ANNALES
UNIVERSITATIS MARIAE CURIE-SKLODOWSKA
LUBLIN-POLONIA

VOL. XLVIII, 11 SECTIO A 1994

Maciej SKWARCZYNSKI (Warszawa)

The Bergman Function, Biholomorphic Invariants
and the Laplace Transform

Abstract. In this article the author attempts to present some trends in
holomorphic geometry developed during the period 1970-1990.

Contents

Preliminary remarks
Bergman spaces and evaluation functionals
The invariant distance and Lu Qi-Keng Domains
Representative coordinates and biholomorphic equivalence
More on representative coordinates
Invariant distance and Kobayashi completeness conjecture
The ideal boundary
Alternating projections and invariant angles

9. Genchev transforms. Multipliers for endogeneous operators
10. Interpolation in Bergman Spaces
11. Stability and mean square approximation

12. Weighted Bergman space. Somne Physical interpretations
References

Q0 =) O o 4L D 1=

1. Preliminary remarks

The pioneering investigations by Stefan Bergman (1895-1977)
have affected, inspired and reshaped a vast part of complex analysis.
We find it justified and convenient to refer to this area of research
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as "holomorphic geometry”. While the object of the study is quite
classical (biholomorphic mappings and their invariants), the methods
employed are more recent and as a rule are borrowed from other,more
special fields of analysis. This theory originated in 1921 during a
seminar conducted in Berlin by E. Schmidt (among participants there
were S. Bergman and S. Bochner). We now learn from {SHF 1] that
Bergman misunderstood the task and investigated the orthogonal
development not in the real interval (as was required of him) but in
a complex domain D C C. As a result he was led to the kernel
function Kp(z.t), (z,t) € D x D which became a starting point
of further research and is now known as the Bergman function of a
domain D.

The fundamental ideas of the Bergman theory extend easily to
several complex variables. This fortunate fact played an important
role during the pioneering period of multidimensional function theory.
It soon turned out that in almost every other aspect the multidimen-
sional theory is radically different from the one-dimensional case.

The ideas of S. Bergman have stimulated many areas of analysis.
In functional analysis one should mention the abstract approach of
[ARN] and [MES]. In classical potential theory there is an important
relation with the Green function Gp(z,t), see [BS]*. Differential
geometers became interested in properties of the Bergman metric
tensor [KOB 1], [LI]. Some function theoretic aspects were devel-
oped in [BRM 1]. For an extensive bibliography of the subject until
1970 the reader is referred to the Bergman monograph [BE 1] (sec-
ond edition). His methods (like representa tive coordinates, doubly
orthogonal systems, comparison domains) still await full exploitation.

In the present article I attempt to report some of the progress
in holomorphic geometry which took place during the period 1970-
1990. There is no serious claim to completeness or objectivity and
the reader is strongly urged to consult other surveys, such as [DIE],
[HI), [SHA], [SAI]. Here we try in the first place to present the results
which have simple formulation and elementary proofs. In principle
Wwe restrict our attention to functional Hilbert spaces of the form
L*H(D,u) in which the inner product is defined by integration over
the domain D C CV and du/dm is a continuous positive function.
Such "modera te generalization” is sufficient to include Fock-type
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spaces L2H(CN,u) which brings us to the point of contact with
interesting physical interpretations. We are less interested in abstract
theories [ARN], [HOF] in which holomorphicity and biholomorphic
invariants do not play a dominant role. We are particularly interested
in the interplay of holomorphic structure with the metric structure.
To a large extent the importance and the appeal of complex analysis
is due to its relation with Fourier analysis. ”Going into complex
domain permits to extend Fourier analysis beyond its normal range”,

see [MAC, p. 309].

2. Bergman spaces and evaluation functionals

The term ”Bergman space” (without precise definition) has been
circulating since 1970 mainly in papers on functional analysis. In
the present article we shall restrict its use to the space L2H(D)
extensively studied by S. Bergman. Our notation is similar to that of
E. Hille [HI 2], who writes L2H(D). The Bergman space consists of
all functions which are holomorphic and Lebesgue square integrable
in a domain D C CV. It is a closed subspace of L?(D) , hence
a separable Hilbért space. For simply connected plane domains this
space was studied already in 1914 by L. Bieberbach [BIE].

Slightly more general than L2H(D) is the weighted Bergman
space L2H(D, ¢) , obtained by replacing the Lebesgue measure m
by a Borel measure g with ¢ := du/dm continuous and positive.
As an example we mention the Fock space F,(CV), (a > 0) ob-
tained when D = CV, ¢(z) = (a/7)" exp(—az?). It has interesting
interpre- tations in quantum physics, with parameter a playing a
role similar to the Planck constant. See [JPR]* p.48 and [KS]*. Some
of the aspects of Bergman theory can be presented quite effectively in
an abstract setting as done in [ARN], [MES]. In such axiomatic ap-
proach the Bergman function is replaced by the reproducing kernel in
an appropriate Hilbert space. Usually the corresponding inner prod-
uct is induced from L2?(D) (the Bergman kernel), or from L2(8D)
(the Szego kernel). Further generalizations involve more general Ba-
nach spaces of analytic functions in a domain D C CV. Usually
the corresponding norm is induced from LP(D) (e.g. the case of
Dzhrbashyan spaces, see [DZH 1, 2]) or from L?(8D) (e.g. the case
of Hardy spaces HP(D) , see [HOF], [DUR])).
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With the general situation described we now proceed to the holo-
morphic geometry proper. For t € D and a polydisc P(t;ry,...,rq)
contained in D one proves an elementary estimate

@1) 1P = (volP) [ f()F ) dm(z) < I
Jp ™ (f'l,...,!"'ﬂ)

which implies continuity of the evaluation functional x?. Moreover,
(1) shows that any norm convergent sequence fy € L?H(D) is
locally uniformly convergent to the same limit.

Nontriviality of the Bergman function. The Bergrhan func-
tion for an arbitrary domain D C CV is defined by the following
formula , see [SKW 3], [SHA]

(2.2) Kp(z,t) :=<x1,x:>, (z,t) € D x D.

Here x. € L2H(D) represents x¥. Since Kp(z,t) is the value
of x, at z € D, it follows that Kp is holomorphic in n variables
z=(21,...,25). Since

(2.3) Ko(z,t) = Kp(t, 2)

it follows that Kp is antiholomorphic in n variables t = (t,...,t,).
By Hartogs theorem on separate holomorphicity Kp is a holomor-
Phic (hence continuous) function of 2n variables (z,%). As a conse-
quence Kp(z,z), z € D, is a continuous function.

The original definition of Kp was slightly less general. It was
formulated under the assumption that L2H(D) # {0} , which means
Precisely that Kp does not vanish identically on D x D. Let
hm, m = 1,2,... , be a complete orthonormal system in L?H(D).
For a fixed t € D the Fourier series for x, with coefficients
<Xt,hm>= hm(t) converges in L2H(D) , hence locally uniformly
in D. Therefore Kp(z,t) can be defined by apointwise convergent
Series

(2.4) Kp(z,t) = f: h(2)hm(®) , (z,t) €D x D .
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This is the original.definition given by S. Bergman. Several re-

marks are useful
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Formula (2.4) shows that its right side does not depend on the
choice of a complete orthonormal system in L2H(D).

One proves easily that the series (2.4) converges locally uniformly
in D x D. Indeed, by the Dini theorem the convergence is locally
uniform on the "diagonal” 2z = t. The conclusion follows now
from the inequality

(2.5)

k+s k+s 1/2 s k+s 1/2
> bn(@im@|< (L @) (3 b))
m=k m=k m=k

In general the definition (2.4) is not "constructive” . For n > 1
the theory of mean square approximation by holomorphic func-
tions is still in infancy, and we do not know how to prove that a
given orthogonal system is complete in L2H(D). (Note however
that for particular case of n- circular domain D all square inte-
grable monomials square integrable form a complete orthogonal
system in L2H(D) , see [SKW 6]).

For some "favorable” domains D one may succeed to sum up the
series (2.4) and obtain an explicit formula representing Kp(z,t)
in a closed form. One of the most impressive computations is
due to Zinoviev [ZIN 1]. For D C CN given by D = {|z;|*/?* +
«++ 4 |2a|?/P» < 1} where p; € N he proved that

(2.6)

a" !
—_— n _1
Kz)(z,t)—.(7r P1,-+-1Pn) aql,...,aQnZ

1—v; —---—va

where ¢ := (z1t1,...,24ts) and each v; ranges over all roots of
p;—th degree of ¢; = z;f;,. (One shows that the expression to be
differentiated is actually a rational function of ¢;, j =1,2,...,n.

Note that according to (2.2)

@1) - f@O)= xS =<fix>= /D £(2)Kp(z 1) dm(z)
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for every t € D and every f € L?H(D). This is known as "the re-
producing property” of the Bergman function. Surprisingly perhaps,
one can generalize (2.7) to an arbitrary functional ®# € L2H(D),
represented by ® € L2H (D). The element ® can be recovered from
Kp , namely

(28)  &(z) =<®, x.>= S#y, = B#Kp(-,2) = ¥*Kp(z, - )

For example, the evaluation at t of the partial derivative with
respect to the variable z,, is represented by the function &(z) :=
(8/3tm)Kp(z,t) and we see that the latter is square integrable in
D. Moreover, the reproducing property plays a role in the study of
bounded linear operators A,B : L2H(D) — L?H(D). Introducing
A'y, one obtains easily the following anologue of the usual matrix
multiplication formula, see [GUI], [BER 1]

(2.9) <ABX:) Xw>= J/ < AXu, Xw >< Bxz, Xu > dm(u)
D

We shall see that an important role in holomorphic geometry is
played by the mapping x : D — L*H(D) where x(t) := x:. For
n=1 we know that x vanishes identically (i.e. dim L2H(D) =0 )
if and only if C\ D is polar. See [CAR], [SKW 8]. If this is the
case, one can show [SKW 8] that the family {x(t), t € D} is linearly
independent. Moreover, the evaluations of all derivatives at all points
of D are linearly independent, as was lateron shown in [CHO 1]. As
a consequence for a plane domain (n=1) dimL?H(D) is never a finite
positive number.

For n > 1 the problem is more difficult and the situation is more
complicated. First, we are unable so far to characterize domains with
dimL?H(D) = 0. Moreover, there exist (unbounded) domains for
which x vanishes at some points without vanishing identically [SKW
6]. Indeed, let us assume n = 2 and consider D := {|z1| < 1, |22 <
|z1]=1}. All square integrable monomials (i.e. ;"' - z3'%, m; > m2)
give rise to a complete orthogonal system in L?H (D). After normal-
ization all functions in the orthonormal system vanish on the plane
z; = 0 and so does x. Using the above idea Wiegerinck [WIE] was
able to show (for n > 1) the existence of non-trivial, finite dimen-
sional Bergman spaces. The same idea was applied by H. Boas in his
counterexample to the Lu Qi-keng conjecture, see [BSH].
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Transformation rule under biholomorphic mappings. In
holomorphic geometry problems and methods are invariant under
biholomorphic transformation ¢ : D — G and the corresponding
unitary mapping (canonical isometry) U, : L2H(G) — L*H(D)
given by

(2:10) (Ugh)(2) : h(g(2))a/z

where 0g/0z denotes the complex Jacobian of g. The proof that
U, preserves inner product uses the well known identity J,(z) =
|@g/8z|? , which in turn is a consequence of Cauchy-Riemann equa-
tions. We see here a natural and deep relation of the notion of the
Bergman space with classical complex analysis and in particular with
the theory of biholomorphic mappings. On the other hand (2.10) is
relevant to a fundamental idea in functional analysis: a finite dimen-
sional non-linear problem (biholomorphic mapping) corresponds to
a linear infinitely dimensional problem (canonical isometry).

Applying (2.10) to a complete orthonormal system in L2H (G)
one obtains immediately the following rule of transformation for the
Bergman function

(211) . Kplz:t) = Ko(g(2), 9(t))(8e/02)(Bq70).

Thus the Bergman function for D is known if it is known for some
biholomorphic image of D. Take for the particular case n =1, g¢:
D — A - the Riemann mapping function onto the unit disc with
g(t) =0, ¢'(t) > 0. Immediate calculations show that Ka(w,s) =
7~1(1 — w3)~2. Hence (2.11) yields

(2.12) TKp(z,t) =g¢'(2)¢'(t) -

Computing g¢'(t) and g¢'(z) we find the Riemann mapping
function of D in terms of its Bergman function

£5 & I}\'D(Z,i) - " %
(2.13) g(z)—/t S dz = ‘/—Ko(t,t)/t Kp(z,t)dz .

In terms of evaluation functionals formula (2.10) can be rewritten
as

(2.14) x°(t) = (89/0t)(Uyx(s)) , s =g(t) .
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Hence we see that y2(t), t € D are linearly independent iff
x€(s), s € G, are linearly independent. For a bounded G the lat-
ter condition is obviously satisfied since the Lagrange interpolation
polynomials belong to L?H(G). In a particular case D = G an-
other simple consequence of (2.14) was observed by A. Odzijewicz.
He noticed that for each fixed point ¢t = g(t) € D the element
xP(t) € L*H(D) is an eigenfunction for the unitary operator U,.

Note that with any sequence of different points t, € D, n =
1,2,... one can associate corresponding elements

(2.15) xP(ta) € L*H(D), n=1,2,... .

We recall from [SIN 1, 2] three types of independence of elements
(2.15), which can be considered as conditions on the sequence t,, :

(1) algebraic independence,
(i) minimality (no elements belong to the linear closure of all re-
maining elements),
(iii) basic sequence property (the sequence x2(t,) defines a basis

in the linear closure of all elements (2.15)).

It follows from (2.14) follows that each of these conditions is
Invariant under biholomophic mappings. Obviously (iii) = (ii) = (i).
In a bounded domain (i) is always satisfied but the characterization
of sequences satisfying (ii) or (iii) is essentially an open problem.
(Compare remarks in [WAL 1] chapter 10.)

Some general properties of the Bergman function. H.
Bremermann [BRM 1) found an expression for Kpy(z,w; t,s) in a
Product domain H = D x G . We know that Kp(-,-;t,s) can be
described as the unique element in L2H(D) with reproducing prop-
erty . For t € D, s € G, consider the product Kp(-, t)Kg(-, s) .
belongs to L?H (D X G) Its reproducing property at (t,s) € D X G
follows easily from Fuhini theorem in view of the fact that for ev-
ery function f € L?H(D x G) and every w € G the function
2+ f(-,w) belongs to L?H(D). To see the latter one considers an
estimate
(2.16)

(6w, w z,u)[? dm(u)dm(z 0o .
J, Ve dm(z) < Kotw,w) [ [ 17 dm(uyam() <
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This proves the following theorem of H.Bremermann
(2.17) Kpxc((z,w),(t,8)) = Kp(z,t)Kg(w,s) .

E. Ligocka [LIG 1] proved the converse of (17) in the following
form. Assume that H C C**™ is a domain of existence of a real
analytic function Ky((2,w),(2,w)) = ®(z)®(w) . Then H is a prod-
uct domain D x G and ®¥(z), ®(w) are proportional to Kp(z,2)
and Kg(w,w), respectively.

As another instance of the general principle let us consider a
plane domain D bounded by finitely many analytic curves. Let
Gp(z.t) be the Green function with a pole at ¢t € D. It is harmonic
on (cl D) x D by Schwarz symmetry principle. A more detailed
analysis [BS]* shows that

(2.18) Kolxt) = —%fg Go(z,1) .

(The right-hand side singularity is removed in the process of
double differentiation). A. Suszczynski [SUS] proved that (2.18) re-
mains valid for an arbitrary plane domain D with non—polar com-
plement. The proof is based on two ideas: 1° both sides transform
in the same way under biholomorphic mappings, hence (2.18) holds
for an arbitrary domain D,, bounded by a finite number of Jordan
curves, 2° identity (2.18) for D, the union of an increasing sequence
of domains D,,, m = 1,2,... , follows by passing to the limit in
the corresponding identity for D,,. (The limit on the right exists
by standard arguments from potential theory, and the limit on the
left exists in view of a general theorem due to I. Ramadanov [RAM],
[SKW 2,11], see below.) The Schiffer-Suszczynski identity so far was
not generalized to N > 1, so we can still search for multidimensional
complex potential theory adequate for this purpose.

3. The invariant distance and Lu Qi-Keng Domains

Before going into details let us recall a general construction re-
lated to a separable Hilbert space H. The projective Hilbert space
P(H) consists of all one-dimensional subspaces of H. Equivalently,
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P(H) consists of proportionality classes in H \ {0} , two non-zero
vectors f,g € H being proportional iff there exists ¢ € C\ {0}
such that f = cg. For [f], [h)] € P(H) one considers the distance
p([f],[h]) in H between circles SN [f], SN[h] on the unit sphere
S, see [KOB 1]. One verifies that P(H) becomes a metric space
with the distance p. For f, € S and h € S it is easy to see that
lim{fn] = [h] iff there exist complex unimodular constants c, such
that cnfn convergesin H to k. In particular the projection f + [f]
is continuous. Also it is easy to see that P(H) is a complete metric
space. Indeed, consider a sequence f, € S suchthat [f,] is Cauchy
in P(H) . We need to show that it has a convergent subsequence
and (by a remark above) it suffices to show that f, has a conver-
gent subsequence. Since H is complete, the latter follows if for every
€ > 0 there is a finite 2¢-net for {fi, f2,...}. Let m be such that
P([fn), [fm]) < € for all n > m. Then the desired 2c-net consists of
elements f;, j = 1,2,...,m and o R i (sis
chosen to satisfy se > 2m).

We return now to a bounded domain D C CV and consider
H = L?H(D). The evaluations in D (and in biholomorphic image
G = g(D)) are linearly independent. Therefore [xP(t)], t€ D ,is a
one-to—one mapping into P(H). As a consequence the distance p
in P(H) induces a distance in D , see [KOB 1], [SKW 3],
[BE 3] (2-nd ed.), [JP 2]*. Note that for s = g(t) we can introduce
normalized evaluations kZ(t) := xP@)/1IxP@)|l and kS(s) :=
x%(3)/|1x%(s)||- In view of (14) the isometry U, maps the circle
28 := {e'*k%(s) : a € R} onto the circle ZP := {'PkD(t): B €
R}. It follows that the quantity

(3.1) pp(z,t) = 271 2dist(ZP,ZP), z,teD

1s invariant unter biholomorphic transformations. It is a pleasent
surprize [SKW 3] that the invariant distance pp admits a simple
expression in terms of the Bergman function. In fact, the normalizing
constant in (19) was chosen to simplify the expression p, for the
unit disc D = A. One finds that

T Kp(z,t) Kp(t,2) ‘/2]’/’
oy s s

(1- Hg"‘(z,:))m .
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A useful feature of pp is that it is determined by a symmetric quo-
tient Hp := (1—p%)? , a nonnegative function which is R-analytic on
D x D. This is important because R-analytic identities are preserved

in a process of analytic continuation. The identity p% =1—H ID/ g
shows that p% is R-analytic herever Kp(z,t) # 0 , moreover

3H1/2 i 1/2(6/32, Kp(z,t) 8/8z; Kp(z,2)\
0z; 2 Kp(z,t) Kp(z,z) )
1 1/2 6 KD(z,t)
H/‘“ — lp—_—~~2
27D 9z " Kp(z,2)

6H1/2 s 131;2(6/62,- KD(t,Z) & 6/3Ej KD(z,z))
= ) D

32, Knu(i,z] K;.(z,z]
i 1H1/2il Kbp(t,z)
2, B\ o%; Kp(z,2) z)

We see in particular that the above derivatives vanish for z = t.

We use this information to compute second order derivatives at z = t.
We find that

i ')'_‘Hl.n - 1(352).. Kot

aZjazk szazk }“‘ I&D(Z Z)
0 et {5 1
P \ 020z Y KD(Z t)
( 0’ \ Hlf? = l 0 ) In KD(z t)
\ 8z;0% )= 2\0z;0% )= Kp(z,2)
1
“..":.—5( 3_})'-' anD(Z Z)
1 2
= -—-é-at c')t anD(t t)

Let us consider the function z — p?(z,t) and its differentials
at z = t. This function vanishes at ¢ along with its first differential.
The second differential is equal to

1 & s
(3.3) D’p(tiw) =5 :N Tzw;Wx + T5,W;wi
1<3<
126N
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where Tz = (T;_k) := (8%/0t;0ty)In Kp(t,t) are components of the
Bergman metric tensor. This result gives a precise explanation to
hybrid property (Tjx = 0 = T;;) of the Bergman metric tensor.
According to the Taylor formula of the 2-nd order

1
(3.4) lpb(t, 2) - gszz(t; z—t)| < Aflz—t|]®,

where A depends only on partial derivatives of p? (or H'/? ) on
[t,z] € {Kp # 0} . Therefore, if z,t stay away from dD and are
close to each other, we may take A = const. This in view ot the
fact that the Bergman tensor is positive definite [KOB 1] -yields an
estimate

:

(3.5) ‘po(t, z) - [2D2p2(t; z~ w)] "

< Aolz —w|l .

This shows that I,(v) ( pp-length of C! curve v :[0,1] = D ) can be
expressed by the Bergman metric tensor. Indeed, let 1 = s, < 51 <
-+ < sp = 1 be an e-partition of [0,1] and denote v(®) := 7(s,).
Then the sum

n—1
(3.6) p [szz(v(a)  platD) _ v(a))] i

a=0

converges to 2!/21,(v) , as € — 0. On the other hand, for the integral
which expresses Bergman length of ¥

E i T L AT J/ ( % ij}(s)m)’”dm(s)

one can write a Riemann sum (corresponding to the same partition)
as follows

n-=1 11/2
(3.8) Z: [D2p2(v(°);‘y.(d/ds)s°_

a=0
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If € — 0, then the difference between the sums (3.8) and (3.6)
approaches zero, hence the identity 271/2l; = 2'/2], and finally

(3.9) =21,

For p, ¢ € D taking infimum on both sides of (3.9) over all
piecewise C! curves in D which join p to ¢ yields

(3.10) dp(p,q) 2 2pp(p,9q) -

More details concerning (3.10) can be found in [MPS]*. Note
that an explicit computation for the unit disc A reveals a relation
with the Blaschke factor , namely

z—1

1—2zt

(3.11) pa(z,t) =

and 7(s) :=re** supplies an easily verifiable example of (3.9).
In the above context we would like to mention two basic problems

Problem 1 (Lu Qi-keng domains). From (3.2) it follows by
Schwarz inequality that pp(z,t) is never greater than 1 and is equal
to 1 if and only if Kp(z,t) = 0. We call D a Lu Qi-keng domain if
K p does not attain the zero value in D x D. By the transformation
rule this property is invariant under biholomorphic mappings . Since
Ka(z,t) = n71(1—2f)~2, the unit disc A is a Lu Qi-keng domain, and
so is every bounded simply connected plane domain. Speculations
about more general results , see [LUK], [SKW 3] were referred to as
the Lu Qi-keng conjecture. Meanwhile an elementary e::ample of a
non Lu Qi-keng ring was given in [SKW 3], and classical properties
of elliptic functions were used in [ROS] to show that every ring is
not Lu Qi-keng. N.Suita and A.Yamada [SY]* proved that every
multiply connected plane domain D bounded by a finite number of
analytic curves is not Lu Qi-keng. (They used the identity (2.18)
together with the Riemann-Roch theorem on a compact Riemann
surface defined as the Schottky double of D). Finally for n=2 H.Boas
[BSH 1] constructed a bounded non-Lu Qi-keng domain which is
strictly pseudo—convex and topologically trivial.
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Problem 2 (pp-topology). One would like to understand the
relation between pp-topology and euclidean topology in D. The eu-
clidean topology is always stronger (formula (3.2) and continuity of
Kp), but it is not known if both topologies are equal in all domains
for which evaluation functionals x,(t), t € D, are linearly indepen-
dent. It is easy to see [SKW 6] that both topologies are equal for all
bounded domains (more generally for L2H(D) containing the func-
tions 1,21,...,24). An (invariant) assumption that for every ¢t € D
there is € > 0 (possibly small) such that B(t,¢) is relatively compact
in the euclidean topology of D also implies that both topologies in D
are equal.

4. Representative coordinates and biholomorphic

equivalence

Holomorphic geometry offers a natural approach to the biholo-
morphic equivalence problem. Much awaits exploration here , but
within limits of this article we attempt to describe the basic idea.
For domains D, G C CV we ask about the existence of biholomor-
phic mappping ¢ : D — G. For simplicity we assume that both do-
mains are bounded and p-complete. (In particular D, G are domains
of holomorphy). We may restrict our attention to the slightly more
special problem : given p € D and g € G we look for biholomorphic
mapping g which satisfies g(p) = q. In sufficiently small neighbour-
hood of (p,p) we consider the function ®(z,t):=InKp(z,t). By a
result of Bergman [BE 1], [KOB 1] ®(¢,t), t € D, is a Kaehler po-
tential for the invariant metric. In particular the (Bergman) metric
tensor with components T3 := (8%/8t,8t,)® is positive definite. It
implies that near p the mapping z +— u?(z,p), where

0 Kp(z,t
(4'1)' p?(z!t)::(ﬁ:)lnfg((?t—)’ s=12,...,n,
defines local coordinates (so called representative coordinates). The
interest in this notion is due to the following fact: In terms of rep-
resentative coordinates near t € D and near s € G the mapping g is
given as a linear mapping. Indeed, in view of the identity

(42) (a/a?a)HD(z’t) = HD(Zat)P.?(zat)
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one can first differentiate both sides of

(4.3) Hg(g(2), 9(1)) = Hp(2,1)
and then divide by Hp(z,t) to obtain

N
(4.4) pl(z,t) =Y pi(9(2), 9(2))(Bg-/0%.) -
. r=1

We can now make the following observation: suffices to find bi-
holomorphic mapping g of a small connected nesghbourhood of p
onto a neighbourhood of q , such that g(p) =¢q and g_satisfies the
rule of transformation: Kp(z.t) = Kg(9(z), 9(t))g'(z)g'(t). Indeed,
we may continue ¢ analytically along a curve in D and (4.3) shows
that it is always possible, provided g¢(z) stays in G. But the latter
condition follows from the assumption that G is complete. Moreover,
the continuation is path-independent (even without assuming simple
connectivity of D!). To see this consider two paths in D, which join
p to p' and two corresponding continuations of g ; then we continue
analytically (4.3), from (p,p) — (p',p') in such a way that z moves
along the first path in D while ¢ moves along the second path in D.
Finally we claim that the image g¢(D) is the whole domain G , since
by the previous reasoning (with D and G interchanged) the mapping
g~ ! with values in D can be continued arbitrarily in G.

The meaning of the above result becomes more evident if the
Bergman function near p € D (or ¢ € G ) is from the outset expressed
in some special local coordinates. Indeed, we can take C-linear mod-
ification of representative coordinates for which the components of
the Bergman metric tensor at p satisfies T,5(0) = é,,. In terms
of such new coordinates 2z',w' the local biholomorphic mapping
w' = g(z') is C-linear, hence w' = Uz' , where the matrix U is
unitary. Denoting by K}, K; the corresponding expressions for
Bergman functions we obtain the transformation rule in the form

(p(2', t') = Kg(g(2'), g(t')). There is no loss of generality in con-
sidering this equality only for 2' =t'. Then it takes the form

(45) °~ Kp(2',2')=Kg(UZ',UzZ'), U — unitary .

Both sides in (4.5) are real analytic and positive. We see that
the germs of K, and Kg at 0 € CV contain all information about
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biholomorphic equivalence. Moreover, both domains are equivalent
iff both functions have congruent graphs; more precisely if the graph
of Kp, can be obtained from the graph of K¢ by C-linear isometry
of the space CN¥ = R2¥ . Thus in a sense the problem of biholomorphic
equivalence is reduced to an apparently more algebraic problem.

5. More on representative coordinates

The importance of the notion of representative coordinates is
well recognized [KR 2]. Therefore we shall add some more remarks
concerning this mathematical idea including some unpublished com-
putations from [SKW 2].

First of all let us mention the way in which S.Bergman used to in-
troduce contravariant representative coordinates near a point p € D.
(We assume N=2 for simplicity). Among all functions f € L2H(D)
which satisfy f(p) = 1 there is a unique one with minimal norm ; it
is denoted by M!. Analogously M?°!? (respectively M®°! ) is deter-
mined by the conditions f(p) =0, (8f/0z1)(p) =1, (3f/0z2)(p) =0
(respectively by f(p) =0, (8f/8z1)(p) =0, (8f/8z2)(p) = 1). The

(contravariant) representative coordinates are defined by the formula
MO10(, MO01(,
() i MO0)
M1(z2) M(z)

It is easy to see that M'(z) = Kp(z,p)/Kp(p,p). To determine say

MP°10 pote that evaluations at p of a function f and its partial

derivatives are linearly independent functionals on L?H(D), repre-
sented respectively by

(5.1) .ul(z) o=

91(z) = Kp(z,p),
(5.2) 92(z) = (8/0%1),Kp(z,1),
93(z) = (8/8%2), Kp(z,1) .

The admissible variety for, say M°!? is non-void, closed and convex,
hence contains the unique element with minimal norm. This admis-
sible variety is mapped into itself by orthogonal projection onto the
subspace spanned by g, g2,93 . Hence there exist complex constants
a1, a,, a3 such that

(5-3) a191(2) + az92(2) + azgs(z) = Moxo(z).
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After taking inner product with representing elements g; and solving
resulting Cramer system one finds that

_0G1i +1G2; +0G;y;
(54 . det G

where G stands for the corresponding Gram matrix and G,; are
algebraic complements of G. Now substituting (5.4) into (5.3) yields

, i=1,2,3

MO(z) = G2191(2) + Ga292(2) + G23ga(2)

det G
5 K, K,
(5.5) K(z,p) Kj,(2,p) Kp,(2p)
I\P?, KPJ: KPJ:
K K'P'x K52
I{" KP151 KPl-fz
I\" KP’il KP:;:

We transform the denominator using the obvious identity
i
K

To this end we subtract from the second column the first column
multiplied by Kz /K. Also from the third column we subtract the
first column multiplied by Kjp, /K. It follows easily that in (5.5) the
value of the denominator is K 3det(Ti;). In the numerator we factor
out K(z,p) from the second row and K from each other row. Then
operating with the first row we clear the first column. This yields

covariant representative coordinates in the second row. Development
with respect to this row yields

(5.6) | Kp.'i; = KP-KF,- = KTJ *

K'K(zp) |} Kn/K Kg/K

|0 m(z)  pa(z

= MY ()T p1(2) + TP () .

010/_\ _
(5.7) M™"(z) =

Computing similarly M!(z) we arrive at the final formula

(5.8) v(z) = 3 TPup
B



The Bergman Function ... 137

where TP°, B, a = 1,2,...,N denotes the inverse matrix to
T 3 «a, B =1,2,...,N. We see that covariant representative co-
ordinates are related to contra variant representative coordinates via
linear transformation. There is also another, natural and interesting
approach to covariant representative coordinates. It is based on the
Taylor expansion of the antiholomorphic mapping z + x(z) near
pED:

59 x(x= Y, a@EZ-p*, (eL’H(D)).

k=(ky,....kn)

Denote by Pm, (m € N) the orthogonal projection onto the
subspace lin{gx : |k| < m}. The covariant representative coordinates
of order m ‘are defined by the formula

P 2
(5.10) up(e) = Emeta) -y
go(2)
(For Ppngk, |k| = m we propose the name innovation coefficients

to indicate an analogy with the notion of innovation vector defined
in the prediction theory.) Computing (5.10) in particular case m =

LN =2 for pi(z):= p, g)(2), p2(2) == pggy)(2) yields

<9(1,0),90> Go \
A NN TS ol ) %

_ K3,(2,p) _ K5,(pp)
K(z,p) K(p, p)

(5.11)

and similarly for pua(2).

The Taylor development (5.9) was essential in the proof of the
following

Theorem ([MS]*). Assume that D C CV is a bounded domain
and g : D — D 1s a biholomorphic automorphism with a fized
point. Then the set of all eigenfunctions for the unitary operator
Ugf =(fog)g' is linearly dense in L2H(D).
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6. Invariant distance and Kobayashi

completeness conjecture

For simplicity we shall restrict our attention to a bounded do-
main D C CN. We have already seen that completeness with respect
to the invariant distance plays an essential role in the study of bi-
holomorphic equivalence. We are going to discuss completeness with
respect to:

(a) the invariant distance pp and
(b) the geodesic distance dp induced by the Bergman metric.

This is also a good occasion to restate some points from [MPS]*
concerning a very inspiring and important paper [KOB 1]. We recall
that by definition pp 1is equal up to a constant to the distance
induced from PS(L?H(D)) via the Bergman imbedding x/||x||-
Moreover, PS(L?H(D)) is a complete metric space. Hence D is
pp complete iff the set

J [ x(2) o
(6.1) UGN ED}

is closed in PS(L?H(D)). S.Kobayashi gave in [KOB 1] an inte

resting condition (K) which reads as follows

Definition 6.1. A bounded domain D C CV satisfies the condi-
tion (K) if for every sequence p,, € D, m =1,2... which converges
to some boundary point of D and for every f € L2H(D)

o olfRmd o
(6.2) hmm_

The original formulation was manifold oriented, hence more gen-
eral, however (as admitted in [KOB 1, p.267]) this gene ralization is
not essential. For bounded domains the original Kobayashi condition
is obviously equivalent with definition 6.1. The motivation for (K)
revealed in [KOB 1] is very important and we quote it in extenso.

"Bremermann [BRM 1] has studied the bounded domains with
the following property (P) : the kernel Kp(z,z) goes to infinity at
every boundary point. He has shown that a bounded domain with
the property (P) is a domain of holomorphy and that the converse is
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not true. Making use of of this result he has proved that if a bounded
domain is complete with respect to the Bergman metric, then it is
a domain of holomorphy. Since the kernel Kp(z,z) is not intrinsi-
cally defined the property (P) is not intrinsic. We consider therefore
condition (K) which is stronger than (P) but which is intrinsic”.

It is easy to see that in the language of functional analysis con-
dition (K) can be restated as follows : p, — p € 0D implies that
km := Xp(Pm)/|lXp(Pm)|| converges weakly to zero in LZH(D).

The latter property of k,, easily implies that cpmk, is con-
vergent in L2H(D) for any sequence c,, on the unit circle . (In-
deed, the L2 H(D)-limit of cmkm must lie on the unit sphere, while
its weak limit is zero.) Hence (K) implies that [k,| converges in
PS(L?*H(D)) for no pm — p € 8D, which in turn implies that the
Bergman imbedding of D has closed image in PS(L?H(D)). We have
thus arrived at

Theorem 6.2. Condition (K) implies pp-completeness.

Using the inequality pp < dp/2 obtained in section 3 it is
easy to see that pp-completeness implies dp—completeness. This
suggests the following remark. The famous conjecture of [KOB 1]
that d p—completeness implies condition (K) (Kobayashi completeness
conjecture ) is by now 35 years old . It implies two (formally easier)
statements which in our opinion should be treated separately:

1° dp-completeness implies pp-completeness
2° pp—completeness implies (K) .

The statement 2° will be referred to as SCC (small completeness
conjecture ). So far SCC has not been settled even for N=1 due to
difficulties with domains of infinite connectivity.

7. The ideal boundary

From the point of view of holomorphic geometry a theory of
boundary behaviour should carefully distinguish between its intrinsic
and non-intrinsic components. This postulate is suggested by a well
established custom in classical potential theory, where the intrinsic
notion of Martin boundary plays such an eminent role [HLM]. As
a first step in realizing such a program one has to construct an in-
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variant compactification and to investigate the corresponding ideal
boundary. For Lu Qi-keng domains one easily imitates the con-
struction of Martin boundary by replacing the Green function by
the Bergman function [SKW 6]. Here we recall a more refined and
general construction [SKW 10|, based on the Bergman imbedding
into the projective Fréchet space PH(D). We denote by H(D) the
space of all functions holomorphic in D with the (Fréchet) topology
of locally uniform convergence. Let H*(D) := H(D) \ {0}. Func-
tions f,g € H*(D) are called proportional iff there exists complex
constant ¢ # 0 such that f = cg . This is obviously an equivalence
relation and we denote by PH(D) the set of all equivalence classes.
It is considered with the quotient topology (i.e. the largest topology
such that the canonical projection 7(f) := [f] is continuous). One
verifies that PH(D) is a separable Hausdorff space and that = is open.
A sequence [fm] € PH(D), m =1,2,... converges to [f] € PH(D)
iff there exist complex constants ¢, # 0 such that cpfm — f in

H*(D). Also the eqgivalence relation in H*(D) is closed.

Definition 7.1. A compactification of a domain D C CV is a
homeomorphism ¢ : D — X onto an open dense subset in a compact
Hausdorff space X. With no loss of generality we can additionally
require ¢ = id. Two compactifications ¢; : D — X;, i = 1,2 are
called equivalent if there exists a homeomorphism w : X; — X,
such that ¢; = wogq;.

When D C CV is bounded there exists the euclidean compact-
ification id : D — cl D . We say that D is regularif ¢: D —» X
is equivalent to the euclidean compactification. In particular the
unit disc A is regular with respect to the Carathéodory (prime
ends) compactification. Every h € Aut(A) extends to a home-
omorpfism h : clA — cl A. Hence , up to equivalence, one can
define Carathéodory compactification of simply connected plane do-
main D# C as g: D — clA. (Here ¢: D —+ A is a Riemann
mapping function.) The following definition is introduced with the
aim to generalize the notion of Carathéodory compactification to sev-
eral complex variables. In the present section we restrict our attention
to domains D for which the invariant distance is well defined . (This

means that x,(z) and x,(t) are linearly independent provided
that z,t € D and z #1t.)
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Definition 7.2. Assume that the mapping p: D — PH(D)
given by p(t) := [Kp(-, t)] has a relatively compact image and
p: D — p(D) is a homeomorphism onto an open dense subset of D:=
clp(D). Then we say that D admits the invariant compactification
p: D = D and the compact set D\p(D) is called the ideal boundary
of D.

In view of trasformation rule of Kp it is easy to verify that the
property described in this definition is invariant under biholomorphic
mappings. (One obtains a homeomorphism of H*(D) using multipli-
cation by a zero—free holomorphic functions.) The name "invariant
compactification” is explained by the following

Theorem 7.3. Letp, : D, — f)l, p2: Dy — D, be invariant
compactifications of D), D;. For every biholomorphic mapping h:
D; — D, the homeomorphism

(7.1) p2ohopr! : pi(Dy) — pa(D2)
eztends to the unique homeomorphism w: f)l e f)z.

If in Theorem 7.3 we are willing to identify D; with pi(D;)
for ¢ = 1,2 (why not ?) then p; =id and (7.1) can be stated as
follows: every biholomorphic mappping h : Dy — D, extends as a
homeomorphism to ideal boundaries. In a particular case when both
domains are bounded and regular we see that every biholomorphic
mapping h: D; — D; extends to homeomorphism A : chl — chg
If in the latter case Dy = D = D, we see that every h € Aut (D)
extends to the unique homeomorphism h :cl D — clD .

The detailed description of domains which admit the invariant
compactification is not in sight. Nevertheless one can give a number
of examples by applying the following theorems

TheoremA7.4. A domain D admits the invariant compactifica-
tion p: D — D iff there ezists a compactification q: D — X such
that pog™! , (p as in Definition 7.2), eztends as a one-to-one con-
tinuous mapping of X into PH(D). In such a case q 1is equivalent
to the invariant compactification p .

Cor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>