> Maria NOWAK (Lublin)

On Hankel Operators with Conjugate Analytic Symbols

Abstract

This paper is a slightly extended version of a lecture given at the Workshop on Complex Analysis. In Sections 2 and 3 the author's results from [11] and [12] are presented, whereas Section 4 contains some new, unpublished theorems. E.g. for $f, g \in \mathrm{BMOA}$ the compactness of the operator $H_{j}^{\bullet} H_{j}-H_{j}^{\bullet} H_{j}$ is equivalent to the condition : $\lim _{|\lambda| \rightarrow 1^{-}}\left(1-|\lambda|^{2}\right)^{2}\left\{f^{\prime}(\lambda) \bar{g}^{\prime}(\lambda)-f^{\prime}(\lambda) g^{\prime}(\lambda)\right\}=0$.

1. Introduction

Let \mathbb{D} denote the open unit disc in the complex plane \mathbb{C} and let $d \sigma$ denote the area measure on \mathbb{D} normalized so that the area of \mathbb{D} is 1 . For $1 \leq p<\infty$ the Bergman space L_{a}^{p} is the subspace of $L^{p}(\mathbb{D}, d \sigma)$ consisting of analytic functions on \mathbb{D}. When $p=2$, we obtain the Hilbert space with inner product given by

$$
<f, g\rangle=\int_{D} f(z) \overline{g(z)} d \sigma(z)
$$

The space of bounded analytic functions on \mathbb{D} will be denoted by H^{∞}. The Bloch space \mathcal{B} consists of analytic functions f on \mathbb{D} such that

$$
\begin{equation*}
\|f\|_{B}=\sup \left\{\left|f^{\prime}(z)\right|\left(1-|z|^{2}\right): z \in \mathbb{D}\right\}<\infty \tag{1}
\end{equation*}
$$

The little Bloch space \mathcal{B}_{0} is the subspace of \mathcal{B} consisting of all
functions f for which

$$
\begin{equation*}
\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right|=0 . \tag{2}
\end{equation*}
$$

Some alternate descriptions of the spaces \mathcal{B} and \mathcal{B}_{0} are given e.g. in [3], [13].

Moreover, let $H^{p}, 0<p<\infty$, denote the Hardy space of analytic functions f on \mathbb{D} with the norm

$$
\begin{equation*}
\|f\|_{H^{p}}=\sup _{0 \leq r<1}\left(\int_{-\pi}^{\pi} \mid f\left(\left.r e^{i \theta}\right|^{p} d \theta / 2 \pi\right)^{1 / p}\right. \tag{3}
\end{equation*}
$$

For $1 \leq p \leq \infty$ the boundary values of functions of H^{p} may be considered as a subspace of $L^{p}(\partial D, d \theta / 2 \pi)$.

Let BMOA and VMOA denote the spaces of functions f in H^{2} whose boundary values have bounded mean oscillation and vanishing mean oscillation on $\partial \mathrm{D}$, respectively. There are several alternate characterizations of BMOA and VMOA spaces, ([7]) e.g. for f analytic on \mathbb{D}

$$
\begin{equation*}
f \in \mathrm{BMOA} \Longleftrightarrow \sup _{a \in \mathbb{D}}\left\|f\left(\frac{z+a}{1+\bar{a} z}\right)-f(a)\right\|_{H^{P}}<\infty \tag{4}
\end{equation*}
$$

The proper inclusions

$$
\begin{equation*}
H^{\circ \circ} \subset \mathrm{BMOA} \subset \mathcal{B} \tag{5}
\end{equation*}
$$

are well known [9]. It has been also noticed ([3],[4]) that in many cases the roles BMOA and VMOA functions play in the H^{p} theory are analogous to those the Bloch space and the little Bloch space play in the theory of Bergman spaces. The results concerning Hankel operators on the Bergman space L_{a}^{p} we are going to discuss strengthen this analogy.

Let P denote the orthogonal projection of L^{2} onto L_{a}^{p}. There is the following formula for P

$$
\begin{equation*}
P(f)(z)=\int_{\mathbb{D}} \frac{f(w)}{(1-\bar{w} z)^{2}} d \sigma(w), \quad f \in L^{2} \tag{6}
\end{equation*}
$$

The above formula makes sense for $f \in L^{p}, 1 \leq p<\infty$, and we will use (6) to define $P: L^{p} \rightarrow L_{a}^{p}$. It is well known that the operator P. is bounded for $1<p<\infty$ and unbounded for $p=1$ ([4], [17]). The Hankel operator $H_{f}: L_{a}^{p} \rightarrow L^{p}$ is defined by

$$
\begin{equation*}
H_{\bar{f}}(g)=\bar{f} g-P(\bar{f} g) \tag{7}
\end{equation*}
$$

In 1986 S.Axler [3] proved the following theorems:
. Theorem A. Let $f \in L_{a}^{2}$. Then $H_{f}: L_{a}^{2} \rightarrow\left(L_{a}^{2}\right)^{\perp}$ is bounded if and only if f is a Bloch function.

Theorem B. Let $f \in L_{a}^{2}$. Then $H_{f}: L_{a}^{2} \rightarrow\left(L_{a}^{2}\right)^{\perp}$ is compact if and only if f is in the little Bloch space B_{0}.

We prove that the above theorems remain true for $1<p<\infty$.
Now to see the analogy between H^{p} and L_{a}^{p} spaces let us consider the Szegö projection $S: L^{p}(\partial \mathrm{D}, d \theta / 2 \pi) \rightarrow H^{p}$ given by by the formula

$$
\begin{equation*}
S f(z)=\int_{-\pi}^{\pi} \frac{f\left(e^{i \theta}\right)}{1-e^{-i \theta} z} d \theta / 2 \pi \quad, \quad z \in \mathbb{D} \tag{8}
\end{equation*}
$$

and the Hankel operator defined by $H_{\bar{f}}(g)=\bar{f} g-S(\bar{f} g)$. It is known that for $1<p<\infty, f \in H^{2}, H_{f}: H^{p} \rightarrow L^{p}(\partial D, d \theta / 2 \pi)$ is bounded iff $f \in \mathrm{BMOA}$ and compact iff $f \in \mathrm{VMOA}$.

In Section 4 of this paper we consider only the case $p=2$. For $f \in L^{\infty}$ the Toeplitz operator $T_{f}: L_{a}^{2} \rightarrow L_{a}^{2}$ is defined by $T_{f}(g)=P(f g) . T_{f}$ is the multiplication operator on L_{a}^{p} for $f \in H^{\infty}$. We deal with some operators connected with commutators of the Toeplitz operators and involving Hankel operators. The main result of Section 4 is

Theorem 4. Let $f, g \in B M O A$. If the operator $H_{\bar{f}}^{*} H_{\bar{g}}: L_{a}^{2} \rightarrow$ L_{a}^{2} is compact then

$$
\begin{equation*}
\lim _{|z| \rightarrow 1^{-}}\left(1-|z|^{2}\right)^{2}\left|f^{\prime}(z) \| g^{\prime}(z)\right|=0 \tag{9}
\end{equation*}
$$

2. Bounded Hankel operators on $L_{\mathbf{a}}^{p}, 1 \leq p<\infty$

We shall start with the following

Theorem 1. For $f \in L_{a}^{2}$ the Hankel operator $H_{f}: L_{a}^{p} \rightarrow$ $L^{p}, 1<p<\infty$, is bounded if and only if $f \in \mathcal{B}$.

To prove the sufficiency we need the following generalization of Lemma 5 of [3]

Lemma 1. If $1<p<\infty$ and $f \in \mathcal{B}$ then there exists a constant $c>0$ such that

$$
\begin{equation*}
\int_{\mathbb{D}}\left|f(z)-f(w)\left\|1-\left.\widetilde{w} z\right|^{-2}\left(1-|w|^{2}\right)^{-\frac{1}{p}} d \sigma(w) \leq c\right\| f \|_{B}\left(1-|z|^{2}\right)^{-\frac{1}{p}}\right. \tag{10}
\end{equation*}
$$

Throughout this paper the letter c will denote a constant not necessarily the same at each occurence.

Proof of Theorem 1. Suppose that $f \in L_{a}^{2}$ and

$$
\left\|H_{\bar{f}}(g)\right\|_{p} \leq c\|g\|_{p}, \quad \text { for } g \in \pm_{a}^{p} .
$$

Define

$$
k_{w}(z)=(1-\bar{w} z)^{-2}, w, z \in \mathbb{D}
$$

Then $k_{w} \in H^{\infty} \subset L_{a}^{p}$ and $H_{f}\left(k_{w}\right)=(\bar{f}-\bar{f}(w)) k_{w}$.
Now for $h \in L^{p^{\prime}}, 1 / p+1 / p^{\prime}=1$, the integral

$$
\int_{\mathbb{D}} H_{f}(g(z)) h(z) d \sigma(z)
$$

defines a bounded linear operator on L_{a}^{p} and

$$
\begin{equation*}
\left|\int_{\mathbb{D}} H_{\tilde{f}}(g(z)) h(z) d \sigma(z)\right| \leq c\left\|H_{\bar{f}}(g)\right\|_{p}\|h\|_{p^{\prime}} \leq c\|g\|_{p}\|h\|_{p^{\prime}} . \tag{11}
\end{equation*}
$$

Replacing $g(z)$ by $k_{w}(z)$ and $h(z)$ by $z|1-\bar{w} z|^{-2}$ and using the well-known estimate (cf. [17, p.53])

$$
\begin{equation*}
\int_{\mathbb{D}} \frac{d \sigma(z)}{|1-\bar{w} z|^{2+\alpha}} \leq c \frac{1}{\left(1-|w|^{2}\right)^{\alpha}}, \quad \alpha>0 \tag{12}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left|\int_{\mathbb{D}} H_{f}\left(k_{w}(z)\right) \frac{z}{|1-\bar{w} z|^{2}} d \sigma(z)\right| \leq c \frac{1}{\left(1-|w|^{2}\right)^{2}} \tag{13}
\end{equation*}
$$

On the other hand, in view of the identity,
$\int_{\mathbb{D}} g(z) z \bar{f}(z) d \sigma(z)=\int_{\mathbb{D}} g(z) \bar{f}^{\prime}(z)\left(1-|z|^{2}\right) d \sigma(z), \quad f \in L_{a}^{1}, g \in H^{\infty}$
we have

$$
\begin{aligned}
& \left|\int_{\mathbb{D}} H_{\bar{f}}\left(k_{w}(z)\right) \frac{z}{|1-\bar{w} z|^{2}} d \sigma(z)\right|=\left|\int_{\mathbb{D}} \frac{(\bar{f}(z)-\bar{f}(w)) z}{(1-\bar{z} w)(1-z \bar{w})^{3}} d \sigma(z)\right| \\
& =\left|\int_{\mathbb{D}} \frac{f^{\prime}(z)\left(1-|z|^{2}\right)}{(1-z \bar{w})(1-\bar{z} w)^{3}} d \sigma(z)+\bar{w} \int_{\mathbb{D}} \frac{(f(z)-f(w))\left(1-|z|^{2}\right)}{(1-z \bar{w})^{2}(1-\bar{z} w)^{3}} d \sigma(z)\right| .
\end{aligned}
$$

For all analytic $f \in L^{1}\left(\mathbb{D},\left(1-|z|^{2}\right)^{\alpha} d \sigma\right), \alpha \geq 0$, the following formula holds

$$
\begin{equation*}
f(a)=(\alpha+1) \int_{\mathbb{D}} \frac{\left(1-|z|^{2}\right)^{\alpha}}{(1-a \bar{z})^{\alpha+2}} f(z) d \sigma(z), \quad a \in \mathbb{D} \tag{14}
\end{equation*}
$$

Applying (14) with $\alpha=1$ to the functions $f(z)(1-\bar{w} z)^{-1}$ and $(f(z)-f(w))(1-\bar{w} z)^{-2}$ we get the equality

$$
\left|\int_{\mathbb{D}} H_{f}\left(k_{w}(z)\right) \frac{z}{|1-\bar{w} z|^{2}} d \sigma(z)\right|=\frac{\left|f^{\prime}(w)\right|}{1-|w|^{2}} .
$$

Combining this with (13) we see that $\left|f^{\prime}(w)\right|\left(1-|w|^{2}\right), w \in \mathbb{D}$, is bounded.

In view of Lemma 1 the proof of sufficiency can be performed similarly as in Theorem A ([3] p. 328).

The bounded Hankel operators on the Bergman one space were characterized by K.R.M. Attele in 1992 [2]. He proved

Theorem C. For $f \in L_{a}^{2}$ the Hankel operator $H_{f}: L_{a}^{1} \rightarrow L^{1}$ is bounded if and only if

$$
\sup \left\{\left|f^{\prime}(z)\right|\left(1 .-|z|^{2}\right) \log \frac{1}{1-|z|^{2}} \quad: z \in \mathbb{D}\right\}<\infty
$$

3. Compact Hankel operators

For Banach spaces X, Y let $B(X, Y)$ denote the collection of all bounded linear operators of X into Y. Let U be the open unit ball in X. An operator $T \in B(X, Y)$ is said to be compact if the closure of $T(U)$ is compact in Y.
In the case the space X is reflexive we have an alternate discription of compact operators.

Lemma 2 [14,p.107]. If X is reflexive and $T \in B(X, Y)$ then T is compact if and only if $\left\|T x_{n}-T x\right\| \rightarrow 0$ whenever $x_{n} \rightarrow x$ weakly in X.

An operator $T \in B\left(X^{*}, Y\right)$ is called *-compact if $\left\|T x_{n}\right\| \rightarrow 0$ for every sequence $\left\{x_{n}\right\}$ which converges to 0 in the weak-star topology on X^{*}.

For $1<p<\infty, 1 / p+1 / p^{\prime}=1$, the dual of L_{a}^{p} can be identified with $L_{a}^{p^{\prime}}\left(\left(L_{a}^{p}\right)^{*} \cong L_{a}^{p^{\prime}}\right)$. Moreover, under the pairing

$$
<f, g>=\lim _{t \rightarrow 1^{-}} \int_{t \mathbb{D}} f \bar{g} d \sigma
$$

we have

$$
\left(L_{a}^{1}\right)^{*} \cong \mathcal{B} \quad, \quad\left(\mathcal{B}_{o}\right)^{*} \cong L_{a}^{1}
$$

We-have the following theorems, cf. [12].
Theorem 2. For $f \in L_{a}^{2}$ the Hankel operator $H_{\bar{f}}: L_{a}^{p} \rightarrow$ $L^{p}, 1<p<\infty$, is compact if and only if $f \in \mathcal{B}_{0}$.

Theorem 3. For $f \in L_{a}^{2}$ the Hankel operator $H_{f}: L_{a}^{1} \rightarrow L^{1}$ is *-compact if and only if

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|f^{\prime}(z)\right| \log \frac{1}{1-|z|^{2}} \rightarrow 0 \text { as }|z| \rightarrow 1^{-} \tag{15}
\end{equation*}
$$

The next lemma is one of the main tools used in the proof of Theorem 2.

Lemma 3. Let $(z, w) \rightarrow \phi(z, w)$ be a bounded measurable complex-valued function on $\mathbb{D} \times \mathbb{D}, w \rightarrow \varphi(w)$ be a continuous function on $\overline{\mathbb{D}}$ vanishing on $\partial \mathrm{D}$. Then, for $1<p<\infty$, the operator $S: L_{a}^{p} \rightarrow L_{a}^{p}$ defined by the formula

$$
\begin{equation*}
S(h)(z)=\int_{\mathbb{D}} \frac{\phi(z, w) \varphi(w)}{(1-z \bar{w})^{2}} h(w) d \sigma(w), \quad z \in \mathbb{D} \tag{16}
\end{equation*}
$$

is compact.

4. Certain operators involving Hankel operators

In this section we shall deal only with the case $p=2$.
For $f, g \in H^{\infty}$ there are the following relations between commutators of the Toeplitz operators and the Hankel operators ([3], [4])

$$
\begin{align*}
& T_{f}^{*} T_{f}-T_{f} T_{f}^{*}=H_{\bar{f}}^{*} H_{\bar{f}}, \tag{17}\\
& T_{f}^{*} T_{g}-T_{g} T_{f}^{*}=H_{\dot{g}}^{*} H_{\bar{f}} . \tag{18}
\end{align*}
$$

Hence T_{f} is essentially commuting for $f \in H^{\infty}$ if and only if $H_{\bar{f}}$ is compact. On the other hand, for $f \in L_{a}^{2}, H_{\bar{f}}$ is compact if and only if $f \in \mathcal{B}_{0}$ (so f need not be bounded).

The characterization of the functions $f, g \in H^{\infty}$ for which the operator $H_{\bar{g}}^{*} H_{\bar{f}}$ is compact was conjectured by S.Axler ([3]) and proved by D.Zheng[16] and independently by S. Axler and P. Gorkin ([6]). It states that the operator $H_{\hat{g}}^{*} H_{j}$ is compact if and only if for each Gleason part G of the maximal ideal space of H^{∞}, except for the disc \mathbb{D}, either f or g is constant on G.

In his paper [16] D. Zheng proved that, if $f, g \in \mathcal{B}$ and

$$
\begin{equation*}
\lim _{|z| \rightarrow 1}\left(1-|z|^{2}\right)^{2}\left|f^{\prime}(z) \| g^{\prime}(z)\right|=0 \tag{19}
\end{equation*}
$$

then $H_{g}^{*} H_{f}$ is compact. He also proved, using Hoffman's results on Gleason parts, that if $f, g \in H^{\infty}$ and $H_{\dot{g}}^{*} H_{\bar{f}}$ is compact then (19) holds.
Now it seems natural to ask if (19) is also a necessary condition for compactness of $H_{\bar{g}}^{*} H_{f}$ for $f, g \in \mathcal{B}$. Theorem 4 states that it is if $f, g \in$ BMOA.

Let $\operatorname{Aut}(\mathbb{D})$ denote the set of analytic, one-to-one maps of \mathbb{D} onto \mathbb{D}. In the proof of Theorem 4 we will use inclusion (5) and the fact that an analytic function f on \mathbb{D} is a Bloch function if and only if it is is finitely normal i.e. the functions

$$
\begin{equation*}
f_{\star}(z)=f(h(z))-f(h(0)), \quad h \in \operatorname{Aut}(\mathbf{D}) \tag{20}
\end{equation*}
$$

form a normal family where the constant ∞ is not allowed as a limit, cf. [13].

For a continuous function u on \mathbb{D} let $\mathcal{R}(u)$ denote the radialization of the function u, that is

$$
\begin{equation*}
\mathcal{R} u(z)=\int_{0}^{2 \pi} u\left(z e^{i \theta)} d \theta / 2 \pi\right. \tag{21}
\end{equation*}
$$

We will need the following lemma due to S. Axler and Ž.Čučković [5].
Lemma 4. Suppose that $u \in C(\mathbb{D}) \cap L^{1}(, d \sigma)$. Then u is harmonic on \mathbb{D} if and only if

$$
\begin{equation*}
\int_{\mathbb{D}} u \circ h d \sigma=u(h(0)) \tag{22}
\end{equation*}
$$

and

$$
\mathcal{R}(u \circ h) \in C(\overline{\mathbb{D}}) \quad \text { for every } h \in \operatorname{Aut}(\mathbb{D})
$$

Proof of Theorem 4. Suppose the assertion of the theorem is false. Then we could find such a sequence $\left\{\lambda_{n}\right\}$ in \mathbb{D} that $\left|\lambda_{n}\right| \rightarrow 1$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(1-\left|\lambda_{n}\right|^{2}\right)^{2}\left|f^{\prime}\left(\lambda_{n}\right)\right|\left|g^{\prime}\left(\lambda_{n}\right)\right|=a>0 \tag{23}
\end{equation*}
$$

For $\lambda \in \mathbb{D}$ let $h_{\lambda}, \varphi_{\lambda}$ denote the functions defined by

$$
\begin{equation*}
h_{\lambda}(z)=\frac{1-|\lambda|^{2}}{(1+\bar{\lambda} z)^{2}}, \quad z \in \mathbb{D} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{\lambda}(z)=\frac{\lambda+z}{1+\bar{\lambda} z}, \quad z \in \mathbb{D} \tag{25}
\end{equation*}
$$

The sequence $\left\{h_{\lambda_{n}}\right\}$ is weakly convergent to 0 in the space L_{a}^{2}. Hence, in view of Lemma 2,

$$
\begin{align*}
& \lim _{n \rightarrow \infty}<H_{f}^{*} H_{\bar{g}} h_{\lambda_{n}}, h_{\lambda_{n}}>=\lim _{n \rightarrow \infty}<H_{\bar{g}} h_{\lambda_{n}}, H_{\bar{\xi}} h_{\lambda_{n}}> \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{D}}\left(f \circ \varphi_{\lambda_{n}}-f\left(\lambda_{n}\right)\right)\left(\bar{g} \circ \varphi_{\lambda_{n}}-\bar{g}\left(\lambda_{n}\right)\right) d \sigma=0 \tag{26}
\end{align*}
$$

Since f, g are finitely normal there exist a subsequence of $\left\{\lambda_{n}\right\}$, which we will also denote by $\left\{\lambda_{n}\right\}$, and analytic functions F, G on D such that

$$
f \circ \varphi_{\lambda_{n}}-f\left(\lambda_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} F \text { and } g \circ \varphi_{\lambda_{n}}-g\left(\lambda_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} G
$$

uniformly on compact subsets of \mathbb{D}.
We will show that the function $F \bar{G}$ is harmonic on \mathbb{D}.
By (26)

$$
\begin{equation*}
\int_{D} F(z) \bar{G}(z) d \sigma(z)=0 \tag{27}
\end{equation*}
$$

Now let $w \in \mathbb{D}$ be fixed. Then also
$f \circ \varphi_{\lambda_{n}} \circ \varphi_{w}-f\left(\lambda_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} F \circ \varphi_{w}$ and $g \circ \varphi_{\lambda_{n}} \circ \varphi_{w}-g\left(\lambda_{n}\right) \underset{n \rightarrow \infty}{\longrightarrow} G \circ \varphi_{w}$
uniformly on compact subsets of \mathbb{D}.
Let $\lambda_{n}^{\prime}=\varphi_{\lambda_{n}}(w)$ and $\alpha_{n}=\arg \left(1+\lambda_{n} \bar{w}\right)$. Then

$$
\begin{equation*}
\varphi_{\lambda_{n}^{\prime}}(z)=\varphi_{\lambda_{n}} \circ \varphi_{w}\left(z e^{-2 i \alpha_{n}}\right), \quad z \in \mathbb{D} \tag{28}
\end{equation*}
$$

Indeed we have

$$
\varphi_{\lambda_{n}} \circ \varphi_{w}\left(z e^{-2 i \alpha_{n}}\right)=\frac{\lambda_{n}+\frac{w+z e^{-2 i \alpha_{n}}}{1+\tilde{\tilde{w}} e^{-2 i \alpha_{n}}}}{1+\bar{\lambda}_{n} \frac{w+z e^{-2 i n}}{1+\tilde{w} z e^{-2 i \alpha_{n}}}}
$$

$$
\begin{equation*}
=\frac{1+\bar{w} \lambda_{n}}{1+w \bar{\lambda}_{n}} \frac{z e^{-2 i \alpha_{n}}+\frac{\lambda_{n}+w}{1+\bar{w} \lambda_{n}}}{1+z e^{-2 i \alpha_{n}} \frac{\lambda_{n}+\bar{w}}{1+\lambda_{n} w}}=\varphi_{\lambda_{n}^{\prime}}(z) . \tag{29}
\end{equation*}
$$

Since $\left|\lambda_{n}^{\prime}\right| \rightarrow 1$ as $n \rightarrow \infty$, by Lemma 2 again

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{\mathbb{D}}\left(f \circ \varphi_{\lambda_{n}^{\prime}}-f\left(\lambda_{n}^{\prime}\right)\right)\left(\bar{g} \circ \varphi_{\lambda_{n}^{\prime}}-\bar{g}\left(\lambda_{n}^{\prime}\right)\right) d \sigma=0 \tag{30}
\end{equation*}
$$

Moreover, by (28) and (29) the left hand side of (30) is equal to

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \int_{\mathbb{D}}\left(f \circ \varphi_{\lambda_{n}} \circ \varphi_{w}\left(z e^{-2 i \alpha_{n}}\right)-f\left(\lambda_{n}^{\prime}\right)\right)\left(\bar{g} \circ \varphi_{\lambda_{n}} \circ \varphi_{w}\left(z e^{-2 i \alpha_{n}}\right)\right. \\
& \left.\quad-\bar{g}\left(\lambda_{n}^{\prime}\right)\right) d \sigma(z) \\
& =\lim _{n \rightarrow \infty} \int_{\mathbb{D}}\left(f \circ \varphi_{\lambda_{n}} \circ \varphi_{w}(z)-f\left(\lambda_{n}\right)+f\left(\lambda_{n}\right)-f\left(\lambda_{n}^{\prime}\right)\right) \\
& \quad\left(\bar{g} \circ \varphi_{\lambda_{n}} \circ \varphi_{w}(z)-\bar{g}\left(\lambda_{n}\right)+\bar{g}\left(\lambda_{n}\right)-\bar{g}\left(\lambda_{n}^{\prime}\right)\right) d \sigma(z) \\
& =\int_{\mathbb{D}}\left(F \circ \varphi_{w}(z)-F \circ \varphi_{w}(0)\right)\left(\bar{G} \circ \varphi_{w}(z)-\bar{G} \circ \varphi_{w}(0)\right) d \sigma(z) .
\end{aligned}
$$

It follows that
(31) $\int_{J_{\mathbb{D}}} F \circ \varphi_{w}(z) \bar{G} \circ \varphi_{w}(z) \sigma(z)=F \circ \varphi_{w}(0) \bar{G} \circ \varphi_{w}(0), \quad w \in \mathbb{D}$.

It means that the function $F \bar{G}$ satisfies the area version of the invariant mean value property.

To prove that $F \bar{G}$ is harmonic it is enough, in view of Lemma 4, to show that for arbitrarily fixed $w \in \mathbb{D}$ the radialization $\mathcal{R}(F$ 。 $\varphi_{w} \bar{G} \circ \varphi_{w}$) extends continuously to $\overline{\mathbb{D}}$.

First we show that $F \circ \varphi_{w}$ and $G \circ \varphi_{w}$ are in H^{2}.
It follows from the above considerations that
(32) $F \circ \varphi_{w}(z)-F \circ \varphi_{w}(0)=\lim _{n \rightarrow \infty}\left(f \circ \varphi_{\lambda_{n}^{\prime}}\left(z e^{2 i \alpha_{n}}\right)-f\left(\lambda_{n}^{\prime}\right)\right)$.

Since $f \in \mathrm{BMOA}$, there is a common bound for $\left\|f \circ \varphi_{\lambda_{n}^{\prime}}-f\left(\lambda_{n}^{\prime}\right)\right\|_{H^{2}}$ ((4)). In this case, the function which is the limit of the sequence $\left\{f \circ \varphi_{\lambda_{n}^{\prime}}-f\left(\lambda_{n}^{\prime}\right)\right\}$ in the sense of uniform convergence on compacta is in H^{2}. To see this notice e.g. that for h analytic on $\mathbb{D}\|h\|_{H^{2}}$ is equivalent to the quantity

$$
\int_{\mathbb{D}}(1-|z|)\left|h^{\prime}(z)\right|^{2} d \sigma(z)
$$

Thus $F \circ \varphi_{w}-F \circ \varphi_{w}(0) \in H^{2}$ which implies $F \circ \varphi_{w} \in H^{2}$. Clearly the same is true for $G \circ \varphi_{w}$. Now it follows that $\mathcal{R}\left(F \circ \varphi_{w} \bar{G} \circ \varphi_{w}\right) \in$ $C(\overline{\mathbb{D}})$ (see [5, p. 9]). Hence $F \bar{G}$ is harmonic and $\partial^{2}(F \bar{G}) / \partial \bar{z} \partial z=$ $F^{\prime}(z) \bar{G}^{\prime}(z)=0, z \in \mathbb{D}$. In particular $F^{\prime}(0) \bar{G}^{\prime}(0)=0$. Thus

$$
\begin{equation*}
0=F^{\prime}(0) \bar{G}^{\prime}(0)=\lim _{n \rightarrow \infty}\left(1-\left|\lambda_{n}\right|^{2}\right)^{2} f^{\prime}\left(\lambda_{n}\right) \bar{g}^{\prime}\left(\lambda_{n}\right) \tag{33}
\end{equation*}
$$

which contradicts (23).

Final remarks

Recently K. Stroethoeff [15] characterized the bounded harmonic functions f, g on \mathbb{D} for which Toeplitz operators T_{f} and T_{g} are essentially commuting. He also obtained the following

Corollary . Let $0<r<1$ be arbitarily fixed, $D(\lambda, r)$ denote the pseudohyperbolic disk $\{z \in \mathbb{D}:|\lambda-z| /|1-\bar{\lambda} z|<r\}$ and let f and g belong to H^{∞}. Then the following statements are equivalent:
(i) $H_{\bar{g}}^{*} H_{\bar{f}}-H_{\dot{f}}^{*} H_{\bar{g}} \quad$ is compact ;
(ii) $\lim _{|\lambda| \rightarrow 1^{-}} \int_{r \mathbb{D}} \mid\left(\bar{f} \circ \varphi_{\lambda}-\bar{f}(\lambda)\right)\left(g \circ \varphi_{\lambda}-g(\lambda)\right)-\left(\bar{g} \circ \varphi_{\lambda}-\bar{g}(\lambda)\right)(f \circ$ $\left.\varphi_{\lambda}-f(\lambda)\right) \mid=0$;
(iii) $\lim _{|\lambda| \rightarrow 1^{-}-} \int_{\mathbb{D}} \mid\left(\bar{f} \circ \varphi_{\lambda}-\bar{f}(\lambda)\right)\left(g \circ \varphi_{\lambda}-g(\lambda)\right)-\left(\bar{g} \circ \varphi_{\lambda}-\bar{g}(\lambda)\right)(f \circ$ $\left.\varphi_{\lambda}-f(\lambda)\right)=0$;
(iv) $\lim _{|\lambda| \rightarrow 1^{1}-} \int_{D(\lambda, r)}\left|\bar{f}^{\prime} g^{\prime}-f^{\prime} \bar{g}^{\prime}\right| d \sigma=0$;
(v) $\left.\lim _{|\lambda| \rightarrow 1^{-}} \frac{1}{|D(\lambda, r)|} \int_{D(\lambda, r)} \right\rvert\,\left(\bar{f} \circ \varphi_{\lambda}-\bar{f}(\lambda)\right)\left(g \circ \varphi_{\lambda}-g(\lambda)\right)-\left(\bar{g} \circ \varphi_{\lambda}-\right.$ $\bar{g}(\lambda))\left(f \circ \varphi_{\lambda}-f(\lambda)\right) \mid=0 ;$
(vi) $\lim _{|\lambda| \rightarrow 1^{-}}\left(1-|\lambda|^{2}\right)^{2}\left\{\bar{f}^{\prime}(\lambda) g^{\prime}(\lambda)-f^{\prime}(\lambda) \bar{g}^{\prime}(\lambda)\right\}=0$.

In his paper K.Stroethoff asked if the above corollary holds for Bloch functions instead of H^{∞} functions. Using the method of the proof of Theorem 4 and some results from [15] we easily show this corollary remains true for $f, g \in \mathrm{BMOA}$.

REFERENCES

[1] Anderson, J.M., J. Clunie and Ch.Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
[2] Attele, K.R.M., Toeplitz and Hankel operators on Bergman one space, Hokkaido Math.J. 21 (1992), 279-293.
[3] Axler, S., The Bergman space, Bloch space, and the commutators of multiplication operators, Duke Math. J. 53 (1986), 315-332.
[4] A xler, S., Bergman spaces and their operators, Surveys of some recent results on operator theory, Pitman Research Notes in Mathematics Series, No 171 (1988), 1-50.
[5] Axler, S., and \bar{Z}. Čuč $\mathrm{ković} ,\mathrm{Commuting} \mathrm{Toeplitz} \mathrm{operators} \mathrm{with} \mathrm{har-}$ monic symbols, Integral Equations and Operator Theory 14 (1991), 1-12.
[6] Axler, S., and P. Gorkin, Algebras on the disk and doubly commuting Toeplitz operators, Trans. Amer. Math. Soc. 309 (1988), 711-723.
[7] Baernstein, A., Analytic functions of bounded mean oscllation, Aspects of Contemporary Complex Analysis, Academic Press London 1980, 3-36.
[8] Duren, P.L., Theory of H^{p} spaces, Academic Press, New York 1970.
[9] Garnett, J., Bounded analytic functions, Academic Press 1981.
[10] Hoffman, K., Bounded analytic functions and Gleason parts, Ann. of Math. 86 (2) (1967), 74-111.
[11] Nowak, M., On Hankel Operator on the Bergman Space L_{a}^{p}, (preprint).
[12] Nowak, M., Compact Hankel operators with conjugate analytic symbols, (preprint).
[13] Pommerenke, Ch., On Bloch functions, J.London Math. Soc. 2(2) (1970), 689-695.
[14] Rudin, W., Functional Analysis, McGraw-Hill, Inc. New York 1973.
[15] Stroethoff, K., Essentially commuting Toeplitz operators with harmonic symbols, Canad.J.Math. 45(5) (1993), 1080-1093.
[16] Zheng, D., Hankel operators and Toeplitz operators on the Bergman Space, J. Funct. Anal. 83 (1989), 89-120.
[17] Kehe Zhu, Operator Theory in Function Spaces, Marcel Dekker, Inc. New York and Basel 1990.

Instytut Matematyki UMCS
Plac M. Curie Skłodowskiej 1
20-031 Lublin, Poland

