LUBLIN-POLONIA

Clement FRAPPIER and Mohammed A. QAZI (Montréal)

Optimal Inequalities for the Coefficients of Polynomials of Small Degree

Abstract. Optimal inequalities of the form $\sum_{k=0}^{n} \varphi_{k}\left|a_{k}\right| \leq 1$ are obtained, where $p(z)=$ $\sum_{k=0}^{n} a_{k} z^{k}$ is an algebraic polynomial of degree $n \leq 4$, such that $|p(z)| \leq 1$ for $|z| \leq 1$. As an application, we give a refinement of the classical inequality of S.Bernstein : $\left|p^{\prime}(z)\right| \leq n$ for $|z| \leq 1$.

1. Introduction. We denote by \wp_{n} the class of algebraic polynomials of degree $\leq n$. Given $p \in \wp_{n}$, with $p(z)=\sum_{k=0}^{n} a_{k} z^{k}$, let $\|p\|=\max _{|z|=1}|p(z)|$. Several results relating the coefficients $a_{0}, a_{1}, \ldots, a_{n}$, to $\|p\|$, are known. A classical inequality of van der Corput and Visser [1] states that

$$
\begin{equation*}
2\left|a_{0}\left\|\left.a_{n}\left|+\sum_{k=0}^{n}\right| a_{k}\right|^{2} \leq\right\| p \|^{2}, \quad p \in \wp_{n},\right. \tag{1}
\end{equation*}
$$

which implies [8]

$$
\begin{equation*}
\left|a_{0}\right|+\left|a_{n}\right| \leq\|p\| . \tag{2}
\end{equation*}
$$

The inequality

$$
\begin{equation*}
\left|a_{0}\right|+\frac{1}{2}\left|a_{k}\right| \leq\|p\|, k \geq 1 \tag{3}
\end{equation*}
$$

follows from a more general inequality [7, Exercise 9, p.172]

$$
\begin{equation*}
\left|a_{0}\right|^{2}+\left|a_{k}\right| \leq 1, k \geq 1, \tag{4}
\end{equation*}
$$

where $f(z):=\sum_{k=0}^{\infty} a_{k} z^{k}$ is analytic in $|z| \leq 1$ and $|f(z)| \leq 1$ in that disk. It is known that the coefficient of $\left|a_{k}\right|$ in (3) cannot, in general, be replaced by a smaller number. The coefficient $1 / 2$ in the inequality [3, p.94]

$$
\begin{equation*}
\left.\left|a_{0}\right|+\frac{1}{2}\left(\left|a_{k}\right|+\left|a_{l}\right|\right) \right\rvert\, \leq\|p\| \tag{5}
\end{equation*}
$$

where $1 \leq k \leq l, l \geq n+1-k$, is a fortiori best possible. However, this coefficient may be improved if we take into account the degree of p. In this direction we mention
a striking result of Holland [6]: if $P(z)=1+b_{1} z+\cdots+b_{n} z^{n}$ is a polynomial of degree $\leq n$ for which $\operatorname{Re} P(z)>0$ when $|z|<1$ then

$$
\begin{equation*}
\left|b_{k}\right| \leq 2 \cos (\pi /(v+2)), \tag{6}
\end{equation*}
$$

where v is the largest integer $\leq(n / k)$. Applying (6) to the polynomial $P(z)=$ $\{\|p\|-p(z)\}\left\{\|p\|-a_{0}\right\}^{-1}$, where a_{0} may be supposed to be positive, we readily obtain

$$
\begin{equation*}
\left|a_{0}\right|+[2 \cos \pi /(v+2)]^{-1}\left|a_{k}\right| \leq\|p\|, k \geq 1, \tag{7}
\end{equation*}
$$

which is of course an improvement of (2) and (3). The equality in (6) is possible. See also [2].

The preceding inequalities lead us naturally to consider the general problem of finding an inequality of the form

$$
\begin{equation*}
\sum_{k=0}^{n} \varphi_{k}\left|a_{k}\right| \leq\|p\|, p \in \wp_{n} \tag{8}
\end{equation*}
$$

In this paper we solve completely this problem for polynomials of degree ≤ 4. Note that (8) may be applied to the polynomial $z^{n} p(1 / z) \in \wp_{n}$, whereby results the inequality

$$
\sum_{k=0}^{n} \varphi_{n-k}\left|a_{k}\right| \leq\|p\|, p \in \wp_{n}
$$

2. Statement of results. The problem is trivial for $n=1$ since, in that case, $\left|a_{0}\right|+\left|a_{1}\right|=\|p\|$. For polynomials of degree 2, 3 and 4 we shall prove the following results, which all contain as particular cases (for the considered values of n) the inequalities (5) and (7).

Theorem 1. If $p(z)=a_{0}+a_{1} z+a_{2} z^{2}$ then

$$
\begin{equation*}
\left|a_{0}\right|+x_{1}\left|a_{1}\right|+x_{2}\left|a_{2}\right| \leq\|p\| \tag{9}
\end{equation*}
$$

where $0 \leq x_{1} \leq 1 / \sqrt{2}$, and $0 \leq x_{2} \leq 1-2 x_{1}^{2}$. For any fixed x_{1} the value $x_{2}=1-2 x_{1}^{2}$ is best possible.

Remark. The attribute "best possible" is to be understood in the following sense: given any $\epsilon>0$, we can find a polynomial $p_{\epsilon}(z)=a_{0}(\epsilon)+a_{1}(\epsilon) z+a_{2}(\epsilon) z^{2}$ such that

$$
\left|a_{0}(\epsilon)\right|+x_{1}\left|a_{1}(\epsilon)\right|+\left(1-2 x_{1}^{2}+\epsilon\right)\left|a_{2}(\epsilon)\right|>\left\|p_{\epsilon}\right\| .
$$

A similar observation holds for Theorems 2 and 3.
Theorem 2. If $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$ then

$$
\begin{equation*}
\left|a_{0}\right|+x_{1}\left|a_{1}\right|+x_{2}\left|a_{2}\right|+x_{3}\left|a_{3}\right| \leq\|p\|, \tag{10}
\end{equation*}
$$

where $0 \leq x_{1} \leq(\sqrt{5}-1) / 2,0 \leq x_{2} \leq \sqrt{1-x_{1}}-x_{1}$ and $0 \leq x_{3} \leq\left(1-x_{1}-x_{1}^{2}-\right.$ $\left.2 x_{1} x_{2}-x_{2}^{2}\right)\left(1-x_{1}\right)^{-1}$. For any fixed x_{1} and x_{2} the value $x_{3}=\left(1-x_{1}-x_{1}^{2}-2 x_{1} x_{2}-\right.$ $\left.x_{2}^{2}\right)\left(1-x_{1}\right)^{-1}$ is best possible.

Theorem 3. If $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}$ then

$$
\begin{equation*}
\left|a_{0}\right|+x_{1}\left|a_{1}\right|+x_{2}\left|a_{2}\right|+x_{3}\left|a_{3}\right|+x_{4}\left|a_{4}\right| \leq\|p\|, \tag{11}
\end{equation*}
$$

where $0 \leq x_{1} \leq 1 / \sqrt{3}, 0 \leq x_{2} \leq \xi, 0 \leq x_{3} \leq \sqrt{1-2 x_{1}^{2}-x_{2}-2 x_{2}^{2}+2 x_{2}^{3}+4 x_{1}^{2} x_{2}^{2}}-$ $x_{1}-2 x_{1} x_{2}$ and $0 \leq x_{4} \leq\left(2 x_{2}^{3}-2 x_{2}^{2}-x_{2}-4 x_{1}^{2} x_{2}-4 x_{1} x_{2} x_{3}-3 x_{1}^{2}-2 x_{1} x_{3}-x_{3}^{2}+\right.$ 1) $\left(1-2 x_{1}^{2}-x_{2}\right)^{-1}$. Here ξ is the smallest positive root of the equation $2 x^{3}-2 x^{2}-$ $\left(1+4 x_{1}^{2}\right) x+\left(1-3 x_{1}^{2}\right)=0$. For any fixed x_{1}, x_{2} and x_{3} the value

$$
x_{4}=\left(2 x_{2}^{3}-2 x_{2}^{2}-x_{2}-4 x_{1}^{2} x_{2}-4 x_{1} x_{2} x_{3}-3 x_{1}^{2}-2 x_{1} x_{3}-x_{3}^{2}+1\right)\left(1-2 x_{1}^{2}-x_{2}\right)^{-1}
$$

is best possible.
3. The method of proof. Given two analytic functions,

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, g(z)=\sum_{k=0}^{\infty} b_{k} z^{k},|z|<1
$$

the function

$$
(f * g)(z)=\sum_{k=0}^{\infty} a_{k} b_{k} z^{k},|z|<1
$$

is said to be their Hadamard product. We denote by B_{n} the subclass of polynomials $Q \in \rho_{n}$ such that

$$
\begin{equation*}
\|p * Q\| \leq\|p\|, \text { for all } p \in \wp_{n} \tag{12}
\end{equation*}
$$

and by B_{n}^{0} the subclass of \wp_{n} consisting of polynomials Q with $Q(0)=1$. We have the following characterization of polynomials in B_{n}^{0}.

Lemma 1 [3, p.70]. The polynomial $Q(z)=\sum_{k=0}^{n} b_{k} z^{k}$, where $b_{0}=1$, belongs to B_{n}^{0} if and only if the matrix

$$
M\left(b_{0}, b_{1}, \ldots, b_{n}\right):=\left(\begin{array}{ccccc}
1 & b_{1} & b_{2} & \ldots & b_{n} \\
\bar{b}_{1} & 1 & b_{1} & \ldots & b_{n-1} \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
\bar{b}_{n} & \bar{b}_{n-1} & \bar{b}_{n-2} & \ldots & 1
\end{array}\right)
$$

is positive semidefinite.
The following result from linear algebra is well known.

Lemma 2 [5, Vol.1; p.337]. The hermitian matrix

$$
\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 m} \\
a_{21} & a_{22} & \ldots & a_{2 m} \\
\vdots & \vdots & \ldots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m m}
\end{array}\right), a_{i j}=\bar{a}_{j i}
$$

is positive definite if and only if all the leading principal minors

$$
\left|\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 r} \\
a_{21} & a_{22} & \ldots & a_{2 r} \\
\vdots & \vdots & \vdots & \vdots \\
a_{r 1} & a_{r 2} & \ldots & a_{r r}
\end{array}\right|, \quad 1 \leq r \leq m
$$

are positive.
We shall now illustrate, how Lemma 1 may be used to obtain optimal inequalities of the form (8), by giving an independant proof of (7). We may suppose $k=1$ since the general case is obtained by considering the polynomial

$$
\frac{1}{k} \sum_{j=1}^{k} p\left(z \omega^{j-1}\right)=a_{0}+a_{k} z^{k}+\cdots+a_{k v} z^{k v}, \omega=\exp (2 \pi i / k)
$$

Hence we must show that

$$
\left\|a_{0}+b_{1} a_{1} z\right\|=\left\|p(z) *\left(1+b_{1} z\right)\right\| \leq\|p\|, p \in \wp_{n}
$$

for $\left|b_{1}\right| \leq[2 \cos \pi /(n+2)]^{-1}$, and that $1+b_{1}^{*} z \notin B_{n}^{0}$ for some b_{1}^{0} with $\left|b_{1}^{*}\right|>$ $[2 \cos \pi /(n+2)]^{-1}$. So, we study the definiteness of the matrix $M\left(1, b_{1}, 0, \ldots, 0\right)$. The leading principal minor of order r,

$$
D_{r}:=\left|\begin{array}{cccccc}
\frac{1}{b_{1}} & b_{1} & 0 & \ldots & 0 & 0 \\
\vdots & 1 & b_{1} & \ldots & 0 & 0 \\
0 & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & \frac{1}{b_{1}} & b_{1} \\
0 & 0 & 0 & \ldots & b_{1} & 1
\end{array}\right|_{r \times r}
$$

satisfies the recurrence relation $D_{1}=1, D_{2}=1-\left|b_{1}\right|^{2}$, and $D_{r}=D_{r-1}-\left|b_{1}\right|^{2} D_{r-2}$, $3 \leq r \leq n+1$. It follows that

$$
D_{r}=\frac{1}{\sqrt{1-4\left|b_{1}\right|^{2}}}\left\{\left(\frac{1+\sqrt{1-4\left|b_{1}\right|^{2}}}{2}\right)^{r+1}-\left(\frac{1-\sqrt{1-4\left|b_{1}\right|^{2}}}{2}\right)^{r+1}\right\}, 1 \leq r \leq n+1
$$

Let $D_{r}:=h\left(\left|b_{1}\right|\right)$. The roots of $h(u)$ satisfy $\sqrt{1-4 u^{2}}=i \tan j \pi /(r+1), 1 \leq j \leq r$, i.e. $u^{2}=\left[4 \cos ^{2} j \pi /(r+1)\right]^{-1}$. Thus the leading principal minors $D_{r}, 1 \leq r \leq n+1$, are positive if $\left|b_{1}\right|<[2 \cos \pi /(r+1)]^{-1}$. Since $\cos \pi /(r+1) \leq \cos \pi /(n+2)$,
$1 \leq r \leq n+1$, we obtain that $1+b_{1} z \in B_{n}^{0}$ if $\left|b_{1}\right|<[2 \cos \pi /(n+2)]^{-1}$. Also, it is clear that $D_{n+1}<0$ for some b_{1}^{*} with $\left|b_{1}^{*}\right|>[2 \cos \pi /(n+2)]^{-1}$, which shows that $1+b_{1}^{*} z \notin B_{n}^{0}$. The value $\left|b_{1}\right|=[2 \cos \pi /(n+2)]^{-1}$ is, of course, a limiting case.
4. Proofs of the Theorems. An interesting point to note in the following proofs is that the largest values of $x_{1}, x_{2}, x_{3}, x_{4}$ are attained (for $n=2,3,4$) by evaluating the last principal minor, i.e. $\operatorname{det}\left(M\left(1, b_{1}, \ldots, b_{n}\right)\right)$. This is not necessarily the case for each $x_{1}, x_{2}, x_{3}, x_{4}$ inside the specified intervals. For example, let us find the best possible constant x_{2} such that $\left|a_{0}\right|+x_{2}\left|a_{2}\right| \leq\|p\|$, for all $p \in \wp_{3}$. The leading principal minors of $M\left(1,0, b_{2}, 0\right)$ are $1,1,1-\left|b_{1}\right|^{2}$ and $\operatorname{det}\left(M\left(1,0, b_{2}, 0\right)\right)=$ $\left(1-\left|b_{2}\right|^{2}\right)^{2} \geq 0$. We see that the restriction on $b_{2},\left|b_{2}\right|<1$ i.e. $0 \leq x_{2} \leq 1$, comes from the evaluation of the third leading principal minor.

Proof of Theorem 1. In view of Lemmas 1 and 2, we study the definiteness of the matrix $M\left(1, b_{1}, b_{2}\right)$. The three leading principal minors are

$$
1,1-\left|b_{1}\right|^{2} \text { and } 1-2\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}+2 \operatorname{Re}\left(b_{1}^{2} \bar{b}_{2}\right) .
$$

The first minor is positive, the second is positive if $\left|b_{1}\right|<1$ and the third is certainly positive if

$$
1-2\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}-2\left|b_{1}\right|^{2}\left|b_{2}\right|=\left(1+\left|b_{2}\right|\right)\left(1-\left|b_{2}\right|-2\left|b_{1}\right|^{2}\right)>0
$$

i.e. if $\left|b_{2}\right|<1-2\left|b_{1}\right|^{2}$, with $1-2\left|b_{1}\right|^{2}>0$. Also, given b_{1}^{*} with $\left|b_{1}^{*}\right|<1 / \sqrt{2}$, we can find a b_{2}^{*} with $\left|b_{2}^{*}\right|>1-2\left|b_{1}^{*}\right|^{2}$ such that $1-2\left|b_{1}^{*}\right|^{2}-\left|b_{2}^{*}\right|^{2}+2 \operatorname{Re}\left(\left(b_{1}^{*}\right)^{2} \vec{b}_{2}^{*}\right)<0$ and so $1+b_{1}^{*} z+b_{2}^{*} z^{2} \notin B_{2}^{0}$. Thus we conclude that

$$
\| p(z) *\left(1+b_{1} z+b_{2} z^{2}\|=\| a_{0}+a_{1} b_{1} z+a_{2} b_{2} z^{2}\|\leq\| p \|\right.
$$

if $\left|b_{2}\right| \leq 1-2\left|b_{1}\right|^{2}$, with $\left|b_{1}\right| \leq 1 / \sqrt{2}$, and that the value $1-2\left|b_{1}\right|^{2}$ is optimal for any given b_{1} with $\left|b_{1}\right| \leq 1 / \sqrt{2}$. This completes the proof of Theorem 1 .

Proof of Theorem 2. We study the definiteness of the matrix $M\left(1, b_{1}, b_{2}, b_{3}\right)$. The leading principal minors of order 1, 2 and 3 have been considered in the proof of Theorem 1. The principal minor of order 4 is

$$
\begin{gathered}
\operatorname{det}\left(M\left(1, b_{1}, b_{2}, b_{3}\right)\right)=1-3\left|b_{1}\right|^{2}+\left|b_{1}\right|^{4}-2 \operatorname{Re}\left(b_{1}^{3} \bar{b}_{3}\right) \\
-2\left|b_{2}\right|^{2}+4 \operatorname{Re}\left(b_{1}^{2} \bar{b}_{2}\right)+4 \operatorname{Re}\left(b_{1} b_{2} \bar{b}_{3}\right)+\left|b_{2}\right|^{4} \\
-2\left|b_{1}\right|^{2}\left|b_{2}\right|^{2}-2 \operatorname{Re}\left(b_{1} \bar{b}_{2}^{2} b_{3}\right)-\left|b_{3}\right|^{2}+\left|b_{1}\right|^{2}\left|b_{3}\right|^{2}
\end{gathered}
$$

As a function of $\arg b_{1}, \arg b_{2}, \arg b_{3}$, this determinant is minimal for $\arg b_{1}=$ $0, \arg b_{2}=\pi, \arg b_{3}=0$. Thus, it is certainly positive if

$$
\begin{aligned}
1 & -3\left|b_{1}\right|^{2}+\left|b_{1}\right|^{4}-2\left|b_{1}\right|^{3}\left|b_{3}\right|-2\left|b_{2}\right|^{2}-4\left|b_{1}\right|^{2}\left|b_{2}\right|-4\left|b_{1}\right|\left|b_{2}\right|\left|b_{3}\right|+\left|b_{2}\right|^{4} \\
& -2\left|b_{1}\right|^{2}\left|b_{2}\right|^{2}-2\left|b_{1}\right|\left|b_{2}\right|^{2}\left|b_{3}\right|-\left|b_{3}\right|^{2}+\left|b_{1}\right|^{2}\left|b_{3}\right|^{2}>0
\end{aligned}
$$

The left-hand member is a quadratic function of $\left|b_{3}\right|$ whose discriminant is $4\left(1-2\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}-2\left|b_{1}\right|^{2}\left|b_{2}\right|\right)^{2}$. Taking this observation into account, we readily find that $\operatorname{det}\left(M\left(1,, b_{1}, b_{2}, b_{3}\right)\right)>0$ if

$$
\left|b_{3}\right|<\left(1-\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}-\left|b_{1}\right|-2\left|b_{1}\right|\left|b_{2}\right|\right)\left(1-\left|b_{1}\right|\right)^{-1}
$$

with $1-\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}-\left|b_{1}\right|-2\left|b_{1}\right|\left|b_{2}\right|>0$, i.e. $\left|b_{2}\right|<\sqrt{1-\left|b_{1}\right|}-\left|b_{1}\right|$, with $\sqrt{1-\left|b_{1}\right|}-$ $\left|b_{1}\right|>0$, i.e. $\left|b_{1}\right|<(\sqrt{5}-1) / 2$.

We observe now that $(\sqrt{5}-1) / 2<1 / \sqrt{2}$, and $\sqrt{1-\left|b_{1}\right|}-\left|b_{1}\right| \leq 1-2\left|b_{1}\right|^{2}$ for $\left|b_{1}\right| \leq \sqrt{3} / 2$. Referring to the proof of Theorem 1 , this means that the conditions on $\left|b_{1}\right|,\left|b_{2}\right|$ are less rectrictive if we examine the sign of the principal minors of order 2 and 3. This completes the proof of the first part of Theorem 2. It remains to prove that the value $\left(1-\left|b_{1}\right|^{2}-\left|b_{2}\right|^{2}-\left|b_{1}\right|-2\left|b_{1}\right|\left|b_{2}\right|\right)\left(1-\left|b_{1}\right|\right)^{-1}$, is best possible for any $\left|b_{1}\right|,\left|b_{2}\right|$ in the specified interval. But our reasoning shows clearly that $\operatorname{det}\left(M\left(1, b_{1}^{*}, b_{2}^{*}, b_{3}^{*}\right)\right)$ is negative for some

$$
\left|b_{3}^{*}\right|>\left(1-\left|b_{1}^{*}\right|^{2}-\left|b_{2}^{*}\right|^{2}-\left|b_{1}^{*}\right|-2\left|b_{1}^{*}\right|\left|b_{2}^{*}\right|\right)\left(1-\left|b_{1}^{*}\right|\right)^{-1},
$$

i.e. $1+b_{1}^{*} z+b_{2}^{*} z^{2}+b_{3}^{*} z^{3} \notin B_{3}^{0}$.

Proof of Theorem 3. We study the definiteness of the matrix $M\left(1, b_{1}, b_{2}, b_{3}, b_{4}\right)$. The leading principal minor of order 5 is equal to (13)

$$
\begin{aligned}
& \operatorname{det}\left(M\left(1, b_{1}, b_{2}, b_{3}, b_{4}\right)\right)=1-4 a^{2}+3 a^{4}-3 b^{2}-2 a^{2} b^{2} \\
& \quad+2 b^{4}-2 c^{2}+2 b^{2} c^{2}+c^{4}-d^{2}+2 a^{2} d^{2}+b^{2} d^{2} \\
& \quad+2 a^{4} d \cos (w-4 x)+\left(2 b^{2} d+4 a^{2} b^{2} d-2 b^{4} d\right) \cos (w-2 y) \\
& \quad-6 a^{2} b d \cos (w-2 x-y)+\left(6 a^{2} b-4 a^{4} b+2 a^{2} b^{3}+4 a^{2} b c^{2}\right. \\
& \left.\quad-2 a^{2} b d^{2}\right) \cos (2 x-y)+2 a^{2} c^{2} d \cos (w+2 x-2 z) \\
& \quad-2 b c^{2} d \cos (w+y-2 z)+2 b^{3} c^{2} \cos (3 y-2 z)+(4 a c d \\
& \left.\quad-4 a^{3} c d+4 a b^{2} c d\right) \cos (w-x-z)-4 a^{3} c \cos (3 x-z) \\
& \quad-4 a b c d \cos (w+x-y-z)+\left(8 a b c+4 a^{3} b c-4 a b^{3} c-4 a b c^{3}\right) \cos (x+y-z) \\
& \quad-8 a b^{2} c \cos (x-2 y+z)
\end{aligned}
$$

where $b_{1}=a \exp i x, b_{2}=b \exp i y, b_{3}=c \exp i z, b_{4}=d \exp i w, 0<a, b, c, d<1$. The minimal value of (13) is clearly attained for $x=\arg b_{1}=0, y=\arg b_{2}=\pi, z=$ $\arg b_{3}=0$, and $w=\arg b_{4}=\pi$. Substituting these values in (13) we obtain a quadratic expression in $d=\left|b_{4}\right|$ whose relevant root is

$$
r:=\left(1-3 a^{2}-b-4 a^{2} b-2 b^{2}+2 b^{3}-2 a c-4 a b c-c^{2}\right)\left(1-2 a^{2}-b\right)^{-1}
$$

Referring to the proof of Theorem 2, where it is proved that $b<\sqrt{1-a}-a$ for $0 \leq a<$ $(\sqrt{5}-1) / 2$, we see that $1-2 a^{2}-b>0$ for $0 \leq a<\sqrt{3} / 2$, with $(\sqrt{5}-1) / 2<\sqrt{3} / 2$. Thus, the root r is positive if its numerator is positive. This numerator is a polynomial in c of degree 2 whose positive root is $s:=\sqrt{\left(1-2 a^{2}-b\right)\left(1-2 b^{2}\right)}-a-2 a b$ if $F(b):=$ $2 b^{3}-2 b^{2}-\left(1+4 a^{2}\right) b+\left(1-3 a^{2}\right)>0$. Since $F(0)=1-3 a^{2}>0$ for $0<a<1 / \sqrt{3}$, and $F(1)=-7 a^{2}<0$, we see that $F(b)$ has a root lying in $(0,1)$ if $0<a<1 / \sqrt{3}$. Moreover, we observe that (13) is negative for some $d>r$ if a, b, c satisfy the conditions $0<a<1 / \sqrt{3}, F(b)>0$ and $0<c<\sqrt{\left(1-2 a^{2} b\right)\left(1-2 b^{2}\right)}-a-2 a b$. Finally, we prove that these conditions are more restrictive than the corresponding restrictions obtained by considering the sign of the leading principal minors of order ≤ 4. Referring again to the proof of Theorem 2, it is sufficient to show that

$$
\begin{equation*}
F(\sqrt{1-a}-a)<0 \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
s<\left(1-a^{2}-b^{2}-a-2 a b\right)(1-a)^{-1} \tag{15}
\end{equation*}
$$

for $0<a<1 / \sqrt{3}<(\sqrt{5}-1) / 2$. The inequality (14) holds since the smallest positive root of the equation $F(\sqrt{1-x}-x)=0$ is $x=0,8019 \ldots>1 / \sqrt{3}$. The inequality (15) is readily seen to be equivalent to

$$
\begin{aligned}
G(a, b):= & -2 a+3 a^{2}+4 a^{3}-6 a^{4}-b+2 a b+3 a^{2} b-8 a^{4} b+4 a b^{2} \\
& -2 a^{2} b^{2}-8 a^{3} b^{2}+2 b^{3}-4 a b^{3}-2 a^{2} b^{3}-b^{4}<0
\end{aligned}
$$

But

$$
G(a, b)=\left(-1+2 a^{2}+b\right)\left(2 a-3 a^{2}+b-4 a^{2} b+b^{2}-4 a b^{2}-b^{3}\right)
$$

where it has been observed before that (the denominator of r) i.e. $-1+2 a^{2}+b<0$. Let $g(b):=2 a-3 a^{2}+b-4 a^{2} b+b^{2}-4 a b^{2}-b^{3}$. We have $g^{\prime}(b)=0$ if only and only if $b=1-2 a>0($ or $b=-(1-2 a) / 3<0)$ with $1-2 a>\sqrt{1-a}-a$. Thus, $g(b)$ is increasing in $0<b<\sqrt{1-a}-a$. Since $\sqrt{1-a}-a$ is greater than the smallest positive root of $F(b)$ by (14), we conclude that $g(b) \geq g(0)=2 a-3 a^{2}>0,0<a<2 / 3$. This completes the proof of Theorem 3.

Remark. In the limiting case $a=0, b=1$, both the numerator and denominator of the root r are zero. In that case our reasoning fails to give the corresponding inequality, namely $\left|a_{0}\right|+\left|a_{2}\right|+\left|a_{4}\right| \leq\|p\|, p \in \wp_{4}$.
5. An application to \wp_{n}. Despite the lack of generality of our results, we wish to point out that they can be used to obtain other inequalities valid over all the class φ_{n}. In order to illustrate that, we need the following interpolation formula, which follows from the residue theorem applied to the integral

$$
\frac{1}{2 \pi i} \oint_{|w|=\rho} \frac{p(w) d w}{(w-z)^{2} w\left(w^{n-1}-z^{n-1} e^{i \gamma}\right)}, \quad \text { where } \rho \rightarrow \infty
$$

Lemma 3. For all $p \in \rho_{n}, n \geq 2$, and $\gamma \in \mathbb{R}$ we have

$$
\begin{align*}
a_{0} & +\left(n p(z)-z p^{\prime}(z)-2 a_{0}\right) \exp i \gamma+\left(z p^{\prime}(z)-p(z)+a_{0}\right) \exp 2 i \gamma \\
& \equiv \exp i \gamma /(n-1) \sum_{k=1}^{n-1}\left\{\exp [-(2 k \pi+\gamma) i /(n-1)]\left\{\sin ^{2}(2 k \pi+\gamma) / 2\right)\right\} \\
& \left.\times\left\{\sin ^{2}(2 k \pi+\gamma) / 2(n-1)\right\}^{-1} p(z \exp [(2 k \pi+\gamma) i /(n-1)])\right\} \tag{16}
\end{align*}
$$

It follows from (16) that the polynomial

$$
Q(w)=a_{0}+\left(n p(z)-z p^{\prime}(z)-2 a_{0}\right) w+\left(z p^{\prime}(z)-p(z)+a_{0}\right) w^{2}
$$

is bounded by $(n-1)\|p\|$ for $|w| \leq 1,|z| \leq 1$. Applying Theorem 1 to $Q(w)$, with an obvious change of notation, we obtain the following result.

Theorem 1'. Let $p \in \wp_{n}, n \geq 2$, and $0 \leq x \leq 1 / \sqrt{2}$. We have, for $|z| \leq 1$,

$$
\begin{equation*}
\left|a_{0}\right|+x\left|n p(z)-z p^{\prime}(z)-2 a_{0}\right|+\left(1-2 x^{2}\right)\left|z p^{\prime}(z)-p(z)+a_{0}\right| \leq(n-1)\|p\| . \tag{17}
\end{equation*}
$$

It is interesting to observe that (17), when applied to $p(z)=a_{0}+a_{1} z+a_{2} z^{2} \in \wp_{2}$, gives (9).For $x=0$, (17) gives the known inequality [$3 ; \mathrm{p} .93$]

$$
\begin{equation*}
\left|a_{0}\right|+\left|z p^{\prime}(z)-p(z)+a_{0}\right| \leq(n-1)\|p\|, n \geq 2 \tag{18}
\end{equation*}
$$

which is a refinement of the classical inequality $\left|p^{\prime}(z)\right| \leq n\|p\|, p \in \wp_{n},|z| \leq 1$.
A great number of inequalities of type (17) may be obtained from Theorems 1,2 and 3. Another example is deduced from Theorem 2 and the interpolation formula [4; Lemma 1]

$$
\begin{align*}
a_{0} & +\left((n-1) p(z)-z p^{\prime}(z)+a_{n} z^{n}-2 a_{0}\right) \exp i \gamma \\
& +\left(z p^{\prime}(z)-p(z)-2 a_{n} z^{n}+a_{0}\right) \exp 2 i \gamma+a_{n} z^{n} \exp 3 i \gamma \\
& \equiv \exp i \gamma /(n-2) \sum_{k=1}^{n-2}\left\{\exp [-(2 k \pi+\gamma) i /(n-2)]\left\{\sin ^{2}(2 k \pi+\gamma) / 2\right)\right\} \\
& \left.\times\left\{\sin ^{2}(2 k \pi+\gamma) / 2(n-2)\right\}^{-1} p(z \exp [(2 k \pi+\gamma) i /(n-2)])\right\} . \tag{19}
\end{align*}
$$

where $p \in \wp_{n}, n \geq 3$.
Theorem 2'. Let $p \in \wp_{n}, n \geq 3$, and x_{1}, x_{2}, x_{3} as in Theorem 2. We have, for $|z| \leq 1$,

$$
\begin{align*}
& \left|a_{0}\right|+x_{1}\left|(n-1) p(z)-z p^{\prime}(z)+a_{n} z^{n}-2 a_{0}\right| \\
& \quad+x_{2}\left|z p^{\prime}(z)-p(z)-2 a_{n} z^{n}+a_{0}\right|+x_{3}\left|a_{n} z^{n}\right| \leq(n-2)\|p\| \tag{20}
\end{align*}
$$

The inequality (20), when applied to $p(z)=a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3} \in \wp_{3}$, gives (10).

REFERENCES

[1] Corput, J.G., van der and C. Visser, Inequalities concerning polynomials and trigonometric polynomials,Nederl.Akad.Wetensch. Proc. 49, 383-392 = Indagationes Math. 8 (1946), 238247.
[2] Egerváry, E.V. and O.Szász, Einige Extremalprobleme im Bereiche der trigonometrischen Polynome, Math.Z. 27 (1928), 641-652.
[3] Frappier, c., Q.I. Rahmanand S. Ruscheweyh, New inequalities for polynomials, Trans. Amer. Math. Soc. 288(1) (1985), 69-99.
[4] Frappier, C., Q.I. Rahman and S. Ruscheweyh, Inequalities for polynomials with two equal coefficients, J. of Approx. Theory 44(1) (1985), 73-81.
[5] Gantmacher, F.R., The theory of matrices, Chelsea, New York 1959.
[6] Holland, F., Some extremal problems for polynomials with positive real part, Bull. London Math. Soc. 5 (1973), 54-58.
[7] Nehari, Z., Conformal Mapping, Mc Graw-Hill, New York 1952.
[8] Visser, C., A simple proof of certain inequalities concerning polynomials, Nederl. Akad. Wetensch. Proc. 47, 276 - 281 = Indagationes Math. 7 (1945), 81-86.

> Authors' address:
> Département de Mathématiques Appliquées
> École Polytechnique de Montréal
> Campus de l'Université de Montréal C.P.6079, Succursale "centre - ville" Montréal, H3C 3A7, Canads
(received October 26, 1993)

