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On monotonity-preserving transformations 
O przekształceniach zachowujących monotoniczność 

О преобрязованиях сохраняющих монотонность

0. Introduction. Many results have been obtained about conditions 
which are to be satisfied by a transformation of sequence or function if 
a certain property should be invariant under the transformation considered. 
The theorem of Toeplitz about sequence-to-sequence transformations 
preserving the limit and the related theorems on series-to-sequence and 
sequence-to-function transformations are well known examples for condi
tions of this kind.

This paper deals with linear transformations (sequence-to-function, 
function-to-function) preserving the monotonity. E. g. given the linear

t-C*>

function-to-function transformation defined by a kernel: 4>(t)=f K(t,s)<p(s)ds, 
o

what conditions are to be satisfied by the kernel K(t,s), if the transform 
0 (t) of any increasing function for which the transformation applies, should 
be an increasing function, too. We obtain here necessary and sufficient 
conditions which are proved by using some lemmas on series and infinite 
integrals that seem to be new and may be of interest. A theorem close 
connected with these lemmas, being a generalisation of a result due to 
Ch.-J. de la Vallée Poussin and its integral analogue are also pro
ved. Some applications of the obtained results to the theory of summa- 
bility are given.

The term «monotonic function» means in the sequel that tt <. t3 implies 
(tj "C V (ta) (increasing function), or t, < t.2 implies y (tj tp (t2) (decrea

sing function). If the sign of equality is excluded the function will be 
called «strictly monotonic» (strictly increasing resp. strictly decreasing). 
Monotonic (strictly monotonic) sequences are defined analogically. All
sequences, functions, matrices considered are supposed to be real.
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1. Let <p — {<p„ (t)} be a sequence of real functions of a real variable t 
defined for teD. The set D can be a continuum or a denumerable or even 
a finite set but, anyhow, we suppose that D contains at least two num
bers. The sequence {<p„ (t)} defines on a certain set Xt of the space of all 
sequences a sequence-to-function transformation <p. It means that for each
x = {£„} eX, the series (t)f* is convergent for any teD. The sum

*oo
(fk (t) £* shall be denoted 0 (t, x), or sometimes 0 (t). In the sequel XT

*=i

is understood to be the greatest set of this kind and shall be called the 
field of applicability of the transformation <p. X, is clearly non-empty and 
its range depends on D, generally a diminution of D implies an enlar
gement of X?.

We say that the transformation rp preserves the monotonity if for 
each monotonic sequence {£„} eX? its transform 0(t, x) is a function 
of t monotonic in D, and if 0(t, x) and {<?„) both increase, or both decrease.

We shall now obtain necessary conditions that (p be a transformation 
preserving the monotonity.

The sequence x'11 = {1,0,0,...} is a decreasing sequence which belongs
to Xr Hence 0(t, x!l)) = <Pi W decreases for teD. Similarly the sequences 

r
x(r) = {1,1,..., l, 0,0,...} decrease and thus 0(t,x(r)) = J? <pk(t) decreases for

teD and fixed r, r=l,2,...: 
r r

(1.11) <pk(tt) J? <pk(t2) for any tf,t,eD and r=l,2,...
*=i ft=i

The condition (1.11) is also sufficient for preserving of monotonity if every 
monotonic sequence contained in X, is a null sequence (i. e. has zero as a limit).

Proof. Let (f„)eX? be a decreasing sequence; f„—>0. Put 

0* (t) = 9?i (t) + <p2 (t) + ... + <pk (t);

0(t) = lim (t) f, + ...+(t) f*] =

= lim {0i (t) f, + [02 (t) — 0i (t)] f8 + - + [0* (t) — 0*—i(t)] £*} =

= lim [0t (t) (f, — (a) + ... + 0a—i (t) £a) + 0* (t) f*l.
A-> + ~

Therefore
0 (U — & (ti) = lim I [^1 (U — 0i (tj)l (fi ~ ^a) +

+ ... + [0A-1 (ta)----0A—1 (t,)] (£a-1----£a) + [0* (t2)----- 0* (t,)] ffc} 0
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if t, < t2, since £*-i— £*^>0, £*>-0, end 0*(t2)— 0*(ti)-CO by (1.11). 
This means that #>(t) also decreases for teD.

We have proved following
Theorem 1.1. In order that the transformation q> preserve the monoto- 

nity of all monotonic sequence of X,f, if each monotonic sequence in Xf is 
a null sequence, it is necessary and sufficient that

r '1
(1.11) = (3.11) £ (pk(t{)'^ V <pk{t2) for t,,t2eD, t,<t2 and r=l,2,...

*=i *=i

Let us now suppose that Xf contains at least one monotonic sequence 
which dees not converge to zero. From the lemma 2.1, or by using the 
well known Dirich let’s test of convergence*), it follows that the series

<pft(t) are convergent for any teD. This means that the sequence
*

oo

x(<~) = {1,1,1,...} also belongs to XT and we have #>(t,x(oo)) — T’ft(t)- 
*=i

Since is simultaneously decreasing and increasing, therefore t, < t2
oo oo oo oo

implies 95*(t2) and £ <pk(t,)^ £ <Pk(t2), i. e.
ft=l ft=l k-l fc=l

OO

(3.12) rpk (t) = a — const, for teD.
*=1

The conditions (3.11) and (3.12) are necessary for preserving of mo- 
notenity in sequence-to-functicn transformations if the set XT contains at 
least one monotonic non-null sequence. These conditions are also suffi
cient. In order to prove the sufficiency, we need two lemmas on series. 
In the next section we shall prove them and this helps us to establish 
the sufficiency of conditions obtained above. Besides, we prove a genera
lisation of a result due to Ch.-J. de la Vallee Poussin.

*) If V <pk converges and {§n} is monotonic and does not tend to zero, then 
B

---- lim ^-1 tends monotonically to zero. Therefore V <— hm ~ , is con-
$„ n->+~s„J " \s* n-»+~Sn/

vergent and thus also £ <pk is convergent.
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2. Lemma 2.1. 1/ \ bkUk converges and (U„} is a monotonic se-
k

quence which has not zero as a limit, then also X bk converges and 
k

n ©o
lim U„(B — Bn) = 0, where B„=^ bk, B — \ bk.

ft 1 ft, l
Proof. Put R„ = bn+iUn hl + b„+2Un+2 ...; let us suppose that {CJ„J 

is an increasing sequence and that Un > 0 for n > N. Then, for n > N

Z »*-bn 1 1 Rn Rn+1

Un + i k==n+l

Rn+p—i Rn+p 

Rn Rn+i , Rn + i Rn+'i
Un+i Un+2

hence

Rnjj---- H Rn + i (yy yp—) +
U„+l \Un+2 Un+i I

+ ... + K.+P-I (p—■ — Uałp l) + R.*p • y—,

Xb*l $&.|R'”1 • + Ur“kt) + -

,+p____ ^j+^-1
\ Urt+p—1 Un + p/ Un + p J —---- sup |R„hp|.

Un + i p—Q. 1,...

+ ••• +

+ +

This inequality implies, in view of lim / sup |R„+p|l = 0, the con- n->+=° \p=0,1.... I
vergence of b*.

We have also, making p—» + oe,
Bn|B B„|<C7„+i|B B„|<^2 sup |Rn+pi

p=0, i....
which proves the lemma in this case.

If (U„} decreases and lim U„ = U>0, then

n+p I 1 '
V b*|c|R„|yy---- + |Rn+i
„ . 1 Un + 1

( 1 1 \
\Un,2 U„ + i / +...

Rn +p | yy sup ! Rn p j. 
U p=0, l....7T— SUPUn+p p—0.1,...

Hence we deduce easily the validity of lemma.
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lim Un(B — Bn) = 0,fl-+ + &°

The case U„ < 0 for all sufficiently great integers n can be settled 
by a simple change of sign.

From the lemma 2.1 we get at once the
Corollary. 1/ \ bkUi, and \ bk both converge and |U„| is a monotonic

k k
sequence, then

fl Oo

B„ == bk, B = b/,
A=1 *=1

Using this corollary, we obtain easily the
Lemma 2.2. If \ b*U* and \ b* both converge and {Un) is a mono-

k k

tonic sequence, u, = U„ uk +.1 = U*+i — Uk, then also V Uk(B— Bk-i) con- 
k

verges and
oo oo

bfe Uk = Uk(B — Bk-1),
k=i ft=l

fl oo

(where Bo = 0, B„ = bk for n=l,2..... B = bk).
*=1 *=i

Proof.
fl

\ bkUk — b, tij + b2 (u, + u2) + ...+ b„ (tij + u2 + ... + un) =
*=i

u, Bn + u2 (Bn — Bi) + ... + Un (Bn — Bn-1 ) — BnU„ — u2 B, — it, B2 — ...
...---- Un Bn—I — Bn Un----BUn + B(ut + U2 + ... +Un)------Un B| —...--- Un Bn—i =

= Un (Bn — B) + u, (B — B„) + Un (B — B,) + ... + Un (B — Bn-1).

Therefore
« n2 bkUk+Un(B — Bn)= Y Uk(B-Bk-i)

*=i k~\

and this proves, by corollary, the lemma.
The lemma 2.1 means that, if (U„) is a monotonic non-null sequence,

then the convergence of b* U* implies 
S

lim Un (bn+t + b„F2 + ...) — 0.
ft—> + oo

We can prove quite similarly an analogous
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Lemma 2.3. If )Un} is a monotonic null sequence then the convergence
of bkUk implies 

k
lim Un (b, + b., 4* ••• + b„) = 0.rt~> -1-00

Proof. We can suppose without loss of generality that U„ > 0 for 
the case Un = 0 is trivial. Using the same notations as above, we have

b« —•_—-—, i b„ + bn 41 + ••• + bn i p | 1 Rn! 77—hUn Un

+ IRn + i| (yj------- yr ) + — + I^+pI (77 77--------) +
\Un+l Un/ \Un+p Un+p-i I

1 2+ |Rn+p+l| • 77 '^•77— SUP •
Un + p Un+p k=O.i,...

Hence
ibn + bn + 1 + — + bn+p| • Un+p 2 sup \Rn + k'• 

»=0.1,...

Choose now N such that 2sup \Rpr+k\<eJ2, e>-0 arbitrary, (which 
*=o.i,...

is possible by convergence of 5, b* Uk) and, N being fixed, choose k0 so that
*

|bj + b2 + ... + b.v’—l[ • Uv+* < e/2 for each k > k„

(which is possible,since Un-—>0). Then

bi + b2... + biv+k | • Upr+k -C (|bj + b2 + ... + bjv—1| +
+ |bv + ... + bAr+*|) •U;v+*<c for each k>k0

and this proves our statement, being a generalisation of a theorem 
due to de la Vallee Poussin (see [6], p. 416, ex. 10). Putting 
b„ =± 1, we obtain a result due to E. Lasker (see Poly a-Szego [3] *), 
p. 25). Besides, it is easy to see that the lemma 2.3 is equivalent to 
a well known result due to Kronecker.

3. We prove now the sufficiency of conditions (3.11) and (3.12). 
Let u = {U„}eX,. We can suppose that (U„| increases. Then, in view of 
lemma 2.2

I Numbers in square brackets refer to the list at the end of this paper.
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0 (t, u) = y' qk (t) [/* = <pk (t) (ut + us + ... + Uft) ■
*=i *-i

OO | oo n—1 . co ft—1 |
= J? (t) — V«(t) = £ Uk a— £ <pn (t) .

ft=i L„=i n=i J *=i L n=i J

Therefore, if t, <t2, tu t2eD,

“> | k—1 j
0 (ta) (^i) — Uk I a— \ <pn (t2) I \ Uk 

ft=l L n=i J *r=l

~ ft—1 k—l |
= Uk <f>n (ti) <pn (t2) I -> 0,

ft—2 Lfl=l n=l I

ft—1

since u/, >0 for k>2, and by (3.12) (the sum g>n(t) means 0 if Jc = l).
n—1

Thus we obtain
Theorem 3.1. In order that the transformation q> preserve the monoto- 

nity of all monotonic sequences in XT, if X,? contains at least one monotonic 
non-null sequence, it is necessary and sufficient that

r r

(3.11) X (pk (fi) ^pft (^2) for ^2» fi> f2 and r 1, 2,and
*=i *=i

00
(3.12) qt>ft (t) == a = const, for each teD.

*=1

We dealt above with sequence-to-function transformations. The case 
of linear sequence-to-sequence transformation defined by an infinite ma
trix is evidently contained in the foregoing considerations. It suffices 
only to take as the set D the set of all integers.

If we should deal with transformations preserving strict monotonity, 
we would easily obtain that the condition (3.11) with the omitted sing 
of equality and condition (3.12) are sufficient for preserving of strict mo
notonity but the so modified condition (3.11) is by no means necessary. 
The necessity of (3.12) can be obtained easily by considering of trans
forms of the strictly monotonic sequences (1 ±e"}, where 0<e<l. Then
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£ (t,) (1 + cfc) > £ (pk (t2) (1 + «*),
*=i *=i

VfcUiHl ek) < ' 9’*(L)(1 e*) (tj < t2).
*=l *=1

Making e—>0, we obtain necessity of (3.12) by continuity of power series. 
It follows then from the equality

, CXJ . k-- 1 k-- 1

0 (t2) — 0 (t,) = U„ q>n (t,) — Y <pn (t2) 
k—2 Ln=l „=1

that the condition (3.11) shall be replaced by a more complicated one: 

if t,,t2eD, tt<t2, then

(3.13) J? <pn (tj > <p„ (t2) for r = 1,2,... and
/1=1 /1=1

r0 r0
2<pm>2 (pn(t2) for one at least r0 = r0(ti,t2). 
/1=1 /1=1

The conditions (3.12) and (3.13) are necessary and sufficient for preser
ving of strict monotonity if XT contains monotonic sequences which do not 
tend to zero.

We can quite similarly modify the theorem 1.1.
The condition (3.13) is necessary and sufficient for preserving of strict 

monotonity if each monotonic sequence in X; is a null sequence.

4. We shall now deal with conditions for preserving of monotonity 
in linear function-to-function transformations. Let K(t,s) be a real func
tion of two real variables t and s defined for teD, (D being an arbitrary 
set of reals, containing at least two numbers), and for 0 s < + 00. 
Besides, we suppose that K(t,s) is summable in s over any finite interval 
[0, A] for each fixed teD. The kernel K(t, s) defines on a set Xk of 
functions summable over any finite interval [0,A] a function-to-function 
transformation K. This means that for each <p(t)eX/< the integral

-|-oo +
0(t) = J K (t, s) q) (s) ds exists for each teD. In the sequel the symbol f 

0 0
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A

means the limit lim I so that we do not assume the absolute intergra-4-> + oo Q
bility over the infinite interval of function considered. For absolutely 
integrable functions our considerations hold naturally, too. The non-empty 
set of all functions for which the transformation applies shall be denoted Xk- >

We say that transformation K preserves the monotonity if for each 
function <p(s)eXi< monotonic in the interval [0, +oo) its transform 0(t) is 
monotonic in D and if q> (s) and 0(t) are both increasing, or both decreasing.

Conditions for preserving of monotonity can be obtained quite ana
logically as before. We define the function

= 1 for 0 s A 
(/)A S = 0 for s < + œ '

<Pa(s) is a decreasing function of s which belongs to Xk- Its transform

4-o© A

I K (t,s) <f>A (s) ds = J K(t,s)ds 
0 0

shall be a decreasing function of teD if A is fixed. Thus we obtain 
as a necessary condition for preserving of monotonity:

A A

(4.11) f K(tlts)ds> J K(t2,s)ds
0 0

for tnt2eD, t,<t2 and for arbitrary A>0.

If each monotonic function in Xk tends to zero as s —* + oo, then the 
ondition (4.11) is also sufficient.

Proof. Let (p(s)eXK. We can suppose that <p(s) decreases. Then, in
view of lim 93 (s) = 0, there is ®(s)>0. We have

J—►4-0©

A

<t» (t) = lim I K (t, s) <p (s) ds.
4-> + oo Q

Let t„t2eD, t,<t2.
Then

A

0(ta) —0(t,) = lim f [K(t2,s) — K(t„s)]g>(s)ds.
4->4-0° Q
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It suffices to prove that for any A>0 the integral
A

J )K(t2,s) —K(tvs)) <jp(s)ds 
o

is non-positive. The function <p (s) is of bounded variation in [0, zl] and 
K(t2,s)— K(tns) is summable over this interval, so we can apply 
the theorem on integration by parts for Lebesgue integrals (see e. g. 
Saks [4], p. 298)

A s

f [K (t2, s) - K (t„ S)1 q> (s) ds = Ms) / [K (t2, o) — K (t„ a)] da) —

0 6

I
[K (t2, a) — K (t„ a)] da dtp (s) = <p U) J [K (t2, s) - K (t„ s)J ds + 

I 0

+ (RS)f [K(t2, a) —K(t„a)J da[d|—v(s)]

Since [—<p (s)] increases and <p(A)^0, both terms on the right side are 
b

non-positive by (4.11). The symbol (RS) [ denotes the Riemann-
a

S t i e 11 j e s integral.
Thus we have proved
Theorem 4.1. Necessary and sufficient condition that the function-to- 

function transformation K

(p(t)=J K(t,s)<p(s)ds 
o

preserve the monotonity of all monotonic functions in Xk, if each of them 
tends to zero, is

A A

(4.11) f K(tus)ds> f K(t2,s)ds
0 0

for t,<t2, t,,t2eD and for any A>0.

This theorem is an analogue of the theorem 1.1 and the latter may 
be considered as a particular case of the former one. However, the proof 
of the theorem 4.1 is based on the «non-elementary» theorem on inte
gration by parts for Lebesgue integrals.
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5. We shall now prove the integral analogues of the lemmas of 
section 2.

A

Lemma 5.1. If the limit lim ) b(x)U (x)dx exists and U (x) is
j4->+OO Q

a monotonic function which does not tend to zero as x —> + os and,
besides, b(x) is summable over each finite interval [0, A], then also 

A +oo 4-00

lim J b(x)dx = ) b(x)dx exists and moreover U (x) I b(t)dt—>0 as
0 0 X

X—► + co.

Proof. We can suppose that for x^K there is U(x)>0. Then,
(x) +r°

b(x) =—U(xj a^most everY where rj(x)=J b(x)U(x)dx.

Integrating by parts, we have for K < a

A w dx=/ =[- u!l’.+(RS) AWd [tfbjJ ■

We have

V? [99 (x)] denotes the total variation of <p(x) over [a, (3]. Therefore

J b (x) dx i •<
* a

M«)l
U(a)

M0)l 1 1
U (a) U (p) • max |rj(x)|.+ +

If a—> + co,/?—> + 00, all terms on the right side tend to zero and thus
f 00

J b (x) dx exists.
0

In order to prove the second part of lemma it suffices to consider 
the non-trivial case U (x) —> + co. Making /3 —» + co, we obtain

f b (x) dx

U(a)

H (q) I
U(a) tTi~\ suP U (a)

i. e.

f b (x) dx < 2sup |»?(x)|. 
*>«

+ l»?(x)|

Since r/(x)—>0 as x—> + co, the lemma is proved.
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Corollary. If the integrals | b(x)U (x) dx and f b(x)dx both exist 
o o

and U (x) is a monotonic function, then

lim U (x) f b(t)dt = O.
X-> + oo x

+ oo 4*^0
Lemma 5.2. If the infinite integrals J b(x)I7(x)dx and f b(x)dx = a 

o o
both exist and U (x) is a monotonic function, then

’ f b(x)U(x)dx = — (RS) f [/b(t)dt|dI7(x). 
o o Lo J

X 4-00

Proof. The function b(x) has J b(t)dt = a — J b(t)dt as an inde-
o x

finite integral. Integrating by parts, we have

/ b(x)U(x)dx = {u(x)|a— / b(t)dt|} ° — (RS)/|/b(t) • dtjdU(x) =

= — U(A)f b(t)dt—(RS)/[/b(t)dt|dU(x).
A 0 I 0 I

Making A—>-(-oa, we obtain, in view of corollary, our lemma.
We can prove quite similarly an integral lemma analogical to that

of de la Vallee Poussin.
A

Lemma 5.3. Suppose that the limit lim J b(x)U(x)dx exists and that
A->+OO Q

U (x) tends to zero monotonically as x —> + oa and, besides, that b (x) is 
summable over any finite interval [0, A]. Then

X

lim U(x)J b(t)dt = O. 
o

Proof. It is sufficient to suppose that 17 (x) > 0 because the case
4-00

l7(x) = 0 for great values of x is trivial. Put r/(x) = f b(t)U(t)dt. There 

z?7 (x)is almost everywhere b (x) = — . We have

17 (x) ' U(a) U(t).
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Hence

U(x)
f b(t)dt|<H(x)| + ^U(x) +

+ u (x) [uM ~ W>] • SSI-I Wl < 3 sup I, <x)|.

Choose now a0 such that 3sup|?j(x)|<;e/2 (which is possible in view of
*>«0

I a° —
lim »7(:e)=0) and, a0 being fixed, choose xo>aosuch that U(x) J b(t)dt

for each x>x0 (which is possible, since U(x)—>0). Then U(x) 

for each x>x0 and this proves the lemma.

<e/2

I b(t) dt|<c

6. Theorem 6.1. Necessary and sufficient conditions that the function-
+ oo

to-function transformation K: ®(t) = f K(t, s)<p(s) ds preserve the monotonity 
o

of all monotonic functions in Xk, if Xk contains at least one monotonic func
tion which does not tend to zero as s —> + oo, are

A A

(6.11) | K(t1;s)ds>-J K(t2,s)ds for tiCt.2, t,,tteD and for any A>0;
o o

(6.12) I K (t, s)ds = a = const for each teD.
o

Proof. The necessity of (6.11) has been proved in sec. 4. The
+ oo

lemma 5.1 implies the existence of J K(t, s)ds for any teD. The function 
o

rp (s) = 1 is simultaneously decreasing and increasing and this implies the 
necessity of (6.12).

Sufficiency. Let tp (s) be a decreasing function, ^(sJeXx. Then, in 
view of lemma 5.2.

d»(t)= J K(t, s)g?(s)ds 
o

~(RS)
/ | J K (t, a) do | d<p (s);

0(t2)—0(tl)=
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+ oo 5 -i +oo 5

(RS) f J K(t2,a)da d«p(s) + (RS) / J K(tx,a)dc 
o Lo J o Lo

d<p (s):

= (RS)/ / [K(t„<r) — K(t2,c)]do
O ' O

The increments of y (s) are non-positive, moreover for tt < t2

f lK(t„a) — K(t2,a))da>0 
o

by (6.11) and therefore
0(t2)_0(ti)<O.

All our consideration are valid, with evident modifications, in the 
case when the transformation is defined by a finite integral. Then we obtain

Theorem 6.2. Necessary and sufficient conditions that the function- 
b

to-function transformation K: 4>(t) = f K(t,s)q>(s)ds preserve the mono-
a

tonity of all function monotonic in [a, b] are
A A

(6.21) / K(tus)ds> f K(t2,s)ds
a a

for < t2, tt, t2 eD and any Ae fa, b] and 
b

(6.22) I K (t, s) ds = const, for each teD.

Conditions for preserving of strict monotonity can be also obtained 
easily. An analogue of the theorem 6.1 is the

Theorem 6.3. Necessary and sufficient conditions that the function-
+ oo

to-function transformation K: (t) = J K(t, s) <p(s) ds preserve the strict mo- 
o

notonity of all strictly monotonic functions in Xk, if Xk contains at least 
one monotonic function which does not tend to zero as s —+ + 00, are

A A

/ K(ti,s)ds)> J K(t2, s)ds 
0 0

(6.31)
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for t,,t2eD and jor any A > 0; besides, for one value A, at least
An
J K(ty,s)ds> J K(t2,s)ds; 
o o

(6.32) = (6.12) J K(t, s)ds = a = const, jar each teD. 
o

Proof. Necessity. If OCcCl. t, < t2, then
4-0© 4-00

f K(t,,s)(l 4-cs + 1)ds> f K(t2,s)(l+es + 1)ds, 
0 0

(6.33)
4-00 4-00

/ K(t„s)(l — es^)dsC f K (t2, s) (1 — «s+1) ds. 
0 0

From the second mean-value theorem it follows that
t

and therefore

A

f K(t,s)es+,ds 
o

■< e•sup J K(t, s)ds 
o

lim f K(t,s) es+1 ds = 0.
e->0 o

In view of (6.33) this implies the necessity of (6.32). Considering the 
transform of the strictly decreasing function cpA (s) + ei+1, we have

( K(t,,s)ds + J K(t„s)e,+td$> f K(t2,s)ds 4- f K(t2,s)ss + l ds. 
oo 0 0

This implies the necessity of (6.11). Then we have

d>(t2) —/ K(s)d<p(s),

0
where

K (s) = / [K (t„ o) — K (t2, o)}do>0 
o

by (6.11). If increases strictly, then d>(t2l— d>(t,)> 0 and therefore 
K(A))>0 for one /l0 at least. This and (6.11) imply (6.31).
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Sufficiency. If (6.31) and (6.32) are fulfilled, we have
+ 00

0(t2) — 0(t,) = (RS) f K(s)d<p(s),
0

where K (s) >> 0, K (Ao) > 0 and q> (s) is strictly increasing. Since K (s) is 
continuous, there is K(s)>h>0 for Ao — S<Zs<An + ô and we have

4. + s
0(t2) —0(tt)>(RS) f K(s)d(p(s)>h\g>(At} + ô)-(p(A0 — d)| >0.

4,—»

We can prove also easily that the condition (6.31) is necessary and 
sufficient for preserving of strict montonity if Xk contains only monoto
nic null functions.

7. Applications. The above obtained theorems can be applied to the 
transformations used in the theory of summability. Since every regular 
(i. e. fulfilling the well known Silverman-Toeplitz regularity con
ditions, see e. g. Banach [1], pp. 90-91) method of summability evalua
tes some monotonic non-null sequences, we obtain easily the

Theorem 7.1. Let A = (aik) be a regular method of summability. Ne
cessary and sufficient conditions that (aik) preserve the mcnotonity of all 
x — {£„{ sXa are

(7-11) a,fc = 1 /or t = 1,2,... ;
*=i

r

(7.12) if i—» + co and r is fixed (r = 1, 2,...).

(The symbol ( means monotonic decreasing and convergence).
Proof. Necessity, (a,*) fulfil the well known Silverman-Toeplitz 

conditions :

(7.13) for i = 1,2,...;
Jk=l

(7.14) lim a,> = 0 for k— 1,2,... ;/->+00
00

(7.15)
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By (7.15) and necessity of (3.12) (the set D is then the set of all inte
gers) we obtain (7.11) • (3.11) and (7.14) imply (7.12).

Sufficiency is obviotis by theorem 3.1-

Norlund-Woronoi means are defined by the triangular matrix:

1, o, o, 0, ,.

<Zi Qo 0, 0,
Q.’ Qi’
Qa q, Qo o
Qa’ Qa’ Qa’

u,

where Qn = q0 + q2 + ... + q„, q0 >0, q„ > 0, —> 0.

The condition (7.11) is fulfilled at any rate. The condition (7.12) takes 
the form
(7.16) -9*Zl9*r» | 0( j. e.

(7.17) vF" I 1

for Jc —> + co and every fixed n, (Q*_„ == 0 if k < n).
Thus (7.17) is the necessary and sufficient condition that the Nor-

lund-Woronoi means always increase if the transformed sequence 
increases.

This helps us to verify that Cesaro means of any positive order r pre
serve the monotonity. We have

for Jc < i, and c$= 0 for k > i (i, k = 0,1,2..... r = 1,2,...). Obviously the
Cesaro means are of N or 1 u n d-Wor o n oi type with the generating 
sequence:

tf=("tlT1),<w-(nr)
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We have
Ik — n + r\

_ \__ r j _ (k—n + r)! k! _ (k—n+l) (k—n+2)... (k—n+r)
Qfc’ — (k + r) — (k+r)!(Jc—n)! (k +1) (k + 2)... (Jc + r)

for k — n'^> 0 and this increases to 1 if k —> + oo and n, r are fixed. Thus 
we have proved that the Cesaro means preserve the monotonity. It is 
obvious that they preserve strict monotonity, too.

It follows easily from the theorem 6.1 that a row finite matrix (a,*) 
transforms each decreasing sequence into increasing one and viceversa if, 
and only if,

rn

(7.18) atk increases with i, m being fixed;
fc=i

oc
(7.19) a/* = a for i= 1,2,...

k=l

To show it observe that the matrix (— a,*) preserves then the monotonity.
This remark helps us to prove that, if {a„J is an increasing (resp. de

creasing) sequence, then its Cesaro means of successively increasing
orders decrease (increase) *).

Proof.
form

transformation considered has theThe matrix defining the

, 0, 0,...

') The author was suggested by Prof. M. Biernacki to prove this statement.
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The condition (7.19) is obviously fulfilled. It suffices to prove that, 
n and m being fixed, m + 1, the expression

^[(ntiT1)+(ntiT2)+-+(nti7”‘)]

increases with i. We have

{[(” t-T *) + (" t-72) + + C t-7”)]+

+[(”+•-?-l)+•••+(•=;)]-[(”+*)+-+(•=i)] H

In — m + i\
1 |7» + A_ /n + i —Tn\l = , ____1___ 7 = i (n~~Tni)!n!

n-+-i\L\ i / \ * /J In -j- (n — m)!(n + i)!mm

and this increases to 1 as i —» + co, since

(n — m + i)!_  1
(n + i)! (n + i — m + 1) (n + i — m + 2)... (n + i)

decreases to zero as i —> 4- n, m being fixed. This proves our statement.

The integral transformation corresponding to C e s a r o means of the 
first order, is defined by the kernel

= — for 0 < s < t,
K(t,s) 1

— 1 for t < s.

The set D consists of all positive reals.
The ccnditicns (6.11) and (6.12) are obviously fulfilled so that this

transfoimaticn preserves the monotonity.
A function F (x) is said to be convex if the curve y — F(x) between x,

and x2 always lies below the chord joining the points (x,,F(x,)) and 
(x2, F (x2l).

A necessary and sufficient condition for convexity of F (x) in (—d, l+d),
X

d>0, is that F(x) = J f(t) dt + F (0), where f(x) is a bounded increasing 
o

function of xe(—<5, l + d) (see Titchmarsh |5], p. 372, ex. 8). We shall 
prove following
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Theorem 7.2. If F (x) is convex in the interval (—<5, 1 + 5) and {//„) 
l

is the sequence of moments of F(x): /j.n = (RS) f tndF(t), then the se- 
o

quence {(n + 1) fin] increases.
i l

Proof. Put a„ = (n+l)/j„ • a„ = (RS)J\n+l)tndF(t) =f (n+ 1) tnf(t) dt, 
o o

f(t) being an increasing function. We can now apply the theorem 6.2 with 
K(s, t) = (s + l)t5 and D being the set of all non-negative integers. We

1 A

have J K(s,t)dt= [ts+1},<=^= 1, J K(s, t)dt=A34-1 decreases for s—» + 

and Ae [0,1] and this proves the theorem.

The lemmas on series proved in section 3. admit also of various appli
cations. As a matter of example we shall prove without using the notion 
of absolute continuity two well known lemmas concerning the theory 
of Lebesgue integrals.

Let f (x) be a non-negative function summable over the set E and jUn(
an increasing sequence of positive numbers such that lim U„ = + co. If

n—> -I-Oo

En — E (/(x)>U„; xeEj, then
X

(1°) lim Unm(E„) = Q,

(2°) the series (Un— Un-i)m(En) converges.
n

Proof. Obviously Ej 2) F2 2) — • The integrability of f (x) implies 
the convergence of the series

\ U„lm(En) — m(Enti)l and, besides, lim m(E„) = 0
n n-> + bo

Putting b„ = m(E„)— Tn(E„+i) we obtain b„+i + b„+2 + ... = m(E„+i) 
and in view of lemma 2.1 lim U„Tn(E„+i) = 0, hence by convergence of

/t—> + ee

(7„ [m(En) — m(En+i)] follows (1°).

The lemma 2.2 implies (2°) immediately. (For the case 17„ = n see 
Titchmarsh [5], p. 342, ex. VII and Halmos [2], p. 115, ex. 4).
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Streszczenie

W pracy tej podaję warunki konieczne oraz dostateczne na to, by 
przekształcenia liniowe ciągów i funkcji zachowywały monotoniczność 
wraz z jej kierunkiem.

Dla wykazania dostateczności potrzebnych było kilka lemmatów, które 
same w sobie mogą być interesujące. Metoda dowodu tych lemmatów 
pozwala uogólnić pewne twierdzenie de la Vallée Poussin a.

Podane są niektóre zastosowania otrzymanych twierdzeń do teorii 
sumowalności i teorii momentów.

Резюме

В этой работе даю необходимые и достаточные условия для того, 
чтобы линейные преобразования последовательностей и функций 
сохраняли их монотонность вместе с направлением монотонности.

Доказательство достаточности опирается на нескольких леммах, 
которые могут иметь и самостоятельный интерес. Метод доказа
тельства этих лемм позваляет обобщить одну теорему Ш. Ж. де ля 
Валле Пуссена.

Полученные теоремы допускают приложения к теории сумми
руемости и к теории моментов.




