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Moment Inequalities for Order and Record Statistics
Under Restrictions on their Distributions

Abstract. Several inequalities for moments of order and record statistics are given under
moment and symmetry restrictions on their distribution.

1. Introduction. Let X;, < ... < X, . be the order statistics from i.i.d.
random variables X, ..., X, with df F. Let r,s,k,n € N be such that k < n and
r<s.

In section 2 we present inequalities for the a-th moment of the order statistics
Xk,n under the condition EX r» = 0.In particular we prove the inequality

r—1 1/2
E ['Y§r+l,2r+l]

EXargr2r41 <

which improves the classical inequality for moments.

In Section 3 we give analogous inequalities for k-th record statistics.

The bounds for moments of order and record statistics given here are more precise
than their counterparts obtained by Lin (1988), Kamps (1990) and Gajek and Gather
(1991).

The discussion of attainability of the bounds yields in special case new character-
1zations of the inverse gamma and other distributions. Since the discrete distributions
are admitted in discussion, the results of the paper are applicable to the moments
from a number of samples as well. Throughout the paper we assume that at least one
side of considered inequalities is finite.

2. Inequalities for order statistics. The following inequality is an improve-

ment of the classical moment inequality. Since we have not found it in the literature,
a short proof is enclosed.

Lemma 1. For every function g : R — R such that fnl g%(t)dt < oo, it holds

dt .

Remark 1. Since [ (g(t) — g(1 — )2 dt = 2 [ g*(t)dt — 2 [; g(t)g(1 —t)dt ,
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(1) is equivalent to the following inequality

o ([ W)’ - [ s -va< [ e ([ gmd;)’

Proof. We shall prove (2). Applying the Cauchy-Schwartz inequality, we have

(3) /0 {——-——g(tHg(l _t)] dt >

On the other hand we have

1 r i 2 1 .
(4) /ﬂ lg(t)+§(1 t)] dt=-;—/o gz(t)dt+%/o g(t)g(1 = t)dt .

From (3) and (4), it holds

2 1 2
%dtl =1/ g(t)dt] .

12

1 1 el
J/o g’(t)dt+/o g(t)g(l—t)dt22ljl; g(t)dt.

which is equivalent to (2). B

Theorem 1. Let r,s,k,n € N be such that r < k, s—r < n—k and let
a > 1. Then st holds

2(Exf:rl+1 n-.+1) EX:,‘:‘:TH 2n—2s+1
(5) (k—r+ 1pCTD) @R 2+ ) (et
EIF (Un—n+l In~— ZI-H)F ‘(1 < Un a+1,2n- 2:+l)]0 =3
(n—s+D)(*R225"Y
where U, ; denotes the i-th order statistics from the sample Uy, ... ,U; of independent

uniformly distributed random varsables.

Proof. From David (1981), p.47, we have
1
EXp, = k("\/ [Fi @)tk (1 — )"+ at,
1 \k/ 0

where F~!(t) = inf{z: F(z) > t}, k,n € N, k < n . Let us write the inequality (5)
in the following equivalent form

1 z 1
[j [F—l(t)]a—ltk—r(l _ t)n—a—k+r dt] _/ [F—l(t)F—l(l [ t)]a—ltn—n(l _ t}n-va dt

1 1 12
< ] [F—l(t)]20—2t2k—2r(l s, t)2n—2|—2k+2r dt — [/ [F—l(t)]a—ltk—r(l _ t)n—a—k+r dt
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After denoting
g(t) = [F @) (1 —g)nmemher
we get the above inequality from (2) . B

Theorem 2. Letr,s,k,n € N be such that r <k, n—k <s—r and suppose
a>1.If EX,,=0, then

Exg,n <‘,r EX;r—l 281 ]_1/2! Eng::r+l,2n—21+l
RO AE=0GE)d (e NS
(6) [Exk-r+l n— a+l] /2
C(k—r (g

Proof. Since EX,, =0, for every v € R

EX{, = EX{,—-1EX,,

o R g 1 T e W

r

Applying now the Cauchy-Schwartz inequality, we get

1/2 n\ 2 o=
Xe < IM] . kz(k) E'ng—;r+l,2n—2a+l
Ak S l@r-1) ;:_1” (2k — 2r + 1)(3722470)

2k—2r41
@ et (*) gy OO pren 1
Trr — ot k—r+l L
\r) "=+ DG ot
Let us denote i )
(7) = kz(:) Ex;r:2r+l"2n—2s+l 422 (3)
T Tk e )G :
M o
(k-r+ DG
The function () attains its minimum for
(8) 0= (k)EXE —r+1,n—a+1
0 =
(k= r+ DG
which is equal to
2
2 n
(9) p(7)= k() EX;: 2r+1,2n-2041 _ At [EX" ol ""*"l )
(2k—2r + (32570 (k-r+ 1262
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From (7) and (9) the result follows. B

The assumption EX,, = 0 can be replaced by EX,, = c . To this end one
should shift the sample X,,...,X, by —c and next apply Theorem 2. An analogous
remark concerns other results.

Let us compare inequality (6) with the bound given in Theorem 1 of [4] in the
case wherepy = po=2,a1 =l,as =a—1,kj=2r— 1, ko =2k—-2r+1,n; =25 -1
and nz = 2n — 2s + 1. Then we get from Theorem 1 of [4] the following inequality

A 4 1/2
EX?’" < ( EX%"‘-"—I 1 Exzzf—zzrﬂ,zn-z.“
k@) T ler-nED) [ |e-r+n@Gaah )

2k=2r41
which shows that the bound given in (6) is more precise due to the assumption
EX,,=0.

Remark 2. The equality sign in (6) is attained iff for some ¢ € R the following
condition holds

(10) F_l(t)tr_l(l - t)‘_r =ck (:) [F—l(t)]a—ltk—r(l | t}”-’_*+r by Cr(:)70 :

where 7 is given by (8).

From the Cauchy-Schwartz inequality, we have

(11) EXin < [EX,E,,,]’/2

for any distribution function F . If we restrict the class of underlying distributions to
the nondegenerate ones for which EX, , = 0, then (11) can be improved.

Corollary 1. Letr > 1 and EX,, =0. Then

2 r—1
(12) EXze1 201 < [EXE_1200]" -

r

The equality sign in (12) s attained iff

._,.) = I [T(l = 1‘/0(27‘ o 1))]—1/(r—l) s for I € (—oo,c(2r - 1)(,. ol 1)/,.)
1

, otherwise ,

F(

where ¢ is a positive constant.

Proof. Applying Theorem 2fora=1, s=r, n=2r-1, k=2r —1 we get
(12).Equation (10) in this case takes the following form

F7Y ) =¢(2r — 1)t —¢(2r — 1)/r.
Solving this with respect to t and denoting F(z) =t we get

F(z)=[r(1 - z/c(2r - 1))]1/(1_”
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for £ € (—o00,c(2r — 1)(r — 1)/r), wherec >0 . B
The next result gives an analogous bound for the first order statistics.

Corollary 2. For every s > 1,

(13) EX\ 201 < [EX2,,_ 1] %1

provided EX,, =0 . The equality sign in (13) is attained iff

F(z) = I 1—[s(1=z/c(2s = 1)) | for z € (¢(2s — 1)(s — 1)/s,0)

&

l 1 , otherwise ,
where ¢ is a negative constant.
Proof. Put a = k=r =1 and n = 2s — 1 in Theorem 2 and use (10). @
Finally, we derive the result of Hartley and David (1954).
Corollary 3. ForanyneN

n-—1

EX",,<—_—_—
T V2n-1

provided EX = 0 and EX? = 1 with equality iff

F(z) =

: 1/(n-1)
I+C] ’ IE(-C,C(YI—I))

. cn i

where ¢ = /2n —1/(n — 1).
Proof. Put k =n,r = s =1 and a =1 in Theorem 2 and use (10). @

Theorem 3. Let r,s,k,n € N be such that r <k, s —r < n —k and suppose
a > 1. Assume that the following symmetry condition holds:

(14) Fl)y'Q—t) " =-F'Q-t)1-t) "t

Then

1/2 {9
EXY. <{ EX3 1201 } : {1 Exgh—:r+l,2n—2a+l

(15) KR T ler-nGo) 2(2k - 2r + 1)(3p 2
1 E[F Y (Un-st12n-2041)F 7 (1 = Un—s41,2n-2041)]""" 1/2
’ (n—s+ 17200
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Proof. Since

BXE, = [ 0 -00 -0 e k(D)E - ol - gt

A -1 r—1 _ 4\a-T n -1 a=lak=riq _ j\n—k—-s+r
+/;F O ) k(k)[F O At ) dt

using (14), we get

1
Ex:nmj; F—l(‘!)fr'l(l £)* rk( ){[F l[t)]° 14k= ' t)n-t—.q..-

s [F—i(l - t)]a—l(l - t)k—rtn—k—a-f-r }’ dt.

Now applying (14) and the Cauchy-Schwartz inequality, we get

1/2
EX‘.“ < k( ){ j [F—l(t]]%?r‘-ﬂ(l )'Za Qrdt}

X {[ [F-—l{t}]lu—‘ltﬂ-—ir(l _t)Zn—Zk—21+2r dt
0

! -1 a-=1 -1 a=1,n-s n—s 11/2
- [P - g EieEt e -y “

which is equivalent to (15). @

It is easy to see that (14) implies EX,, =0 so one can exepct that (15) is more
precise than (6).
Let us write (15) in the following form

Exg,n { EX%,._I 281 11/2
kG T ler-nGo)!

2a-2 2a-2
(15') { EX“ —2r+1,2n-2a+1 1/ Esz —2r+41,2n-2s+1

@ —2r+ (G0 2\ -2r + (G0

E[F '(Un=s41,20-2041)F 71 (1 = Un—st1.20-25+1)]" "1 |1 1/2

(n—s+1)(p23%t LR

and compare it to the bound given in Theorem 2 of this paper. The bound (15') is
more precise than (6) because the following inequality holds (see Theorem 1)

2a—-2
l( EXok ars1,2n-2041

(2k - 2r + 1)(3:7731)

E[F YUnp-st1,2n-2041)F (1 - Un—c+l,2n—2l+l)]a_l)

(n—s+1)(*r20%

(EXk--r+l n— n+l)

S (k—r+ 12320

7 -
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Remark 3. If s = 2r — 1, then (14) is satisfied when F~(t) = —F~1(1-t), i.e.
the parent distribution is symmetric about 0. The bound which corresponds to this
case one can easy get from (15).

3. Inequalities for record statistics. Let X;, X;,... be i.i.d. random vari-
ables. The k-th record statistics }.-‘_El:} from the sequence X, X»,... are defined by

Y,Ek) = -¥L.{n)..{.;(n}+k—1 y = 0,1,2,... y k 2 1 y

where Ly(0) = 1, Li(n + 1) = min{j : Xiy(n)Lam+k-1 < Xjj+k-1} for n =
0,1,2,... (cf.Dziubdziela and Kopocinski (1976)).

Properties of the k-th record statistics were investigated by Resnick (1973), Dzi-
ubdziela and Kopocinski (1976), Grudzien (1979), Grudzier and Szynal (1983), Gajek
(1985) and others. Some characterizations of the geometric, exponential and other

distribution can be found in Srivastava (1978, 1979), Nagaraja (1978), Grudzien and
Szynal (1983) and Gajek and Gather (1991).

The following formula for the a-th moment of the k-th record statistic was proven
by Grudzien and Szynal (1983)

E(Y,E")) - %/;[F"(t)]"[—log(l —t)"(1—t)*dt.

Theorem 4.  Let r,s,k,n € N be such that r < k and s < n. Suppose
EY," =0 anda>1. Then

E(v)" (E(rE)n
g(k,n) = | g(2r - 1,29) |

2a-2 a-112

(2k=2r+1 (k=r+1) 1/2

E ( Y )) |E (y,,_, )
g(2k — 2r +1,2n — 2s) glk—r+1,n—23)

N\

(16)

where g(k,n) = k"*1/n!l,

Proof. Since EY." = 0, for every v € R
o o 1 i
E( Yn‘*’) -&( Yn‘*’) —4EY!" = / FY ()~ log(1 — )]°(1 — )~
\ \ 0
o {g(km){F"(t)}“'*[- log(1 = O ~*(1 ~ 0~ = 70(r,)

Applying the Cauchy-Schwartz inequality and minimizing with respect to 7 gives the
result. @
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Remark 4. In (16) the equality holds iff

F7Y(t)[- log(1 = t)}*(1 - )™
= c{g(k,n)[F7'()]° 7" [~ log(1 - )" (1 = )* " — 7oq(r, )} ,

for some c € R and all ¢t € (0,1), where

2 glkm)E(YETHY !

o g(rvs)g(k_r+1vn _3) .

Yo

One gets from Theorem 4 an improvement of the moment inequality for record
values.

Corollary 4. Assume EY,“) = 0. Then

o] 15

The equality holds iff F is the following inverse gamma distribution

s l/a]
F(z)=1 — exp [— (c—_%m) J .z '€ (—00,0/(28)!) 9
for any ¢ > 0.

Proof. Put k =r = a =1 and n = 2s in Theorem 4. The characterization
follows from Remark 2. B
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