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On certain improved estimates of the mean 
O pewnych ulepszonych ocenach średniej arytmetycznej

Об улучшенных оценках средней арифметической

Let X be a random variable with finite mean // and variance o2.
Let a be its parameter to be estimated from the sample.
Let a*—a* (Xi, X2, X„) be a function of n observations

on X in a sample, and let «* have finite mean, E(a*), and finite va
riance D2(a*), given by

00

E(a*) = J a* dF (a*)

(1)
D2 (a*) = ^(a* — E (a*)) 2dF («*)

— 00

where the right sides are Lebesgue-Stieltjes integrals, 
F(«*) being (cumulative) distribution function of random variable a*.

The general problem in point estimation is this: which of all 
possible functions a* is the best estimate of «?

Criteria of the best estimate. There is a widely accepted requi
rement believed to be a necessary condition for a good estimate: 
that a* should be unbiased

bias b (a*) = E(«* —a) = 0 , i. e. E(a*)=a (2)
This requirement is subject to serious objections. On its own 

merit condition (2) can be accepted as necessary only in cases, where
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estimation is a kind of ’’fair game“ played between two parties in 
which positive errors are appraised as gains from the point of view 
of one party and as losses from the point of view of the other, or 
vice versa, and it is desired to obtain a neutralized effect in the long 
run. Such situations are possible in economic relation, but in most 
applications of estimation, as for instance in technology, science, etc., 
there seems to be no purpose in neutralizing positive and negative 
errors of estimates. In typical estimation cases deviations from the 
’’true values“ are considered losses irrespectively of their signs. 
From this point of view condition (2) is not only unnecessary, but 
faulty *), for it is inconsistent with the natural requirement that 
mean absolute error of estimate should be as small as possible

e (a*) = E | a* — a | = minimum, (3)
or with a more tractable though less natural requirement that mean 
square error of estimate shold be as small as possible

<f* 2 (a*) = E(a* — a)2 = minimum. (4)
Condition (2) is never considered sufficient. It is followed by 

the requirement that variance of an unbiased estimate should be as 
small as possible. Out of all unbiased estimates the one with least 
variance is usually considered the best. Clearly, such a criterion
is weaker than criterion (4).

In a former paper2) some other criteria were discussed, among 
them the principle of least squares, and the principle of Maximum 
Likelihood, both of which were found weaker than (4). It may be 
added here that Bayes' principle of estimation, aiming at the average 
value of a parameter in all populations, instead of at its value in 
a given population, is also weaker than (4).

Because of poor tractability of (3), (4) will be used in this paper 
as the working criterion of the best estimate.

Given an estimate a*, we shall restrict ourselves to finding an 
optimum value of the coefficient A in the expression Aa*, such 
that <£2(Aa*) should be minimum. This optimum value of A we shall

1) In some cases unbiased estimates are useful as a device of correcting 
some easily obtained estimates for gross error, i. e., of freeing them from 
a large admixture of some other systematic influences than the parameter in 
question, as for instance when subranges are corrected for bias in estimating 
standard deviation.

2) M. Olekiewicz, „On the Efficiency of Biased Estimates“, Annales 
UMCS, Sectio A, v. Ill, 3, 1949.
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denote by Ao. The corresponding estimate will be denoted by 
a*o = Ao a*. Mean square error of estimate Aa* can be expresed 
as follows

d2 (An*) = D2 (Aa*) + b2 (Aa*)

= A2D2(a*) + (AE(a*)—a)2 (5)
Keeping a* fixed, and letting A vary, we find by minimizing (5) 
with respect to A

a E (a*)
A° = E2 (a*) + D2 (a*) 

and the optimum estimate
aE(a*)

«o — a* — E2 (a*) + D2 («*) ' a*
Mean square error of this estimate is 

q2D2(a*)

(6)

(7)

A0D2(a*)
E (a*) (8)E2 (a*) + D2 (a*)

When Ao is independent of a, a0* can be taken for the best 
estimate of a of the form Aa*. When Ao depends on a, a*0 will be 
no estimator, since number Ao will remain unknown. In any case, 
however, there exists a certain number Ao, known or unknown, 
such that when a* is multiplied by it, a better estimate is obtained 
than any that could be got through multiplying a* by a different 
number. If a* happens to be an unbiased efficient estimate in the 
sense defined by H. Cramer1) (for a fixed n), it still can be

improved through multiplying by Ao • In the former
a2 + D2 (a*)

paper this fact was utilized for a regular estimation case, vis., for 
estimating variance in normal population, where it was found that 

r^X-X)2 is better than 2(X-Xf 

n + 1 n — 1
In the present paper certain (regular and irregular) cases of estimat
ing mean (q) in various populations will be considered, and improved 
estimates of the mean over those commonly used will be given.

A general case when fi* = u = X=—2X n
When a* is unbiased (a* = a), we shall have

l) Cramer, H. Mathematical Methods of Statistics. Princeton Univer
sity Press, 1946.
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Aq
a2 + D2 (a)

«0 = Ao a — , c£

& K)

a* -+- D2 (a) 

a2 D2 (a)

(9)

a2 + D2(a)
A0D2(«)

According to (9) the optimum estimate of n of the form AX is 
/z;=A0X“=----- ” • X

n+(i (10)

From (10) it can be seen that the larger is a as compared to, n |, 
the smaller will be Ao. This fact expresses a peculiar property of 
large deviations.

If j—. is known, // and a being unknown, will serve as the best 
I I

estimator of n of the form AX, and if, besides, X is efficient, ng will 
be ’’linearly efficient”, i. e. will represent the best of all possible 
’’linearly biased” or unbiased estimates of n ’).

If only lower bound for can be ascertained, we shall be able

to determine such limits for, A, that any AX complying with them 
will be better estimates of u than X is.

For this purpose we shall make use of the fact that when A is 
allowed to vary continuously, £2 (AX) will have its only critical point 
(minimum) at A = Ao, and there will be two values of A at which 
<f2 (AX) will equal £2 (X) = D2 (X), vis.

A=l, and A = 2A0 — 1 (II)

Thus all estimates AX for which A satisfies the inequality 
2A0—1<A<1 (12)

will have smaller mean square errors of estimate than X has. Now,

when it is known that ,—- 7 I, I being a known number, then 
I A* I

710 n + l2 ’ and 2 Ao — 1 < ,7+1- »' (13)

*) Cf. M. Olekiewicz, op. cit.
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and therefore it can be stated that all estimates, AX, for which

n — I2--^<A<1 n + I" (14)

are better than X is.

If we are ignorant of the lower bound for ;—; but a is known, we 

may be able to determine a confidence interval for I a* 1» and taking its

upper limit, find the lower limit for . with an acceptable risk of
I A* I

error. Then our statement about improved estimates of /t made in the 
form of (14) should be qualified with an appriopriate probability 
clause.

For instance, if X is normal, we shall have for estimated lower

bound of p, to be inserted in (14)
|A*I

— a U, p 
\X\ + —^

y n
(15)

where U2P is the normal deviate corresponding to one-tailed risk of 
error, P.

If neither ~ nor a is known, it may still be possible to estimate

a lower bound for ~ with an ecceptable risk of error to be inserted 

in (14).

In the case of distribution of Poisson, since o2 = ft, (10) becomes

//o'
_____nv

, 1 X
n + — 

p
(16)

The knowledge of an upper bound for p will suffice in this case to 
determine a range of better estimates of /i than X is. If it is known that

K, where K is a known number, then all estimates AX for 
which A satisfies the inequality

nK —1
nk + 1 < A < 1

are better than X is.
(17)
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If we do not know anything obout p, we still be able to take the 
upper limit of confidence interwal for p, *) (if nX is sufficiently large)

Vk
2n + U2P l/A+ 

r n 4n2 (18)K = X

determined with an acceptable risk of error, P, and substituting it into 
(17), make our probality statement about the range of improved 
estimates compared to X.

In the case of binomial distribution with two alternatives we have 
H = p, o2 — pq, where p is probability of success and qt=l—P- 
Hence (10) becomes

• —n Vo—Po —------ -  -P
n +— 

p
(19)

where p = X is an observed fraction of successes. If — is unknown, 
P

but and upper bound K for p can be ascertained that is smaller than 
unity, then all estimates AX for which A satisfies the inequality

(n + 1)K — 1 
(n — 1) K + 1

(20)< A < 1

are better estimates of p than p is. If upper bound for p is not known, 
then for determinig a probable range of improved estimates K. may 
be estimated from the formula *) (if np is sufficiently large)

K = n
Tl 4" U 2p

lp + yk + u2P | /\ 2n 1 n 4 n2 / (21)

In connection with (19) it may be noted that the best effect will 
be obtained when p < q. The reason for this is the following. The 
mean square error of q* — 1 — p‘ as an estimate of q is equal to

P2 Qmean square error of pj as an estimate of p, vis., it equals Now

P Q“mean square error od c’ as an estimate of q equals This, of

course, is the smallest mean square error that can be obtained for any 
estimate of the form Aq, but it 'is to be noted that q’ cannot be 
reduced to this form, and if p < q, then q* turns out to have a smaller

') Cf. Cramdr, H., op. cit. pp. 514—515.
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mean square error than q* has, which can be seen from the following 
relation

(22)
_ & W — npq + p2

i2 (<$ — & (qjT npq + q2 
It follows that if p < q, then p* is better than p’= 1 — q *; but if 
p > q, then p* will be better than p*.

Some special cases of rectangular and triangular distributions 
When probability density for a rectangular distribution is

f(x)= 2p (23)
0 otherwise

then o2 =
2 2

•y, D2 (X) = ^ • Putting p — X, (10) becomes

. 3n —
/Z#—3n + 1 ’ X ’

so that p* is the best estimate of p of the form AX. Its mean square 
error of estimate is

* 2 = 3n y (25)

which is smaller than <f2 (p) = D2 (X).
The considered case is not a regular case of estimation, and X is

not the best unbiased estimate of p. The best unbiased estimate is 
known to be *)

(26)

where X<nj is the largest observed value in the sample. 
The mean square error of this estimate is

Applying (9) we obtain the best estimate of the form A p

(27)

~ _ n (n + 2)
~ ?i(n+ 2H7! '

Its mean square error of estimate is

X(„,

’ <S2Ù) = n (n 4* 2) 1

(28)

(29)

n + 1 
2 n

■) Cf. Davis, R. C. „On minimum variance in nonregular 
The Annals of Mathematical Statistics, vol. 22, 1951.

estimation“.

10 Annales
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When frequency function for a triangular distribution is

f (x)
8 x.
-—5 in9дг 

0 otherwise

(»-¥)
(30)

then best unbiased estimate of ц is
2n 1 X,(Л) (31)

Its mean square error of estimate is 

Ć4^)=D2(^) =
4 n (n + 1)

Applying (9) we obtain the best estimate of /z of the form A t* 
4n (n + 1) 2n + 1

(32)

4n(n + l) + l 
Its mean square error of estimate is

■x(n) (33)

3 n

3 n

4n(n + l) + l (34)
Similarly the unbiased estimates of the mean can be improved in 
other special cases of distributions.
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Streszczenie
Autor podaje ulepszone oceny średniej arytmetycznej, posługując 

się kryterium najmniejszego średniego błędu kwadratowego. Rozpa
trzony jest przypadek ogólny oraz przypadki szczególne dla rozkła
dów: dwumiennego, Poissona, jednostajnego i trójkątnego.

Резюме
Автор даёт улучшенные оценки средней арифметической 

пользуясь принципом наименьшей средней погрешности. Рассмо
трен общий случай и некоторые частные случаи для распределе
ний: биномияльного, Пуассона, равномерного и треугольного.


