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On monotonity-preserving transformations
O przeksztalceniach zachowujgcych monotonicznosé
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0. Introduction. Many results have been obtained about conditions
which are to be satisfied by a transformation of sequence or function if
a certain property should be invariecnt under the transformation considered.
The theorem of Toeplitz about sequence-to-sequence transformations
preserving the limit and the related theorems on series-to-sequence and

sequence-to-function transformations are well known examples for condi-
tions of this kind.

This paper deals with linear transformations (sequence-to-function,
function-to-function) preserving the monotonity. E. g. given the linear

t o

function-to-function transformation defined by a kernel: @(t)= f K(t,s)p(s)ds,
0

what conditions are to be satisfied by the kernel K(t,s), if the transform
@ (t) of any increasing function for which the transformation applies, should
be an increasing function, too. We obtain here necessary and sufficient
conditions which are proved by using some lemmas on series and infinite
integrals that seem to be new and may be of interest. A theorem close
ccnnected with these lemmas, being a generalisation of a result due to
Ch.-J. de la Vallée Poussin and its integral analogue are also pro-
ved. Some applications of the obtained results to the theory of summa-
bility are given.

The term «monotonic function» means in the sequel that t, < t, implies
¢ (t) < @(t,) (increasing function), or t, <<t, implies ¢(t,) > @(t,) (decrea-
sing functicn). If the sign of equality is excluded the function will be
called «strictly monotonic» (strictly increasing resp. strictly decreasing).
Monotonic (strictly monotonic) sequences are defined analogically. All
sequences, functions, matrices considered are supposed to be real.
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1. Let ¢ = {pn(t)} be a sequence of real functions of a real variable t
defined for teD. The set D can be a continuum or a denumerable or even
a finite set but, anyhow, we suppose that D contains at least two num-
bers. The sequence {g.(t)] defines on a certain set X, of the space of all
sequences a sequence-to-function transformation ¢. It means that for each

x = {£,} eX, the series 2 ok (t)éx is convergent for any teD. The sum
k

E @« (t) & shall be denoted @ (t,x), or sometimes @ (t). In the sequel X,
k=1

is understood to be the greatest set of this kind and shall be called the
field of applicability of the transformation ¢. X, is clearly non-empty and
its range depends on D, generally a diminution of D implies an enlar-
gement of X..

We say that the transformation ¢ preserves the monotonity if for
each monotonic sequence x = {{,} eX, its transform @(t,x) is a function
of t monotonic in D, and if @(t,x) and {&,] both increase, or both decrease.

We shall now obtain necessary conditions that ¢ be a transformation
preserving the monotonity.

The sequence x'V={1,0,0,...} is a decreasing sequence which belongs
to X,. Hence @ (t,x'V) =g, (t) decreases for teD. Similarly the sequences

r

xn=|{1,1,..,1,0,0,...) decrease and thus @(t, x(") = Z ¢r (t) decreases for
— =Tl k=1

”
teD and fixed r, r=1,2,...:

r

(1.11) 2 @ (t,) Z ¢ (t,) for any t, <<ty t,,t,eD and r=1,2, ...
k=1 k

The condition (1.11) is also sufficient for preserving of monotonity if every
monotonic sequence contained in X, is a null sequence (i. e. has zero as a limit).
Proof. Let {{,)eX, be a decreasing sequence; &,-— 0. Put

Pu () = @1 (1) + @a () + ... + g (t);
D(t)= li_rrl' “I‘Pl (W& + ...t g (t) &x] =
= ll_r’n‘ m{‘px ¢ + [P ()—D, ()] &3 + ... + [P (t) — Du1(t)] &) =

= ii_r:’l+~[¢1 (t) (f, —_ 59) + e + D1 (2) (Ep—1— &Ex) + Dn (t) 5&] 4

Therefore
O(t)— 0 (t) =lim _{[@,(t)— 0, ()] (6, — &) +

+ oo+ [Pt () — Pr—1 (t))] (5r—1 — &) + [Dr (L)) — Da(t)] &) <0
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if t,<<t,, since &—1—& >0, &>0, and Pu(t) — Pe(t)) <O by (1.11).
This means that @ (t) also decreases for teD.

We have proved following

Theorem 1.1. In order that the transformation ¢ preserve the monoto-
nity of all monotonic sequence of X, if each mcnctonic sequence in X, is
a null sequence, it is necessary and sufficient that

r

' ]
(LI)=(311) Y gu(t) > 3 gults) for t,,t,¢D, t,<t, and r=1,2,..
k=1 k=1

Let us now suppcse that X, contains at least one monotonic sequence
which dces not converge to zero. Frcm the lemma 2.1, or by using the
well known Dirichlet's test of convergence *), it follows that the series

Wl
L @ (t) are convergent for any teD. This means that the sequence
4

x*)={(1,1,1,..} also belongs to X, and we have (D(t,x(”))=2 ar ().
k=1

Since z*) is simulteneously decressing and increasing, therefore t, <t,

oo i o oo
impliesz o (ty) *2, ¢r(t,) and Z Pr (t1)<2 Pr(ty), i. e
k=1 k=1 k=1 k=1

s

(3.12) o (t) = a = const. for teD.

k

Il
-

The conditions (3.11) and (3.12) are necessary for preserving of mo-
notcnity in sequence-to-function transformations if the set X, contains at
least one monotonic non-null sequence. These conditions are also suffi-
cient. In order to prove the sufficiency, we need two lemmas on series.
In the next section we shall prove them and this helps us to establish
the sufficiency of conditions obtained above. Besides, we prove a genera-
lisation of a result due to Ch.-J. de la Vallée Poussin.

") If z’ ¢r 55 converges and {§,} is monotonic and does not tend to zero, then

1 1 1 1\
— —lim tends monotonically to zero. Therefore — lim is con-
{S" n—)+oo§ } Y Z?*;*(f Il—)?-c-eg )

vergent and thus also 3 ¢, is convergent.
¥
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2. Lemma 2.1. If Zr bxUr converges and [U.} is a monotonic se-
R

quence which has not zero as a limit, then also Z br converges and
kR
lim Un(B— B, =0, where B,.—Z bk,B—yb,,

Proof. Put R,,—b,.+1U,.,1+ bm2Un»2 : let us suppose that {Ua}
is an increasing sequence and that U, =0 for n>/N. Then, for n > N

H‘P

bnvla—R";’l—ﬁ"‘l, ,,=;?, oy R"U_,,fni‘ Y Rn+1U-n—+:im2 fym
shal-sdh- Rn+p;}1ﬂ:Rnnp _—R”.U,”l +R’”‘(Un1'2 Tlu)%-
hence
nip
o2 o< [Rasl -[a,,‘,, + (ﬁ,%—, — ) ¥
e B e T

This inequality implies, in view of lim | sup IR,. pl\——O the con-
n—>+4co\p=-0,1

vergence of Z be.
We have also, making p — + oo,

UnlB_Bn| Un+1|B Bn| -2 SUP |Rntp|

which proves the lemma in this case.
If |{U,} decreases and lim U,=U =0, then

5wl <y L)
Rl el Vs -
*__:'.g | l +' lll(urnz Un»»l,+
1 1 1
v + |Rn+p-ll (Un 7 R Un+p~—1 )+ an|p|——Un+ <
R = |Rn .
Un p p= OP I & p‘ :(}lP pl

Hence we deduce easily the validity of lemma.
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The case U, << 0 for all sufficiently great integers n can be settled
by a simple change of sign.
From the lemma 2.1 we get at once the

Corollary. If Z brUs and Z by both converge and |U,} is a monotonic
R k

sequence, then

lim Un(B— Ba) =0, (B,,= D by, B= Vb,,).
k=1

n-» +oo k=1

Using this corollary, we obtain easily the
Lemma 2.2. [f Z bxUr and Z b: both converge and {U,.} is a mono-
.4 k

tonic sequence, u, =U,, up 1 =Ur+1 — Us, then also 2 ux (B— Br—1) con-
R

verges and
D baUsr= > u(B— Bi),
R=1 k=1
(where By=0, B,= ) bsforn=1,2,.., B= Y by
k=1 k=1
Proof.

_Z beUr=Dbyu; + by(u; + uy) + ...+ ba (uy + uy + ... + uz) =

k=1
u;Ba +uy,(Bn—B,;) + ... + un(Ba— Ba—1) =B, Upn—uy B, — uy B,— ...
ww—UnBpy=B,U,—BUn,+ B(u; +us+ ... +us)—u, B, —... —up Bp_1=
=Un(Ba—B) + u,(B— B,) + u,(B— B,) + ... + us (B— Ba—1).
Therefore

D, baUs+ Un(B—Ba)= > us(B— Ba_y)
k=1 k=1

and this proves, by corollary, the lemma.
The lemma 2.1 means that, if {U,) is a monotonic non-null sequence,

then the convergence of Z be Ur implies
L]

lim Un(bn;l+bn'2+...)=0.

n—» + oo

We can prove quite similarly an analogous
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Lemma 2.3. If {U,.} is a monotonic null sequence then the convergence
of 3 byUs implies
R
l]m Un (b] + bg + 9% +bn) = 0.

n— i oo

Proof. We can suppose without loss of generality that U, = 0 for
the case U, =0 is trivial. Using the same notations as above, we have

|R;|_"R".

b"z'.-—rr—l—: 1bn + ba l+---+bn¢p' ‘-\an|"Ll"+

Un Ull

1 y ! ( 1 Lo
. ki i/ el (e IR e i
+|R HI(U,;H Un) + ..+ opl Iip v 7 ) +

1 2 ,
+ |Rntp+1|*=— < =— sup |Rasx|.

Un +p Un +p k=0,1,...
Hence

br + bas1 + ... + bmp‘ 'Un+p ~<{.k2§l:p iRnolz‘ .

Choose now N such that 2Sl11p |Rn x| <<€/2, e=>0 arbitrary, (which
. k=0,1,...

is possible by convergence of 2 bk Ur) and, N being fixed, choose k, so that
kR

|by + by + ... + brv—1| - Unix<<e/2 for each k=>k,
(which is possible,since U,—0). Then

|by + by ... + basr] - Unse<(|by + by + ... +brv—a| +
+ |bw + ... + byix|) *Unir<<e for each k >k,

and this proves our statement, being a generalisation of a theorem
due to de la Vallée Poussin (see [6], p. 416, ex. 10). Putting
b, =+ 1, we obtain a result due to E. Lasker (see Pélya-Szegd [3] %),
p. 25). Besides, it is easy to see that the lemma 2.3 is equivalent to
a well known result due to Kronecker.

3. We prove now the sufficiency of conditions (3.11) and (3.12).
Let u= {U,) ¢ X,. We can suppose that {U,} increases. Then, in view of
lemma 2.2

*) Numbers in square brackets refer to the list at the end of this paper.

g e e —————————————— e e e
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Dt u) = (U= ok(t)(y + tp + ... + up)=
k=1

k=1

n—1

ijs
Mz

e
I PRACE)

n=1 n-—l

@na(t) ]l Ug

k

k—1 l
[ Fry 2 @a(9)].
: n=i 1

k

Il
-

Therefore, if t, <<t,, t,,t,eD,

o k—1
O (t) — D(t,) = Zuk lla—‘prn(t,)l—H ug O—thn(t ]
k=1 n=1 k=1
=2u [an(t)-— q)n(t3)|>f
k=2 n= n=1
k—1
since ur >0 for k >2, and by (3.12) (the sum E @n (t) means 0 if k=1).
n=1

Thus we obtain

Theorem 3.1. In order that the transformation ¢ preserve the monoto-
nity of all monotonic sequences in X,, if X, contains at least one monotonic
non-null sequence, it is necessary and sufficient that

(3.11) thh(tl) 2 a (t,) for t, <t t,, t,eD and r=1,2, ..., and

oa

(3.12) 2 ¢ (t) = a = const. for each teD.

k=1

We dealt above with sequence-to-function transformations. The case
of linear sequence-to-sequence trensformation defined by an infinite ma-
trix is evidently contained in the foregoing considerations. It suffices
only to take as the set D the set of all integers.

If we should deal with transformations preserving strict monotonity,
we would easily obtain that the condition (3.11) with the omitted sing
of equality and condition (3.12) are sufficient for preserving of strict mo-
notonity but the so modified  condition (3.11) is by no means necessary.
The necessity of (3.12) can be obtained easily by considering of trans-
forms of the strictly monotonic sequences {1 + &%}, where 0 <<e << 1. Then
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D a1+ 6> D gr(t) (1 + ),
k=1 k=1

-

D at)1—e) < Y ar(t)(1—eh) (6, <t,).
k—1 k=1

Making ¢ — 0, we obtain necessity of (3.12) by continuity of power series.
It follows then from the equality

k—1

o (tz) The : | ;: ;: @n (tz)_

h=2
that the condition (3.11) shall be replaced by a more complicated one:

if t,, t,eD, t;<<t,, then

(3.13) 2 gn(t) > Y gn(t,) for r=1,2,... and

n=1 n=1

2 on(t) > 2 @n(ty) for one at least r,=r,(t,, ty).

n=1 n=1

The conditions (3.12) and (3.13) are necessary and sufficient for preser-
ving of strict monotonity if X, contains monotonic sequences which do not
tend to zero.

We can quite similarly modify the theorem 1.1.

The condition (3.13) is necessary and sufficient for preserving of strict
monotonity if each monotonic sequence in X, is a null sequence.

4. We shall now deal with conditions for preserving of monotonity
in linear function-to-function transformations. Let K (t,s) be a real func-
tion of two real variables t and s defined for teD, (D being an arbitrary
set of reals, containing at least two numbers), and for 0<s<< 4 ca.
Besides, we suppose that K (t,s) is summable in s over any finite interval
[0,A] for each fixed teD. The kernel K(t,s) defines on a set Xx of
functions summable over any finite interval [0, A] a function-to-function

transformation K. This means that for each ¢(t)eXx the integral
+ oo 4o

(D(t)=f K (t,8)p(s)ds exists for each teD. In the sequel the symbolf
0

(1]
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A

means the limit lim | so that we do not assume the absolute intergra-
A>too o

bility over the infinite interval of function considered. For absolutely
integrable functions our considerations hold naturally, too. The non-empty
set of all functions for which the transformation applies shall be denoted Xk.

We say that transformation K preserves the monotonity if for each
function ¢(s)eXx monotonic in the interval [0, + o) its transform @(t) is
monotonic in D and if ¢ (s) and @ (t) are both increasing, or both decreasing.

Conditions for preserving of monotonity can be obtained quite ana-
logically as before. We define the function

—=1for 0<s< A

W(s)=0 forA<s<<+ o

@a(s) is a decreasing function of s which belongs to Xx. Its transform

+ oo

‘ K(t, S)'PA(S)ds—f K(t,s)ds

shall be a decreasing function of teD if A is fixed. Thus we obtain
as a necessary condition for preserving of monotonity:

A
(4.11) [ K(t,,s)ds> [ K(t,5)ds
[1] (1]
for t,,t,eD, t, <<t, and for arbitrary A= 0.

If each monotonic function in Xk tends to zero as s— + oo, then the
ondition (4.11) is also sufficient.

Proof. Let ¢(s)eXx. We can suppose that ¢(s) decreases. Then, m
view of lim ¢(s)=0, there is o(s) > 0. We have

§—>+oo

@ (1) =lim fx(z s)@(s) ds.
A+ °°o
Let t,t,eD, t, < t,.
Then

®(t;) — & (t,)=lim f[K(t,,,s)—K(t,,s)] o (s)ds.

—buo
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It suffices to prove that for any A =0 the integral
[ K (tsy ) — K (t,.9)] @ (s)ds
0

is non-positive. The functicn ¢(s) is of bounded variaticn in [0, A] and
K (t,,s)— K(t;,s) is summable over this interval, so we can apply
the theorem on integraticn by parts for Lebesgue integrals (see e. g.
Saks [4], p. 298)

f[K(tz.S)—K(t,,S)lw(S)dS= {<P(s)f[K(t2-“)—K(tn°)] do} {=¢—
0 0
A s A
|
—(RS)f{f[K(tz,o)—x(t,,a)l da;dcp(s)=¢(A)f[K(tz,s)—K(t,,s)l ds+
0 ‘0 (1}

Ay &
+(RS) [ {f [K (t3, 0) — K (t,, 0)] do}d |— oG]
LY

Since |—¢@(s)] increases and ¢(A) > 0, both terms on the right side are

non-positive by (4.11). The symbul (RS)f denotes the Riemann-

Stieltjes integral.

Thus we have proved

Theorem 4.1. Necessary and sufficient condition that the function-to-
function transformation K

+ g

o(t)= | K(t,9)¢(s)ds

0

preserve the monotonity of all monotonic functions in X, if each of them
tends to zero, is

(4.11) fK(tl, fK(tz,s)ds
for t, << t,, t,,t,eD and for any A= 0.

This theorem is an analogue of the theorem 1.1 and the latter may
be considered as a particular case of the former one. However, the proof
of the theorem 4.1 is besed on the «non-elementary» theorem on inte-
gration by parts for Lebesgue integrals.
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5. We shall now prove the integral analogues of the lemmas of
section 2.
A

Lemma 5.1. If the limit lim l b(x)U(x)dx exists and U(x) is

A Foeo
a monotonic function which does not tend to zero as r-— + ™~ and,
besides, b(x) is summable owver each finite interval |0, A], then also
A oo +oa

lim J b(:r:)d:c—J b(x)dx exists and moreover U (x) ’ b(t)dt— 0 as

A fes o X

x— + oo,
Proof. We can suppose that for x > K there is U(x) > 0. Then,
b(x)=— ?]—E—% for almost every x > K, where 7(x)= f b(x)U (x)dx.

X

Integrating by parts, we have for K <a-<f

P B x=
T Y
!b(:c)d:r—! Uz 9 = U(x)mﬂRS)fn(x)d D
We have
- 1 (e ey _1_ .
l(RS)J y(x)d Uz )|| xln}?x {ylz)| -V "lU(J::)]_'U(u) i) nrgfépln(x)l.

V¢ [p(x)] denotes the total variation of ¢(x) over |a,p]. Therefore

P |
- _n(@)|
U"(x’dx} i) U(ﬁl+‘_ﬂz) U

If a— + oo,— + oo, all terms on the right side tend to zero and thus

$oa
-

J b(x)dx exists.
(1]

- max |n(x)|.

as X< h

In order to prove the second part of lemma it suffices to consider
the non-trivial case U (x) — + oo. Making g — + oo, we obtain

‘f b(:z:)dx‘ lg((a)l—i-u%w sup|n(a:] i. e.

+ o=

f b(x)dx| <

o

U (a) 2SUP In(x)].

Since 7(x) —0 as x— + o, the lemma is proved.
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+ea ‘oo

Corollary. If the integrals _Iﬂ b(x)U (x) dx and f b(x)dx both exist
(1} 0
and U (x) is a monotonic function, then

lim U(x)f b(t)dt=0.

+oo

Lemma 5.2. If the infinite mtegrals_} b(x)U(x)dx and f b(x)dr=a

both exist and U (x) is a monotonic functzon, then

‘ ”fmb(x)U(x)dx=—(RS)1f [fb(t)dt]w(z).

Proof. The function b(x) has fb(t)dt—a—j b(t)dt as an inde-

finite integral. Integrating by parts we have

=

4 om A X -
=—U(A)f b(t)dt—(RS)f[fb(t)d‘

]dU(a:)=

fb(x)U(x)dx—{U(x a—f b(t)dt

dU (x).

Making A— + =5, we obtain, in view of corollary, our lemma.
We can prove quite similarly an integral lemma analogical to that

of de 1a Vallée Poussin. r

Lemma 5.3. Suppose that the limit hm jb(x)U(a:)dJ: exists and that
A—>+tea g
U(x) tends to zero monotonically as x—» + ~ and, besides, that b(x) is
summable over any finite interval [0, A]. Then

lim U(z) [ b(t)dt=o0.
X bt o 0

Proof. It is sufficient to suppose that U(x)=> 0 because the case
+oo

U(x) =0 for great values of x is trivial. Put % (x)= f b(t)U(t)dt. There
is almost everywhere b(a:)——z')—“—':ﬂ We have
- T U@

Ibmdz f—-” ar—— 2, nla) +<RS)fn(t)dl

U(t) @) U(a) 0<a<ux).

%
U(t)l’ (
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Hence

X

fb(t)dt[ <@+ 29y () +

U= U)

+U(-r)[U(x) U(a)] gupln(:c)l 3§gpain(x)i-

Choose now a, such that 3sup|#n(x)| << &/2 (which is possible in view of
x>a,

K =p 4o

lim #(x)=0) and, a, being fixed, choose x,>>a, such that U(x), J b(t)d |<e/2

for each x > x, (which is possible, since U (x)—0). Then U(x) ; | b (t) dt|<e

for each x> x, and this proves the lemma.

6. Theorem 6.1. Necessary and sufficient conditions that the function-

+oo

to-function transformation K: @(t) =_" K(t,s)p(s)ds preserve the monotonity
0

of all monotonic functions in Xk, if Xx contains at least one monotonic func-
tion which does not tend to zero as s — + oo, are

A A
(6.11) | K(t,,s)ds}f K (ty,s)ds for t,<<t,, t,,t;eD and for any A= 0;
0 )]

e

(6.12) ‘ K (t,s)ds = a = const for each teD.
0

Proof. The necessity of (6.11) has been proved in sec. 4. The

+ oo
lemma 5.1 implies the existence of f K (t,s)ds for any teD. The function
0
¢(s)=1 is simultaneously decreasing and increasing and this implies the
necessity of (6.12).
Sufficiency. Let ¢(s) be a decreasing function, ¢(s)eXx. Then, in
view" of lemma 5.2.

booma

o= J Kt,g(s)ds=—(RS) [ [J’xtz,a)da[dw(s); O (t,) — O (1,)=
[ 1]

0
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— —(RS) fw[f K(tz,o)dald¢ s)+(RS)f If K (t,, 0)de|dp(s) =
0 0

RS) ! [ & tl,a)—K(tz,a)]do}dq;(s).

1
LY

The increments of ¢ (s) are non-positive, moreover for t, <<t,

[ [K(t,0)— K (tz,0)| da>0

by (6.11) and therefore
@ (t,)—D(t) <0

All our consideration are valid, with evident modifications, in the
case when the transformation is defined by a finite integral. Then we obtain
Theorem 6.2. Necessary and sufficient conditions that the function-

b

to-function transformation K: @ (t) = f K (t,s)p(s)ds preserve the mono-

tonity of all function monotonic in [a,b] are
(6.21) fK(z,,s)ds fK(tz,s)ds

for t,<<t,, t,, t,eD and any A€ [a,b] and
b

(6.22) _|. K (t,s) ds = const. for each teD.

a

Conditions for preserving of strict monotonity can be also obtained
easily. An analogue of the theorem 6.1 is the

Theorem 6.3. Necessary and sufficient conditions that the function-

+ o

to-function transformation K: @ (t) = f K(t,s)p(s)ds preserve the strict mo-
(1]

notonity of all strictly monotonic functions in Xk, if Xk contains at least
one monotonic function which does not tend to zero as s — + o, are

A
(6.31) [ K(t,s)ds> [ K(ty,s)ds
(] 0
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for t,<t,, t,,t,eD and for any A =0; besides, for one value A, at least

A, A,
fK(t,,s)ds>J K (t;, s)ds;
0 0

(6.32) = (6.12) f K (t,s)ds = a = const. for each teD.
0

Proof. Necessity. If 0 <<e<<1. t, <<t,, then

t oo + oo

[ Kt (1 + e+ ds> [ K(ty,s)(1 + &Y ds,
0 0
(6.33)

t oo

f K(tl)s)(l—e-"l)ds<f K(tz,s)(l _GS»:—I)ds.
0 (1]

From the second mean-value theorem it follows that

| A &
fK(t,s)e”’ds <e-sup‘1 K(t,s)ds‘
0 S 1o

and therefore

limf K(t,s)ef ' ds=0.

l—)Oo

In view of (6.33) this implies the necessity of (6.32). Considering the
transform of the strictly decreasing function ¢a(s) + £*', we have

A v A o
[K(t,9ds+ [ K(t,9) e Wds> [ K(tys)ds + | K(ty,s)e " ds.
0 1) 0 0

This implies the necessity of (6.11). Then we have

O (t) — @ (t,) = (RS) [ K(s)dp(s),
0

where
K(s)=f [K (t,,06) — K(t5,0)]de >0
0

by (6.11). If ¢(s) increases strictly, then @ (t))— @(t,)= 0 and therefore
K (A, >0 for one A, at least. This and (6.11) imply (6.31).
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Sufficiency. If (6.31) and (6.32) are fulfilled, we have

400

D (t) — D(t,) = (RS) [ K(s)dg(s),
0

where K(s) >0, K(4,) =0 and ¢(s) is strictly increasing. Since K (s) is
continuous, there is K(s)=>h >0 for A,—é<<s<<A,+ é and we have

A, +3

®(t) — @ (t) > (RS) [ K(s)dg(s)>h |p(4,+0)—¢(4,—8)] > 0.

Ay—3

We can prove also easily that the condition (6.31) is necessary and
sufficient for preserving of strict montonity if X« contains only monoto-
nic null functions.

7. Applications. The above obtained theorems can be applied to the
transformations used in the theory of summability. Since every regular
(i. e. fulfilling the well known Silverman-Toeplitz regularity con-
ditions, see e. g. Banach [1], pp. 90-91) method of summability evalua-
tes some monotonic non-null sequences, we obtain easily the

Theorem 7.1. Let A = (ax) be a regular method of summability. Ne-
cessary and sufficient conditions that (aix) preserve the monotonity of all
T={,,{eX4 are

(7.11) D an=1for i=1,2,..;
k=1
(7.12) D anl0 if i - + oo and 7 is fized (r=1,2,...).
k=1

(The symbol | means monotonic decreasing and convergence).
Proof. Necessity. (az) fulfil the well known Silverman-Toeplitz
conditions:

(7.13) > lanl <M fori=1,2,..;
k=1

(7.14) lim aix=0 fork=1,2,...;
i too

(7.15) im D ax=1.

i—+oo k=1



On monotonity-preserving transformations 107

By (7.15) and necessity of (3.12) (the set D is then the set of all inte-
gers) we obtain (7.11) - (3.11) and (7.14) imply (7.12).
Sufficiency is obvious by theorem 3.1.

Norlund-Woronoi means are defined by the triangular matrix:

Q +Qy
L CR: U LN
Q™ BV

where Qn=q,+ q; + .. + qn, @o=>0, g >0, g" — 0.
n

The condition (7.11) is fulfilled at any rate. The condition (7.12) takes
the form

Qk_‘Qk—n q
(7.16) T 1 0, 1. €.
(7.17) Q*‘" 11

for k- + o~ and every fixed n, (Qi—n=0 if k < n).

Thus (7.17) is the necessary and sufficient condition that the Nor-
lund-Woronoi means always increase if the transformed sequence
increases.

This helps us to verify that Cesiro means of any positive order r pre-
serve the monotonity. We have

el — (i+ ::llc— 1)
(%)

for k <i, and c¢{)=0 for k >1i (i,k=0,1,2,...,7=1,2,...). Obviously the
Cesaro means are of N6rlund-Woronoi type with the generating

sequence:
n+r—1 = n+7r
qi{):( r 1 )’ an)‘_—'( r )_
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We have
(k—mn+r\
ea _\ 1 ] (k—nt+ntk! _ (k—n+1Dik—n+2)..(k—n+r) _
Qn (k+r) T (k+1)! (k—n)! (k+1)(k+2)...(k+7) o
T

-l b= (-

for k —n > 0 and this increases to 1 if k> + o and n,r are fixed. Thus
we have proved that the Cesaro means preserve the monotonity. It is
obvious that they preserve strict monotonity, too.

It follows easily from the theorem 6.1 that a row finite matrix (az)
transforms each decreasing sequence into increasing one and viceversa if,
and only if,

m

(7.18) 2 ai» increases with i, m being fixed;
k=1
(1.19) Nas=afori=1,2,..

R

1
-

To show it observe that the matrix (—au) preserves then the monotonity.

This remark helps us to prove that, if {a,} is an increasing (resp. de-
creasing) sequence, then its Cesaro means of successively increasing
orders decrease (increase) *).

Proof. The matrix defining the transformation considered has the
form

1 1 1
n+1’ nt1 " ""'n1 »D:f,
......................... 2005
(n—}—t—l) (n+t——2) (1—1)
i—17) ) Amb) el oo
(n _!_ i) (n + i) 3 Teaiy (n +._ i) ) | ’ ’
% | il i
......................... , 0,0,

*) The author was suggested by Prof. M. Biernacki to prove this statement.
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The condition (7.19) is obviously fulfilled. It suffices to prove that,
n and m being fixed, m < n + 1, the expression

1 m4i—1 n+i—2 n+i—m
‘77«}—7[( L )+( i—1 )+ +( 1 )]
"1
increases with i. We have

(n:‘n:) { [(n TLT 1) i (n T—iT 2) Miase F (n T:; m)] ")

ST -l SR i S

fn—m + i
Lo [/n-}-t\ (pti—ml i | . (n—m+i)n!
n+1 \ i = (n+i) T (n—m)! (n i)
i i
and this increases to 1 as i — + o9, since
n—m+1)! 1

m+i)!  (+i—m+l)m+i—m+2)...(n+ i)
decrezses to zero as i— 4 o9, n, m being fixed. This proves our statement.

The integral transfcrmation corresponding to Cesaro means of the
first orcer, is defined by the kernel

=lfor 0<s <,
K(t,s)
= ] for t<s.

The set D ccnsists of all pcsitive reals.

Tre ccnditicns (6.11) and (6.12) are obviously fulfilled so that this
trensfoymaticn prescrves the monotonity.

A functicn F (x) is said 10 ke ccnvex if the curve y=F (x) between x,
end x, alweys lies kelcw the ckcrd joining the poinis (x,,F(x,)) and
(x5, F (x,)).

A necessary énd sufficient ccnditicn for ccnvexity of F (x) in (—d, 1+ 4),
X

6>0, is that F(x)= J f(t) dt + F(0), where f(x) is a bounded increasing
(1]

functicn of xe(— 48, 1+46) (see Titchmarsh [5], p. 372, ex. 8). We shall
prove following
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Theorem 7.2. If F(x) is convex in the interval (—é, 1 + 6) and {ua)
1

is the sequence of moments of F(x): pn—=—(RS) f t*"dF (t), then the se-
0

quence ((n + 1) ua} increases.
1

1
Proof. Puta, = (n4-1)us+ an = (RS)f(n+1)t"dF(t) =f(n+ 1) t*f(t) dt,
0 0
f(t) being an increasing function. We can now apply the theorem 6.2 with

K(s,t)=(s + 1)t* and D being the set of all non-negative integers. We
1 A

have J-K(S, t)dt=[t"]i=t=1, _J K (s, t)dt=A°"! decreases for s — 4 o
0 0
and Ae¢ [0, 1] and this proves the theorem.

The lemmas on series proved in section 3. admit also of various appli-
cations. As a matter of example we shall prove without using the notion
of absolute continuity two well known lemmas concerning the theory
of Lebesgue integrals.

Let f(x) be a non-negative function summable over the set E and {Ua,)
an increasing sequence of positive numbers such that lim U,= + oo. If

N> oo
En —— E 'f (.‘l:) > Un; :L‘EE}, then
X
(10) lim Um (En) —3 0,
(2°) the series Z (Un— Un—1)m(E,) converges.

Proof. Obviously E, )E, )... The integrability of f(x) implies
the convergence of the series

Z Un [m(E.) —m(En.1)] and, besides, lim m(E,)=0

n—+6o

Putting b, =m(E,) —m(En+1) we obtain bs+1 + bpi2 + ... = m(En+1)
and in view of lemma 2.1 lim U,m(E,:1) =0, hence by convergence of

n—+oo

Y Un [m(Ea) — m (Ens1)] follows (1°).

The lemma 2.2 implies (2°) immediately. (For the case U,=n see
Titchmarsh [5], p. 342, ex. VII and Halmos [2], p. 115, ex. 4).
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Streszczenie

W pracy tej podaje warunki konieczne oraz dostateczne na to, by
przeksztalcenia liniowe ciggéw i funkcji zachowywaly monotoniczno$é
wraz z jej kierunkiem.

Dla wykazania dostateczno$ci potrzebnych bylo kilka lemmatéw, ktore
same w sobie moga byé¢ interesujgce. Metoda dowodu tych lemmatéw
pozwala uog6lni¢ pewne twierdzenie de la Vallée Poussina.

Podane s3 niektére zastosowania otrzymanych twierdzen do teorii
sumowalnosci i teorii momentow.

Peswome

B sTo# pabote paio Heob6xoauMbie U AOCTATOYHbIE YC/IOBHS ANS TOro,
uyto6bl nMHeriHble npeobpa3oBaHMs nocnenoBaTentHOCTeW WM PyHKUUM
COXpPaHANKW HMX MOHOTOHHOCTbL BMeCTe C HanpaBN€HHEM MOHOTOHHOCTH.

Joka3aTenbcTBO [AOCTAaTOYHOCTH OMMPaeTcs Ha HECKONbKWX JieMMax,
KOTOpble MOTyT WMeTb W CaMOCTOSTENbHbIH WHTepec. MeTop Aokasa-
TenbCTBa 3TUX NeMM no3sanser o6o06wuTs opHy teopemy LUl XK. npe ns
Banne NycceHna.

MonyuyeHHble TeOpeMbl [JONYCKAIOT MPHIOKEHWS K TEOPHH CYMMH-
pyeMoCTH W K TEOPHH MOMEHTOB.
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