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On the monotonity of certain functionals in the theory
of analytic functions ')
O monotonicznosci pewnych funkcjonalow w teorii funkcyj analitycznych

O MOHOTOHHOCTH HEKOTOPHX (YHKIHAOHAOB B TEOPHH aHalHTHYecKHX QyHkmmi

This paper deals with certain functionals defined for functions regular
in the circle |z|<R which are, the function f(z) being fixed, real and
monotonic functions of the real variable r =|z| in the open interval
(0, R). Some theorems are proved and some conjectures are announced.

The results of the part I, are due to the former of both authors, those
of the part II, to the latter.

I. Let f(z) be a function regular for |z|<<R. Put
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Mp(r,ﬂ=Mp(r)=‘;; flf(re"’)l”d(-)l'p
0

2n
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It was proved by G. H. Hardy [3] that M,(r) is an increasing function

of r and that log Mp(r) is a convex function of log r (0<r << R). In other
M; ! ; .

words, TM ‘?::) is an increasing function of r. For I,(r) we can make evi-
P

1) The principal results of this paper have been presented to the IV Congress
of Roumanian Mathematicians at Bucarest, May 28, 1856.
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dently analogous statements. In particular, %‘:ﬁ{? increases and this
suggests that also the ratio 2 (T

2_::
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increases with r. In fact, this conjecture holds and we shall prove it. We
first prove a lemma (due to J. Krzyz).

Lemma 1. Suppose both series with real coefficients Yan2" and X Ba2"
n n

a, a;

Br Bi

converge for z|<<R and B being non-negative not all vanish. If 0

Z ap x*

for all k> i, then the quotient ¢ ()= """

2 ﬂ" I
n=0

sing function of a real variable x€(0,R), or it is constant. In the latter case

is either a strictly increa-

| ;|
all the determinants |(I;k ;'| vanish. In particular, ¢ (x) increases strictly if
| Pe Pi

ag | . :
the sequence ‘ f;— increases and not all its terms are equal.
k

Proof Inorderto prove the lemma it is sufficient to observe that
the numerator of ¢'(x) is equal to.

(12) | %f L)% % |5 (3% %y (% %) ge
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+ (n—4)| % 021 + ___l._‘.'.n_1 + .
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and that the denominator of ¢’ (x) is positive for x ¢ (0, R) and therefore
@' (x) =0 and ¢ (x) increases for x € (0, R). Being an analytic function
of |z|<R the numerator of ¢’ (x) either vanishes at isolated points, or it
vanishes identically. In the former case ¢’ (x) > 0 except at isolated points
of the interval (0, R) and then ¢ (x) increases strictly, in the latter case

[
all the coefficients in (12) and therefore all the determinants | ** %
vanish and then ¢ (x) is constant. Br B
We now prove

must
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Theorem 1. If f(2) is regular for |z|<<R, f(z) # 0, then the quotient
?_n
: | Irf (re®)Fde
— 0 .
(1.1) e(r»f) 5 Za
| lf(re*)2de

L]

is a strictly increasing function of r¢ (0, R), unless f(z) = a,z" (a, # 0, n is
a non-negative integer), when the quotient (1.1) is constant.

Proof. Put f(x)= ) @.2". Then
n=0

S ntia. 2
L, ) =0 d

Lrp ¢
2 (1, f) 3 lagftetn

n=0
Putting r*=2x we bring (1.1) to the form of quotient considered in
Lemma 1, with ax =k? |ax[?, fr = |ax|*. We have for k =i

iak a; = k2|ak|’, i"’|a,-l2

| Br Bi | lael?, laif?

This means that (1.1) increases strictly or is constant. If the latter oase
occurs, then (k2 —i?) |a|? |@x[?=0 for all k,i. Since a, # 0 for some n
(f (z) = 0), therefore (n*—1i%) @/ =0 i.e. a,=0 for all i+ n. This
means that f(z)= a,2" and this is the desired result.

The theorem just proved suggests that also the ratio

= (k* — %) |ai|* [ar|2 > 0

i v 10)p <)
(1.3) r”l,,(r,f')=(£llf___(ie _) Qe
. I, (1, f) 28

| lf(re®rdo

0

is an increasing function of 7 for all p = 1. In this case also the ratio

21

l|rf (r e"’)l”d()l
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would be an increasing function of r ¢ (0, R). Making p — + o0 we could
then prove that

'qug)’!zf'(z) rM(r, )
sup f(2)  MG@,f

is an increasing function of r ¢ (0, R), too.
It is, however, not true that (1.3) increases for arbitrary f(z) and p > 0,
Making p — 0, we should obtain ([5] pp. 98, 99) that the quotient

2n
|1 PR
exp |2}z'6' log|rf'(re'®) d@l

(1.9 ™ —

' |
- 1O 5
l2 | 1ol fre®)] o)

exp

increases with r. If f(z) is an integral function with an infinite number
of zeros and a non-vanishing derivative (e.g. f(z) = e? + 1), then the
Jensen formula shows that the numerator of (1.4) has the form Ar
(A = const) and the denominator increases more rapidly than any po-
sitive power of r. Therefore the quotient (1.4) cannot be an increasing
function of r for p small enough.

II. The above mentioned property of log M,(r) to be a convex function
of log r is equivalent with the analogous property of

rI,(r)

I,(r)

2n
L=, [ifeemrdo @0, ie

0

also increases (see |8|, p. 174). We can combine this property with an
identity due to S. Mandelbrojt and so we obtain

Theorem 2. Suppose the function f(z) regular for |z| <R and non-va-
nishing identically, maps the circle |z| =r <R into the curve C,. If
@ —=argf(re'® =@ (@) on C,, then the quotient

[1f(re®)r d o ©)
C’

2n

Iifee® rde
0

is an increasing function of r€ (0, R) for any p = 0.
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Proof. If pis real and f(z) == 0 for |z| = r, then

2a

d 10 P ‘, i .
dr_’ | f(re'®)?dO = : J fre'®)”d o (6).
0 C,

This formula is due to S. Mandelbrojt, (see [6]). Thus

' iedp r d
(_J, |f(re ) i) dr IP(T)

L3 Ip(r)

B
| lfire’®)rd6
0
for re(r’, r”), (v, ") being the interval such that f(2) == 0 for r'<<|z|<r".
Dividing up the interval (0, R) into partial intervals (r;, r;.y) such that
f(2) # 0 for r;<<|z|<<7; 1 we obtain in view of continuity the desired
result.

In particular, if p = 2, we see that the quotient S(r)

I,(r)
the area of the map of |z|<<r by f(z). This may b; also easily proved by
using the lemma 1 and the well known representation of S(r) and I.(r) by
means of coefficients of f(z).

We shall now prove a result somewhat connected with a conjecture
announced above, which enables us to give to the Hadamard’s three
circles theorem a very simple geometrical interpretation. This is the

Theorem 3. Let f(z) be regular for |z|<<R and let I' denote the locus
of points & such that [f(§) = M(.&). If the derivative M'(r) exists for a
given value r, then M’'(r) = |f'(§)|, where ¢ is an arbitrary point of I' lying
on the circle |zl =r. If M'(r) does not exist, then the left-hand (right-hand)
derivative of M(r) is equal to |f(¢)!, & being the end-point of an arc of I
lying locally inside (outside) of the circle [z|=r.

Proof. O. Blumenthal [1], [2] proved that M(r) is an analytic
function of r, except at isolated points r, <<r, << ... so that M(r) is represent-
ed by distinct analytic functions in the intervals ri <r<<ri+; (r; <R,
i =1, 2, ...). This implies the existence of the one-sided derivatives of M(r)
and their one-sided continuity at * = r;. Besides, he showed that the locus
I' consists in |z|<<r <R of a finite system of analytic arcs, unless
f(z) = a 2"

Suppose first that M’(r,) exists and I' is not tangential to the circle
|2|=7,. Put & =r,e'®, & =(r,+A47)e'®+20) Ar£0, &,6 & el Then,
by the mean value theorem,

increases, S(r) being
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M(ry+ A1) — M(ry) = [f(&) — [f (&) = Ar d|f| + /1()0%|

both partial derivatives being taken at r=r,+d4r, @ =60,+9A6, 0<<9<1.

M(ro+ 4r) — M(ro) _ Olf| , 40 9| . N
Therefore ot =97 + Ar 90 and making Ar—0 we
obtain M'(ro)——m— =§,), since ﬂ'f =0 at &, and 4¢ is bounded.
dr v Ar
We have also
sotogf—en LD D qogif|+iarg)— [ 1og)1l,
since
0 1 0
“;arg)‘— ?a——loglf——OatE ;

(Riemann-Cauchy equation).
Therefore

M) _emgie) ol
M)~ fE ]

and this implies

d
f € =gslfl, or M'()=If (&)

If I'is tangential to |z|= r, and M'(r,) exists, we take slight greater (or
less) values of r such that I' and the corresponding circle |z|= r intersect
at a non-zero angle.

Then we have M’(r)=|f'(&,). Let us now suppose that r — 7,. Since
M'(r,) exists, so it must be continuous. |f'(§,)| is obviously continuous, too.
Therefore M’(r) = [f'(§,)].

If the one-sided derivative of M(r) exists, we keep in view its one-sided
continuity. The result then follows by passing to the limit.

We next give an alternative proof of Theorem 3, due to the former of
both authors. It is based on the Lemma 2. concerning real functions which
may be of independent interest.

Lemma 2. Suppose f(x,a), ¢(x,a), p(x,a) are real functions of two
real variables (x, a) continuous in the rectangle D: a = x < b, a, < a < a,
and f(x,a) >0 for (x,a)eD. If f(x,a) attains for each value ac¢la,,a.|
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its least upper bound M (a) >0 at just one point &(a) €|a, b| and ¢(é(a), a) #
#+ 0,p(é(a),a) # 0, then
b
’. |f(x, a)|? p(x, a)dx
: (&
(3.2) lify g = m— ___9C),a

. ~ yp(é(a)a)’
1*lf @, @)|? y(x, a) dx a

P

the convergence being uniform over the interval |a,,a,].

(If the functions considered do not depend on a and ¢ =fy, the lemma
isduetoP. Csillag and P6lya-Szego (see [7] 1 Band, p. 78. Aufg.
199 and 201).

We omit the proof of this lemma since it can be easily obtained by
evident modification of the Polya-Szegd proof for the particular
case mentioned above.

We now give the alternative proof of Theorem 3.

Suppose |f(z)| attains at the point P of the circle |z| = r, the maximum
and P is lying on a regular arc of I' which may be represented by the
equation ® =0, (r) in the neighbourhood of P. If 7> 0 is small enough,
there exists a neighbourhood of P: 1, <1 <1y, Oy(r)) — <O LO(r)+7
such that for each r we have just one @ =@,(r) for which 'f(r e’ ® )| =M(r).
We now apply the Lemma 2, with a=1r. Putting

0,4+

# '
fp(r,p)=|;, {Iﬂ”d@l
(0,,:-11
and
_d|ff 1 4
9= "ar Tf] =Tt
we see that
8,0
) [ 1frgde
(Pr 1p _0,,—1)
omp) Ow  Temd
| lfrae
B —n

uniformly over the interval [r,, 7.].
Integrating from r, to r, we obtain

log ¢(r, p) —log p(ry, p) — | g(r) dr.

r.
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It is well known that lim ¢(r, p) = M(r) |7, p. 78| and therefore
Pt

r

' g(r)dr ==log M(r) —log M(r,).

By continuity of g(r) the derivative M’(r) exists and we have

dif|
M (Rerizd vt wden apn|fie
M~ 9" e T Mo

This implies M’(r) = |f'(§,)|. The rest of proof is the same as above.

When the curve I' is discontinuous for a given value 7, the similar
considerations are valid for both intervals (r,, r,), (r,, 72) and we obtain an
analogous result with left-hand and right-hand derivatives of M(r) instead
of M’(r). When P is a point of ramification of I, we may consider slightly
greater (or less) values of r and then suppose that r tends to the limit r,,
the result being analogous.

Corollaries.

1. M’(r) may not exist for such r only for which the circle |z|=r
contains the discontinuity points of I

2. When the circle |z|= r intersects I' at several points &; so that
at all such points & I' surpasses the circle from the inside to the outside,
or all arcs of I" terminating at &; approach |z| = r from the inside (resp.

from the outside) of |z| =T, then the values of |f'(2)| at all such points §;
are necessarily equal.

3. In all the intervals (0, r,), (75, 73), ... (in which M(r) is analytic) we
rM'(r) _ &f(8)
have -~ == .

5@ is real on I'). By the Hadamard's three circles theorem

for all &¢I such that [¢|=7r. (It is well known that

the left-hand side increases with r and the right-hand side does so, too.

0e T I )]
velocity of the point f(2), as z is moving steadily on the circle |z|=r and
surpasses the point £, increases with |£|=r. This fact is equivalent with
the Hadamard's three circles theorem.

The equality rﬁ(,(-;)szf(g) for & such that I' and |z|=|¢| are

not tangential was also used by W. K. Hayman ([4], Lemma 6, p. 141).

Since

for £eT, our result means that the angular
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The former of us conjectured, in connexion with the above considera-
tions, that also the quotient

2
i (
L*(r) l”f Ge )|d)l

S(r)
T {J \ ge'”)I”dOlde

increases with r, L(r) denotes the length of the curve being the map of the
circle |z| = r by f(r) and S(r) the area of the corresponding region of the
Riemann surface of f(z). This conjecture means that the shape of the
maps of the circles |[z] = r deviates monotonically from that of a circle
with increasing r. We could not prove this conjecture but we give a proof
of a similar statement being a conclusion of this conjecture.
L*(r)

47 8(r)
so. This difference can be also considered as a measure of deviation from
the circular shape. We now prove the

Theorem 4. If f(z) is a function regular for |z|<<R and f'(z) +0 for
|z| <R, then

=1+ h(r) and h(r) increases, then also L?(r) — 4z S(r) does

o(r)=L*(r)— 4 S(r)

increases strictly for r¢(0,R), unless f(2)= b {ad —bc # 0), when

3(r)=0. cz+d

Proof. If f(2) #0 for |z|<<R, then a branch of lm, say ¢(2), is
regular for |z| << R.

Let
glz) = E an2" for |z|<<R.

Then o

2n

flf(re'~>|d0= ! p(re )2 dO =22 V‘ lan 2

0
Hence ;
Zn

(4.1) Li(r) = e'®) d()l =4 n? r'{[ao|‘ 45

1.2/2 A

+(|aoal|2+|alao|2)"”2+.-.+(E | @y ag—sw(® —1—‘
=l

!

In order to calculate the area S(r) we must obtain the development of f(2):
fz)= ao+ (@pa; + a ao) + (agay + aya; + ‘1::‘10)22 +
i l )

V

\
Ay Qk-—i" 2k +
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and hence i
[f(re®)do=2a : lag|t + 1@y a, + a aof? 7% +
0 : , ;
+ —1—!20.(&—» -1'2"+.. :
Now s

r 24 .
st=[ede [Ifeed0—2al lalr +
0 0

| 2
+ 1 lay a; -+ a, ag[*r* + ... + 2?%—2‘;; avap o TR I
and
(4.2) 4nS(r)=4n2r"’il|a‘,{‘ -{-Tl?l—laoal + a,q2r* +
. T
o ot T vi_Ju avak__.,i T +l

If we compare the developments (4.1) and (4.2), we can observe that the
coefficients of 2" in brackets in (4.1) exceed the corresponding coefficients
in (4.2). Or, in other words,

a b o2 i2
. aanzil | % |

(4.3) 3 taveatps = | X avai il
we=l) n--1 v=0 1

This is the immediate consequence of the following statement:
If z,, ..., z, are arbitrary complex numbers, then

2/ + 12,2 + .. +izaf |zot+ 2 + ... + 2
n+1 ' n+1

(4.4)

with the sign of equality for 2, = 2, = ... = 2z, only.
To prove this statement observe that

S m—2E—2>0
0<i<kssn
with the sign of equality for z,==2, =... =2, only.
After multiplication we obtain
"

n "
W, , =Y =, . "
n 2‘ |2l — _l zZizg=(n +1) ‘}3 |z [ —E Zi2x >0,
k=0 i+k k= i, k=0
0<i, k<n
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resp.

n

{"*'l}ki: 'iz*ia__‘!i: zj) (\{E; 2*) -0

which is equivalent with (4.4). Putting z,= a, a,_, in (4.4) we obtain (4.3).

Lr)—4xS(r) . d

~ s increases with r.

Suppose now that 4(r,) =d(r,) for r, <<r,. Since 6(r) increases and

is analytic as a function of r € (0, R), so d(r) = const. = 0. We have for

any n the sign of equality in (4.3). Therefore a,a,==a,a:—1=..=ana,
for any n. Thus

f(e)=¢ (@) =a} + (aca, + a,a))z + (aya, + a, a, + asa,) 2* +
+..=a+2aq,a,2+3a,a,2° + ...

We have proved somewhat more: the ratio

Hence
f@)=A+az(a, + a, 2+ a,2* + ...),
or
f(z) =A+a,zVf(2),
This implies .
flzg _ 1 _az+b
fl—AE~ @z’ resp. f(2) i 7
az+b E
If f(2)= Seor then the maps of |z| = r are circles and really 4(r) = 0.
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Streszczenie

W pracy tej zajmujemy sie pewnymi funkcjonalami, okreslonymi dla
funkcyj regularnych w kole |z| =<<r <R, ktore przy ustalonej funkcji f(z)
s3 monotonicznymi funkcjami zmiennej r w przedziale (0, R).

W czesci 1., napisanej przez pierwszego z nas, wykazane jest naste-
pujace twierdzenie:

rIy(r, f)
Li(r, f)

jest badz funkcja Scisle rosnaca od 7, re (0, R), badz tez stalg. Ten ostatni
przypadek ma miejsce jedynie dla f(z)=a,2" (n=0,1,2,...). Ip(r,f) ozna-
cza, jak zwykle, srednig catkowa p-tej potegi modulu f(z), wzieta po
kole |z|=r.
W czescei 11, napisanej przez drugiego z nas, wykazane jest twierdze-
nie nastepujace: '
| fz)Pdo
AR,
2n

[lf@rde
0

rosnie wraz z r, C(r) jest tu obrazem okregu |z| =r poprzez f(2), @ = arg f(2).

Ponadto wykazane jest na dwa sposoby (2-gi dowod jest podany przez
pierwszego z nas), ze w punktach &, gdzie |f(z)| osigga maksimum w kole
|z| < r mamy M’'(r)=|f (&) (oraz M(r) =|f(&)), z wyjatkiem r tworzacych
zbiér izolowany.

W zwiazku z wysunieta przez pierwszego z nas hipoteza, ze obrazy
okregow |z|= r poprzez f(z) coraz bardziej odbiegaja od ksztattu kolo-
L?(r)
47 S(r)
|z]|=17; S(r) pole ograniczone przez ten obraz), drugi z nas wykazal wnio-
sek wyplywajacy z tej hipotezy: é(r) = L%(r) — 42 S(r) badz rosnie $cifle
wraz z 7, badz tez §(r) =0 (w przypadku funkcji ulamkowo-liniowej).

wego, tzn. ze stosunek roSnie wraz z r (L(r) = dlugo$é obrazu

Pe3oMe

B npensnaraeMoM TpyJe MBI 3aHMMAe€MCA HEKOTOPbIMM (PYHKIIMOHA-
JlamMy, OTpefeJEéHHbIMM AJA (DYHKLMHA, PeryJspHbIX B Kpyre [z| < r<R;
5T™M (PYHKIMOHAJbI IPY YCTAHOBJIEHHON QYHKLMM f(Z) ABJIAIOTCA MOHO-
TOHHbLIMU (PYHKUMAMM nepemeHHoit T B uHTepBaJte (0, R).
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B uactu I, HanucaHHOM nepBbIM M3 Hac, AOKa3aHa cJefylolllad Teo-
peMma:
2 ’
. Iy, f')
L(r,f)

MM cTPOTO Bo3pacTrarolas yHKumA or r, r€(0, R), wMau xe nocToAHHas.
3TOT MOCJeNHMIl CJIydait MMeeT MeCTO MCKJIoYMTeNabHo aiaa f(2)=a,2"
(n==0,1,2,...) Ip(r,f) obo3Ha4aeT, KaKk OGLIKHOBEHHO, MHTErpPaJbHYIO0 Cpes-
HIOI0 p-Oi1 cTemeHu MOAyJ A f(z), B3ATYIO MO OKPYKHOCTH |z|=T.

B wactu II, HanucaHHO! BTOPBIM M3 Hac, AOKa3aHa CJeAylollasd Teo-
pema:

| f@rde
C(r)
2n

[f@PFde

0

pactér BMecte ¢ r; 3aech C(r) npexcraBaser obpa3 OKpyxHOCTM [z|=T
nocpeactBoM f(z), @ = arg f(2).

CBepx TOro mokaszaHo AByMA cnocobamMyu (2-e ROKa3aTeJbCTBO JaHO
nepBbIM U3 Hac), 4To B Toukax &, rae f(z) mocTuraer MakCMMyM B Kpyre
|z| < 7, umeem M'(r)= |f'(&)| (M(r)=|f(&)|) 3a uckmouenuem r, obpasyro-
LIMX M30JUPOBAHHOE MHOMXECTBO.

B cBA3M C BBLIABMHYTOM NEpBBIM U3 Hac IUIIOTE30i1, 4YTOo 0Opa3bl OK-
py»HocTeit |z|=r nocpeacreom f(z) Bcé Goslee OTXOAAT OT (DOPMBI Kpyra,

2
TO-€CTh YTO OTHOLLUEHUe ;i% pactér Bmecrte c r (L(r)= piuHa obpa3a
OKpy»HocTu |2|==r, S(r) niowanb, orpanuyenHas 3Tum o6pa3om), BTOPOH
M3 Hac A0Ka3aJ BBITEKalollee M3 3TOM rumorelbl caeAcTBue: 6(r) = L2(r)—
—4x S(r) uau crporo pacTér BMecTe ¢ r, uau e 6(r)=0 (B cayuae
apobHO-TM HeTHOI YyHKIM).






