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Moment Inequalities for Order and Record Statistics 
Under Restrictions on their Distributions

Abstract. Several inequalities for moments of order and record statistics are given under 
moment and symmetry restrictions on their distribution.

1. Introduction. Let Xi,n < ... < X„t„ be the order statistics from i.i.d. 
random variables Xi, ... ,.Y„ with df F. Let r,s,k,n € N be such that k < n and 
r < a.

In section 2 we present inequalities for the a-th moment of the order statistics 
Xk,n under the condition EXr,a = O.In particular we prove the inequality

r — 1EX'2r+l,2r+l < 2r+l,2r+lJ
0/2

which improves the classical inequality for moments.
In Section 3 we give analogous inequalities for k-th record statistics.
The bounds for moments of order and record statistics given here are more precise 

than their counterparts obtained by Lin (1988), Kamps (1990) and Gajek and Gather 
(1991).

The discussion of attainability of the bounds yields in special case new character
izations of the inverse gamma and other distributions. Since the discrete distributions 
are admitted in discussion, the results of the paper are applicable to the moments 
from a number of samples as well. Throughout the paper we assume that at least one 
side of considered inequalities is finite.

2. Inequalities for order statistics. The following inequality is an improve
ment of the classical moment inequality. Since we have not found it in the literature, 
a short proof is enclosed.

Lemma 1. For every function g : R —♦ R such that g2(t)dt < oo, it holds

(!) jf g2(t)dt-Ç^ g(t)dt^ > 1 IX*) — — *)
dt .

Remark 1. Since J0\g(t) - g(l - t))2 dt = 2f0' g2(t)dt - 2 g(t)g(l -t)dt ,



28 L.Gajek and E.Lenie

(1) is equivalent to the following inequality

(2) (Z g(t)g(l — t) dt < g2(t)dt-^ g(t)dt^ .

Proof. We shall prove (2). Applying the Cauchy-Schwartz inequality, we have

L(3) f
Jq

1 [?(<) +0(1 -0 i2
dt >

On the other hand we have

1 rÿ(t) + ÿ(i-<)^
(4)

1 <?(<) +<?(!-<)
dt r1 l2/ gWdt 

Jo

dt=z\/Q g2^dt + ^/0 9(t)g^-^dt.

2

From (3) and (4), it holds

Í g2(t)dt+[ g(t)g(l - t)dt > 2 
Jq Jq

Í g(*)dt 
.Jo

which is equivalent to (2). ■

Theorem 1. Let r,s,k,n € N be such that r < k, s — r < n — k and let 
a > 1 . Then it holds

2(EXfc-r1+i n-,-n )2 < EXjk-2r+l,2n-2i+l

(5) (* - ■•+1)1 (;:::i)2" <“ -*+

+ . J. 1 \/2n—2s+l\ ’
(n —s + l)( n_,+1 )

where U,y} denotes the i-th order statistics from the sample ,Uj of independent
uniformly distributed random variables.

Proof. From David (1981), p.47, we have

EX^n = k(”\ f\F-\t)}atk~l(l -<)"-* dt,

where F 1(f) = inf{x : F(x) > t}, k,n € N, k < n . Let us write the inequality (5) 
in the following equivalent form

f1[F-1(f)]°'-1f*-r(l - *)"-•-*+rdt] -p[F~l(t)F-\l - f)]“_1<n_,(l - 

< [F~1(t)]2a~2t2k~2r(l - t)2n~2—2k+2r dt - [jf [F-1(f)]o-1f*-r(l - <)"—*+

dt

dt
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After denoting
g(t) = - t)»--*+r

we get the above inequality from (2) . ■

Theorem 2. Let r,s,k,n € N be such that r < k, n — k < s — r and suppose 
a > k ■ If EXr>, = 0 , then

^f,n < ( EX2r_12,_1 )‘/2 f ^'-^2t-2r+l,2n-2«+l 

*G) “ l(2r-l)G;z})J l(2fc-2r + l)(^+})

(„ _ for--!»,.-■+■]’ y«

Proof. Since EXr<> = 0 , for every 7 6 R

7^,.
= Jo F-\t)tr~\l -t)-r |jtQ)[F-,(t)]“-1?-r(l-f)n-*-r+'

Applying now the Cauchy-Schwartz inequality, we get

1/2p2(;)2Fx22ta_-22r+li2n_2j+1 
1 (2fc-2r + l)(22^î)

FXa < J ^'•,^2r-l,2»-l 1
t,n-l(2’--i)G;:î)J

(7)

Let us denote

_7r dt.

g-, ^(t)r(r) pyo-l 1
W \fc-r + l)(KÎ) •

■ , _ *’(Z) irt-i i »/»V
v(7)- (2t-2r + i)S;J;«) + ,rU 

g *(t)r(r) EXa~'
~ 27———, ,/„-a+i\ £'AJfc-r+l,n->+f

+ 7V

(*-r + i)(;:;îî) 

The function 1^(7) attains its minimum for

(8) 7o =
k^EXr1

(*-r + l)(r^)r(;)
*-r-t-l,n-»+l

which is equal to

(9) ¥>(7o) =
k2(k) ^A2^_2r+1|2n_2j+1 
(2^-2r + i)(22;:2%1)

*2C)2

(fc-r + D2(;:;iî)2
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From (7) and (9) the result follows. ■
The assumption EXr,a = 0 can be replaced by EXr,a = c . To this end one 

should shift the sample Xi,... , X„ by —c and next apply Theorem 2. An analogous 
remark concerns other results.

Let us compare inequality (6) with the bound given in Theorem 1 of [4] in the 
case where pi = p2 — 2, «1 = 1, <*2 = a — 1, ki = 2r — 1, &2 = — 2r + 1, nj = 2s — 1
and ri2 = 2n — 2s + 1. Then we get from Theorem 1 of [4] the following inequality

EX°k,n < i EX^_ia>_x f/2

*(Z) -

r y2o’ —2
•C'-A2Jk-2r+l,2n-2s-|-l

(2fc-2r + i)(22":22;+

5) 1/2

which shows that the bound given in (6) is more precise due to the assumption 
EXr,a = 0.

Remark 2. The equality sign in (6) is attained iff for some c 6 R the following 
condition holds

(10) F-1(f)tr-1(l - <)’"r = ck Q [F-1(f)]o-1<*_r(l - - cr Q
7o

where 70 is given by (8).

From the Cauchy-Schwartz inequality, we have

(11) EXk<n<[EX2kin]il2

for any distribution function F . If we restrict the class of underlying distributions to 
the nondegenerate ones for which EXr,a = 0, then (11) can be improved.

Corollary 1. Let r > 1 and EXrt, = 0. Then

(12) EX2r-l,2r-l < [EX^r-X'2 •

The equality sign in (12) is attained iff

= J lr(l ~ x/c{2r - l))]_1/(r_1) , for x £ (~oo,c(2r - l)(r - l)/r)

1 1 , otherwise ,

where c is a positive constant:

Proof. Applying Theorem 2 for a = 1 , s = r , n = 2r — 1 , fc = 2r — 1 we get 
(12).Equation (10) in this case takes the following form

F_1(t)tr_1 = c(2r - l)tr_1 - c(2r - l)/r.

Solving this with respect to t and denoting F(x) = t we get

F(x)= [r(l-i/c(2r-l))]1/(1 r)
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for x € (—oo,c(2r — l)(r — l)/r), where c > 0 . ■
The next result gives an analogous bound for the first order statistics. 

Corollary 2. For every s > 1,

(13) EXl<2,.i < [£X?2j_j]1/2 —
s

provided EXit, = 0 . The equality sign in (13) is attained iff

F(x) _ i 1 - [*(! ~ x/c(2s - l))]1/(1-,) , /one (c(2s - l)(s - l)/s,oo)
I 1 , otherwise ,

where c is a negative constant.

Proof. Put a = k = r = 1 and n = 2s — 1 in Theorem 2 and use (10). ■ 

Finally, we derive the result of Hartley and David (1954).

Corollary 3. For any n € N

EXn,n <
n — 1 

t/2n- 1

provided EX = 0 and EX2 = 1 with equality iff 

.1!/(»-!)X + c
F(x) =

cn
, x € (—c, c(n - 1))

where c = y/2n - l/(n - 1).

Proof. Put jfc = n,r = s = l and a = 1 in Theorem 2 and use (10). ■

Theorem 3. Let r,s,k,n 6 N be such that r < k , s - r < n - k and suppose 
a > 1 . Assume that the following symmetry condition holds:

(14) F~\t)tr~\l - t)’~r = —F_1(l - <)(1 - f)r-1t'_r .

Then

(15)

G2r-M,-t )1/2fl

-«( V(2fc-2r
_EX,2,

(2r

1 E[F~'(U„

2r+l,2n-2* + l

-j+l,2n-2j+l

2r+i)(22;:£îi)

)F 1(1 - Ifn-a+l,2n-2«+l)l
1/2

(n — s + 1)(2n -2»+l\ 
-i+l )

<

-}
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Proof. Since
FX£„ = J F~'(l - <)(1 - t)r-1p-rifcQ [F—1 (1 - ()1“-'(1 - t)k-Ttn~k-‘+r 

+ J F-\t)tr-\l -ty-rk(^[F~\t)]a-1tk-r(l -t)n~k-t+rdł ,

dł

4
using (14), we get

a-lfi j\*-r ±n—k—a+r-[^ (1-*)] (!-*) < » dt.

Now applying (14) and the Cauchy-Schwartz inequality, we get

x -t)2n~2k-2,Jr2rdt

rl )1/2
-J [F_1(l — t)]“-1(F_1(t)]°'_1tn-*(l - f)n_* dt > ,

which is equivalent to (15). ■

It is easy to see that (14) implies EXr<, 
precise than (6).

Let us write (15) in the following form

= 0 so one can exepet that (15) is more

EX^n f EXjr.ifl,.x p/»
*C) -t(2r-i)G;:})J

P y2a—2 1 p y2a—2

{•C/yk2fc-2r-H,2n-2j4-l _ £ / r>yV2fc-2r-H,2w-2a-b 1
(2fc - 2r + lj(|rS) 2 V(2fc — 2r + l)^^})

, F[F-1(tZn_.+li2n_2,+1)F-1(l - t/n_>+1,2n_2j+1)]«-1 -, i/2
("-*+i)(2;:î;r) " ’

and compare it to the bound given in Theorem 2 of this paper. The bound (15') is 
more precise than (6) because the following inequality holds (see Theorem 1)

P y2a—2
r>yi2fc-2r4-l,2n-2«4-l

(2*-2r + l)fc2;:i)

, F[F-1(t/„-.+i,2„-2l+1)F-1(l -t/n-<+1,2n_2.+1)]“-1\
(n-^ + DC::^1) J

(EX-\1|n-,+1)^

-(fc_r + l)2(—+})2 '
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Remark 3. If s = 2r — 1, then (14) is satisfied when F_1(t) = —F_1(l — t), i.e. 
the parent distribution is symmetric about 0. The bound which corresponds to this 
case one can easy get from (15).

3. Inequalities for record statistics. Let Xi,X2,.-- be i.i.d. random vari
ables. The k-th record statistics from the sequence Xi,X?,... are defined by

Ynk) = n = 0,1,2,... , k > 1 ,

where L*(0) = 1, Lk(n + 1) = min{j : XLł(„),£t(n)+t-i < Xjj+t-i} for n = 
0,1,2,... (c.f.Dziubdziela and Kopociński (1976)).

Properties of the k-th record statistics were investigated by Resnick (1973), Dzi- 
ubdziela and Kopociński (1976), Grudzień (1979), Grudzień and Szynal (1983), Gajek 
(1985) and others. Some characterizations of the geometric, exponential and other 
distribution can be found in Srivastava (1978, 1979), Nagaraja (1978), Grudzień and 
Szynal (1983) and Gajek and Gather (1991).

The following formula for the a-th moment of the k-th record statistic was proven 
by Grudzień and Szynal (1983)

a

E
fcn+1

(<)]“[-log(l *)]"(! - t)‘_1 dt .

Theorem 4. Let r,s,k,n € N be such that r < k and s < n. Suppose 
EY» * = 0 and a > 1 . Then

(16)

E(r«*>)\ f£(y2(.2r-1))2i1/2

ff(fc,n) [ S(2r-l,2s) J

•I E 2r+l)\ 
2, )( Y^2k

2a—2 (erłi>)a-l 1/2

p(2fc — 2r + l,2n — 2s) g(k — r + 1, n — s)

where g(k,n) = fc"+1/n!.

Proof. Since = 0, for every 7 € R

e(y^ =e(y^ -iEY^ = jf F_1(0[-iog(i-<)]’(i-<)r_1 

x P(fc,n)[F-1(i)]“-1[-log(l - t)]”-(l - i)*'r -
dt .

Applying the Cauchy-Schwartz inequality and minimizing with respect to 7 gives the 
result. ■
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Remark 4. In (16) the equality holds iff

F-’wt-iogci-oni-tr1

= c {sifc.nJlF-’GJl^-^-logil - <)]"-(1 - t)‘-r - 7o</(r,s)} , 

for some c € R and all t € (0,1), where

7o = 0(r,j)s(fc-r + l,n-j)

One gets from Theorem 4 an improvement of the moment inequality for record 
values.

Corollary 4. yłsjume EY^ = 0. Then

I 1/2
ey2(P < £(4n)2] Ij2 1(*!)

(2s)!

1/2

The equality holds iff F is the following inverse gamma distribution

V/’l
F(x) = 1 — exp

-(^b)
, x € (—oo,c/(2s)!) ,

1 -

for any c > 0.

Proof. Put k = r = a = I and n = 2s in Theorem 4. The characterization 
follows from Remark 2. ■
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