the unit circle and
f(0) = 0. Obviously the compounded transformation ¢(t) == f [z (t)], where
Z=2z(t) maps [t|<1 onto |z|<1 slit along the radius —1<<2z<0,
defines a bounded, non-vanishing, weakly univalent function. If the points
t—=0+¢»z—pand t=vcaz=— o, (Where 7 > 0) correspond to each other,
then it is easy to verify that 0<<p< p,<<1. The inequality (3.1) gives

{:(1+M"|w(t)i)dlw(t)| ~dt
wO =M TwE) —* ) 1=
0

0
An integration gives

M|g(z) M ¢(0) b=
300 1 — =
@2 gy o wIE 1°g|M—|<p(0)|1*’<1°'g(1—r)

01 4
L - = Jog——R
log 1—e) B (1—o)
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But ¢(0) = f(p), ¢(r)=7F(p,) and therefore (3.2) gives
M f(g,)|(1—p,)*  M|f(o) (1 — p)?

i oM —If@)|* ~ elM— F@II*
This means that on the positive real axis
|f(r)| 1 —1)°

r[1—M~" f()(]*
is a decreasing function of r. The same is clearly true for any other ray
and we obtain
Theorem 3.2. The formula

|f(re”)| (1 —r)
r[1— M~ f(re®)|]?

represents a decreasing function of r (0 <r <1), 6 being real and fixed,
for any bounded (|f (2)| << M), weakly univalent function f(2), such that
f(0)=0.

If M — oo, we obtain the well known result to Hay man [3]. Besides,
under the above assumptions, the finite limit

e a(reR il =18
P =M fre )
exists for any real and fixed 6. If M (r,f)=sup|f(re”)|, then we can

0<9<2n
choose f, such that |f(p,e®)| = M(p,,f) and therefore, if 0 <<p<<p, <1,
then we have
M, )1 —ef . [fee®)(1—0? . flese™)|—0) _
o[1—M"M(p,f)I* = el —M7"[f(ee™)[|* = o[l —M~"[f(g, )]
- M(an)(l—e,)z
e:[1—M~" Mg, HI*

since x (1 — M1 x)2 increases for 0 <x <M.
Hence
M(r,f)(A—r)?
r[1—MM(r,)]?

is a decreasing function of r, 0 < r < 1, for any bounded, weakly univalent
function f (2), such that |f (2)| <M, f(0)=0.

Supposing that f’(0) = 1, we see that the above considered decreasing
function does not exceed its right-hand side limit at r=0. This implies

M(r, f) oy
=M MEHE S A—rF
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The Pick function (2.2) can be also defined by the equation

f(M,Z) = _Z
a4 MM fMLAP — (1 —2)

and we see that for 0 <z=r<1

oMeH o fmn
[1—M"MEHP ~T—M {4, 7]

and in view of monotonity of x (1 — M 1x) 2 we have M(r,f) < f(M,7).
We have proved the

Theorem 3.3. If feSW, then |f(z) <f(M,z|), the obtained upper
bound is sharp, the equality being attained by the Pick function f (M, z)
for positive real z.

The inequality (3.1) enables us to obtain a sharp upper bound of the
logarithmic derivative for bounded, weakly univalent functions without
the restriction that f (z) does not vanish. Suppose that f (0 = 0. The weak
univalence implies that f(z) 40 for z=* 0 and f(0)=%0. Suppose that
Z =2 (t) maps the unit circle |t|<<1 onto the unit circle |z|<1 slit along
the radius, so, that e =2(0)>0, o,=2(r) >p, (0< T<<1).

This mapping has the following implicite form:

z __ e (L4t}
(1—2f ~ (1—¢) (1——:)
Therefore
o (42| _40.(1—ey)
o )(dz',_ T 1te
and because the compounded function w=f[z(t)] is clearly weakly
univalent and does not vanish in |t|<1, we have in view of (3.1):

pad=y’ —llﬂ E _
(1 —17%) [f(o,)] |dz :=F'(dt);:'—

_ 40,(1—p,)
f(@l)l(l + 01)

df
dz

- 4(1— M lﬂel)“
zZ=p, Y 1+M_l|f(91)|

The estimation on the real axis, however, implies an analogous estimation
on the circle |z|= const. and putting g, = |z| we obtain

df(2)
dz

14z 1—M @)

1
(3.5) Sl =z]) 1 + M~ [f(2)]"

f@)]

We have therefore
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Theorem 3.4. If w= f(2) is regular, bounded (|f(z)| << M) and weakly
univalent in the unit circle |z| <1, and if f(0)==0, then the inequality
(3.5) holds.

This inequality is sharp, the equality bemg attained for the Pick func-
tion f (M, 2) and real, positive z.

The inequality (3.5) gives at the same time the solution of an extremal
problem for bounded, weakly univalent Riemann surfaces. Suppose that
W, is a Riemann surface being the map of |z| <1 under w=—ztaz?+..—
= f (2), f () being bounded (|f (2)| << M) weakly univalent and regular in
the unit circle. We shall determine

sup r (Wy, P),
fesly

P being a point of W, lying over w = wj, 0 <|wy|<< M. We have by (3.5)

(1+|20) w, (1—M llwol)
(2] 1+ M w,|

T(Wp P)=(1—2,?) [f(z,)| <

where wy= f(z9), wy being the value of local uniformizing parameter
for P. The expression (14 |29|)%/|29| is a strictly decreasing function of
|zg| and it attains, w, being given, the greatest possible value for this
function which increases most rapidly, i.e. for the Pick function (resp.
for a function obtained from it by trivial modifications). Then

‘?ol |wg_
(1—|zol)‘ (1—M | w,)?
and hence
(14 |z,])? (l*lzol)z (1_ 1w, )
4= - .
|20 |20| - wol *A

This means that

36) (W), P)=r (Wy, wy) < ~— M1 wg|

—_ =31 2 |
TR 10— M w4 ]

or

BN (1—|2) |f(zo) < LM~ 1wl {1 — M ol + 4wl

1+M’

The obtained upper bound is sharp, the equality being attained for
f—=7fn and 0 <wy, <M. In particular, (3.7) gives for M — + oo:

(3.8) 1—[zP)[f') < 1+ 4|f(2)|
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for any regular and weakly univalent function f(2)=z+apz?+... This
inequality contains the precise upper bounds for the moduli of function
feS® and its derivative. Similarly, an integration of (3.7) leads to the
theorem 3.3.

The inequality |f(2)|/|z|<<fm(|z|)/|z| gives immediately the estima-
tion of the second coefficient. We can suppose that a)==0. Then we have

\

1)9+O(92)

1+a29+0(e”)<1+2(1—ﬁ

and for ¢ — 0 we obtain
(3.9) la,| <2(1—M7")
the equality being attained for the Pick function.

4. Distortion theorems for bounded, p-valent functions

The above obtained results may be used to obtain analogous results for
bounded, weakly p-valent functions. We say that a function F(2) is weakly
p-valent, if either a circumference |w|=r is covered exactly p-times, or
1t contains at least one point which is covered at most p—1 times. It is
€asy to verify that, if F(z)==2°+Ap4+,2°"1+... is regular and weakly
p-valent in |z|<C1, then f(2)=[F(2)]t/—=2+1/p Ap+,2%+... is also regular
and weakly univalent in |z| <1, [3]. Besides, if |F(z)|<M, then
|7 (2)| < M!’», After these preliminaries the analogous results for bounded,
weakly p-valent functions can be stated without proof, being simple
corollaries of previous theorems. We shall throughout suppose that
Fe)=2z+4,. 22414 . is a regular, bounded (|F(z)|<M, M>1) and
weakly p-valent function defined in the unit circle. Then we have.

Corollary 1. The values of F (2) cover exactly p-times the open circle
lw| < (r (MYP)]p, & (M) being defined in sect. 1.

Corollary 2. For 2 lying on the circumference |z|= const we have

|—fM'?, — 2)|P < F@)| < [f(M'P, 2)))?.
Corollary 3.
F'(2) p(l + [z]) 1—[M ' |F(2)|]'”
"F(z)j z(1—Iz)) 1+ |M7'|F(2)||'* "
Corollary 4.
Ap.y L 2p(1— M-VP),
The above bounds are sharp, the equality being attained forF(z)=[f(M'?,z)}.

Since the extremal function is p-valent, the bounds are valid and sharp
for bounded p-valent functions, too.
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Streszczenie

W pracy tej poslugujac sie metoda Haymana-Pélyi majoryzacji kon-
foremnego promienia wewnetrznego powierzchni Riemanna otrzymuje
dokladne oszacowania od dolu i od gory na modut funkcji slabo p-listnych
ograniczonych, a takze dokladne oszacowanie od gory na pochodng loga-
rytmiczng funkcji p-listnych ograniczonych postaci

f(R)y=2z"tAp. 2Pti+..

Otrzymane wyniki stanowig z jednej strony uogdlnienie analogicznych
wynikow Haymana otrzymanych dla funkcji slabo p-listnych nieograni-
czonych, z drugiej zas strony uogélnienie klasycznych rezultatow Picka
odnoszacych sie do funkcji jednolistnych ograniczonych.

Pe3zwome

B 9rtoit pabore, mosb3yack MeromoMm XeimoHa-Ilosma maitopusarums
KOH(OpPMHOT0 BHYTPEHHEero paguyca noBepxHocTM PyumanHa, A mojy4aro
TOYHYIO OLIEHKY CHM3Yy M CBEpPXy ANA MOAYJIA DyHKIMII ciaabo p-JIMCTHBIX,
OrpaHM4eHHbIX, a TaKxkKe TOYHYI0 OLEHKY CBepXy AJsA JorapugmMmuyeckoin
NPOM3BOAHON OTPAaHMYEHHbIX P-JMCTHBIX (PYHKIMIA BMAA

f(z)=zp+Ap+, Zp : ]+...

INosyyeHHble pe3yJIbTAThI IIPEACTABJAIOT, C OJHOI CTOPOHBI, 0boLIEeHKe
aHaJIOTMYHBIX PEe3yJIbTATOB XeiM3Ha, IMOJyYeHHBIX IJIA cjIabo p-JIMCTHBIX,
HeorpaHM4YeHHBbIX QYHKLMIA, a C APYIOi CTOPOHBI ODOIEHNME KJIAaCCHIECKUX
pe3yabTaToB [IMka, OTHOCAUMXCA K (PYHKIMAM OJHOJIMCTHBIM OpraHuyeH-
HBIM.



