UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XLVIII, 5
SECTIO A
1994
Volker KASTEN (Hannover)

The Sendov-Conjecture and the Maximum Principle

Abstract. If Δ^{n} is the closed polycylinder then any $z=\left(z_{1}, \ldots, z_{n}\right) \in \Delta^{n}$ determines a polynomial $p_{z}(\xi)$ with leading coefficient equal 1 and zeros z_{k}. Let $C(z) \subset \Delta$ be the set of critical points of $p_{z}(\xi)$. The author deals with the properties of the function $d(z):=\max \left\{d_{k}(z): k=1, \ldots, n\right\}$ where $d_{k}(z):=\operatorname{dist}\left(z_{k}, C(z)\right)$. Note that according to Sendov's conjecture $\max \left\{d(z): z \in \Delta^{n}\right\}=1$.

1. A reformulation of the Sendov-Conjecture

Let $\Delta:=\{z \in \mathbb{C}:|z| \leq 1\}$ be the closed unit disk and $\Delta^{n}:=\left\{z=\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{k}\right| \leq 1\right\}$ the closed unit polycylinder in \mathbb{C}^{n}. The subset

$$
S^{n}:=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}:\left|z_{k}\right|=1, k=1, \cdots, n\right\} \subset \partial\left(\Delta^{n}\right)
$$

is called the skeleton of Δ^{n}. For $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ let $p_{z}(\zeta)$ be the normalized polynomial with roots at z_{k} :

$$
p_{z}(\zeta)=\prod_{k=1}^{n}\left(\zeta-z_{k}\right)
$$

Then clearly $p_{z}^{\prime}(\zeta)=n \prod_{j=1}^{n-1}\left(\zeta-w_{j}\right)$, where the w_{j} are the critical points of $p_{z}(\zeta)$. The critical set of $p_{z}(\zeta)$ is defined by $C(z)=\left\{w_{j} \in \mathbb{C}: p_{z}^{\prime}\left(w_{j}\right)=0\right\}$. If $z \in \Delta^{n}$, then $C(z) \subset \Delta$ due to the well known Theorem of Gauß-Lucas. In the following we investigate the function $d: \mathbb{C}^{n} \rightarrow \mathbb{R}$, defined by

$$
d(z):=\max d_{k}(z)
$$

where

$$
d_{k}(z):=\operatorname{dist}\left(z_{k}, C(z)\right)=\min \left\{\left|z_{k}-w_{j}\right|: j=1, \ldots, n-1\right\}
$$

The Conjecture of Sendov can now be formulated as follows:

$$
\max _{z \in \Delta^{n}} d(z)=1
$$

From a result of Goodman-Rahman-Ratti [1] on boundary zeros we have

$$
\max _{z \in S^{n}} d(z)=1
$$

where S^{n} is the skeleton of Δ^{n} defined as above. Using this result, (\star) can be reformulated as

$$
\max _{z \in \Delta^{n}} d(z)=\max _{z \in S^{n}} d(z)
$$

It should be noted that there is a stronger conjecture of PhelpsRodriguez [2], namely

$$
\max _{z \in \Delta^{n}} d(z)=d\left(z^{\star}\right) \Longleftrightarrow p_{z^{\star}}(\zeta)=\zeta^{n}-e^{i \alpha}
$$

Up to now this conjecture has been proved for $n=2,3,4$ ([2], Theorem 5).

2. A maximum principle for the function $d(z)$

The formulation (**) of the Sendov-Conjecture involves a maximum principle of some kind for the function d. As is well known, each continuous and plurisubharmonic (p.s.h.) function on Δ^{n} must attain its maximum value at the skeleton S^{n}. Unfortunately, $\log d(z)$ turns out to be only piecewise p.s.h. on Δ^{n} but fails to be p.s.h. over the whole polycylinder Δ^{n}. This becomes clear from figure 1 , where the graph of $d\left(z_{1}, 1, e^{2 \pi i / 3}\right)$ is plotted over the unit disk $\left|z_{1}\right| \leq 1$. Note the boundary maximum with $d=1$ at $z_{1}=e^{4 \pi i / 3}$, which corresponds to the extremal polynomial $p(\zeta)=\zeta^{3}-1$ of PhelpsRodriguez.

Fig. 1
Despite of the fact that $d(z)$ is not plurisubharmonic, it fullfills the following maximum principle, which is essentially due to Phelps and Rodriguez ([2], Theorem 2):

Theorem 1. The function $d(z)$ cannot attain a local maximum in \mathbb{C}^{n}.

Sketch of the proof. For $z^{\star}=\left(z_{1}^{\star}, \cdots, z_{n}^{\star}\right)$ let $C\left(z^{\star}\right)=$ $\left\{w_{1}^{\star}, \cdots, w_{n-1}^{\star}\right\}$ and $d\left(z^{\star}\right)=\operatorname{dist}\left(z_{1}^{\star}, C\left(z^{\star}\right)\right)$. Then one can move the critical points w_{j}^{*} away from z_{1}^{*}, holding z_{1}^{*} fixed. This can be seen by considering the polynomial

$$
q(\zeta):=\int_{z_{i}^{*}}^{\zeta} \prod_{j=1}^{n-1}\left(z-w_{j}\right) d z
$$

If the critical points w_{1}, \ldots, w_{n-1} of $q(\zeta)$ are chosen near $w_{1}^{*}, \ldots, w_{n-1}^{*}$, then the roots z_{1}, \ldots, z_{n} of $q(\zeta)$ are near $z_{1}^{*}, \ldots, z_{n}^{*}$.

Moreover, if the critical points w_{j}^{*} are moved away from z_{1}^{*}, we have $d(z)>d\left(z^{*}\right)$.

Theorem 1 implies

$$
\max _{z \in \Delta^{n}} d(z)=\max _{z \in \partial\left(\Delta^{n}\right)} d(z)
$$

Therefore, in order to prove the Sendov-Conjecture ($\star \star$) it would be sufficient to verify that the function $\left.d\right|_{\Delta^{n}}$ cannot attain a local maximum at points of $\partial\left(\Delta^{n}\right) \backslash S^{n}$. Formulated in another way, we have the following

Problem 1. Given a polynomial $p_{z^{\star}}(\zeta)$ such that all its roots $z_{1}^{\star}, \cdots, z_{n}^{\star}$ are in Δ, at least one root is on $\left|z_{k}\right|=1$ and at least one root has $\left|z_{k}\right|<1$. Can you always find roots z_{1}, \ldots, z_{n} near $z_{1}^{\star}, \ldots, z_{n}^{\star}$ but within Δ, such that $d(z)>d\left(z^{\star}\right)$?

3. The restriction of $d(z)$ to lower dimensional planes

In order to tackle Problem 1 and also to get a refinement of Theorem 1, it may be helpful to look at the behavior of the function $d(z)$ on lower dimensional planes. It becomes clear from the proof of Theorem 1, that we have in fact the following

Theorem 1'. Let $z^{\star}=\left(z_{1}^{*}, \ldots, z_{n}^{*}\right) \in \mathbb{C}^{n}$ and A^{n-1} be the ($n-1$)-dimensional plane through z^{*} given by

$$
A^{n-1}=\left\{\left(z_{1}, \cdots, z_{n}\right) \in \mathbb{C}^{n}: z_{1}=z_{1}^{\star}\right\}
$$

Then the restriction of d to A^{n-1} cannot have a local maximum at z^{\star}. As a consequence, $\left.d\right|_{A^{n-1}} \cap \Delta^{n}$ attains its maximum on the "boundary" $A^{n-1} \cap \partial\left(\Delta^{n}\right)$.

Remark. In [3], Miller investigated extremal polynomials $p_{z^{*}}(\zeta)$ for which the restriction of $d(z)$ to $\left\{z \in \mathbb{C}^{n}: z_{1}=z_{1}^{*}\right\} \cap \Delta^{n}$ is maximal at z^{*}. He proved that $2 r+s \geq n-1$, where s denotes the number of roots of the extremal polynomial on the unit circle and r is the number of critical points on the circle $\left|w-z_{1}^{*}\right|=d\left(z^{*}\right)$ which is called the critical circle.

From Theorem 1' we are led to
Problem 2. Is it true that the restriction $\left.d\right|_{A^{n-1}}$ of d to an arbitrary ($n--1$)-dimensional plane $A^{n-1} \subset \mathbb{C}^{n}$ with $A^{n-1} \cap \Delta^{n} \neq$ \emptyset attains its maximum at points of $A^{n-1} \cap \partial\left(\Delta^{n}\right)$?

A partial solution of Problem 2 is given by
Theorem 2. Let $A^{2} \subset \mathbb{C}^{3}$ be an arbitrary complex plane of dimension 2 with $A^{2} \cap \Delta^{3} \neq \emptyset$. Then

$$
\max _{z \in A^{2} \cap \Delta^{\mathrm{B}}} d(z)=\max _{z \in A^{2} \cap \partial\left(\Delta^{3}\right)} d(z)
$$

Proof. Let $z^{\star} \in A^{2} \cap \Delta^{3}$ such that $d\left(z^{\star}\right)=\max _{z \in A^{2} \cap \Delta^{8}} d(z)=: d^{\star}$. If $z^{*} \in A^{2} \cap \partial\left(\Delta^{3}\right)$, there is nothing to prove. Suppose therefore that $z^{*}=\left(z_{1}^{*}, z_{2}^{*}, z_{3}^{*}\right)$ is an inner point of Δ^{3}. We may assume that $d^{*}=\operatorname{dist}\left(z_{1}^{*}, C\left(z^{*}\right)\right)$. In the following it will be shown that there exists an at least one-dimensional analytic set $S \subset \mathbb{C}^{3}$ through z^{*} with $\left.d\right|_{S}(z) \equiv d^{\star}$. As is well known, each such set S must intersect $\partial\left(\Delta^{3}\right)$ (cf. [4], Chapt. 2, Corollary 4), and thus the conclusion of Theorem 2 follows. In order to prove the existence of such an analytic set S we will distinguish two cases, depending on the critical points w_{1}^{*}, w_{2}^{*} of the extremal polynomial $p_{z^{*}}(\zeta)=\prod_{k=1}^{3}\left(\zeta-z_{k}^{*}\right)$.

Case 1: $\left|z_{1}^{\star}-w_{1}^{\star}\right|=\left|z_{1}^{\star}-w_{2}^{\star}\right|$.
Note that the polynomial $p_{z}(\zeta)=\prod_{k=1}^{3}\left(\zeta-z_{k}\right)$ has the critical points

$$
w_{1,2}=\frac{1}{3}\left(\sigma_{1}(z) \pm \sqrt{\sigma_{1}^{2}(z)-3 \sigma_{2}(z)}\right)
$$

with

$$
\sigma_{1}(z)=z_{1}+z_{2}+z_{3}, \quad \sigma_{2}(z)=z_{1} z_{2}+z_{1} z_{3}+z_{2} z_{3}
$$

Consider first the particular case $w_{1}^{\star} \neq w_{2}^{\star}$. Then $\sigma_{1}^{2}\left(z^{\star}\right)-3 \sigma_{2}\left(z^{\star}\right) \neq$ 0 and thus there is a unique number t such that

$$
\left(z_{1}^{*}-\frac{1}{3} \sigma_{1}\left(z^{*}\right)\right)^{2}=-\frac{t^{2}}{9}\left(\sigma_{1}^{2}\left(z^{\star}\right)-3 \sigma_{2}\left(z^{*}\right)\right)
$$

It follows from $\left|z_{1}^{*}-w_{1}^{*}\right|=\left|z_{1}^{*}-w_{2}^{*}\right|$ that the vectors
$\pm \sqrt{\sigma_{1}^{2}\left(z^{*}\right)-3 \sigma_{2}\left(z^{*}\right)}$ have to be orthogonal to the vector $z_{1}^{*}-\frac{1}{3} \sigma_{1}\left(z^{*}\right)$, hence t must be real. With t as above define
$M=\left\{z=\left(z_{1}, z_{2}, z_{3}\right) \in \mathbb{C}^{3}:\left(z_{1}-\frac{1}{3} \sigma_{1}(z)\right)^{2}=-\frac{t^{2}}{9}\left(\sigma_{1}^{2}(z)-3 \sigma_{2}(z)\right)\right\}$
and let S be an irreducible component of the analytic set $A^{2} \cap M$ through z^{*}. Clearly $z^{*} \in S$ and

$$
\operatorname{dim}_{z^{\star}} S \geq \operatorname{dim}_{z^{\star}} A^{2}+\operatorname{dim}_{z^{\star}} M-3 \geq 1
$$

By construction, we have

$$
z_{1}-\frac{1}{3} \sigma_{1}(z)= \pm \frac{i t}{3} \sqrt{\sigma_{1}^{2}(z)-3 \sigma_{2}(z)} \quad(z \in S)
$$

and therefore

$$
\left|z_{1}-w_{1}(z)\right|=\left|z_{1}-w_{2}(z)\right|=\left|\left(\frac{i t}{3}-\frac{1}{3}\right) \sqrt{\sigma_{1}^{2}(z)-3 \sigma_{2}(z)}\right| \quad(z \in S)
$$

Since $\left.d\right|_{A^{2}}$ has a maximum at $z^{*} \in S$, the same is true for the restriction $\left.d\right|_{s}$. Because $\sqrt{\sigma_{1}^{2}(z)-3 \sigma_{2}(z)} \neq 0$ has a holomorphic branch near z^{*}, it follows from the maximum principle for holomorphic functions on analytic sets (cf. [4], Chapt. 4, Theorem 2 G), that $\sigma_{1}^{2}(z)-3 \sigma_{2}(z)$ is a constant on S and therefore

$$
d(z)=\left|z_{1}-w_{1}(z)\right|=\left|z_{1}-w_{2}(z)\right| \equiv d^{\star} \quad(z \in S)
$$

In the particular case $w_{1}^{*}=w_{2}^{\star}$ we have $\sigma_{1}^{2}\left(z^{\star}\right)-3 \sigma_{2}\left(z^{\star}\right)=0$ and one can proceed similarly. Define M in this case by

$$
M=\left\{z \in \mathbb{C}^{3}: \sigma_{1}^{2}(z)-3 \sigma_{2}(z)=0\right\}
$$

and let S again be an irreducible component of $A^{2} \cap M$ through z^{*}. Then clearly $z^{*} \in S$ and

$$
d(z)=\left|z_{1}-w_{1}(z)\right|=\left|z_{1}-w_{2}(z)\right|=\left|z_{1}-\frac{1}{3} \sigma_{1}(z)\right| \quad(z \in S) .
$$

From this we conclude $d(z) \equiv d^{\star}$ on S in view of the maximum principle.

Case 2: $d^{\star}=\left|z_{1}^{*}-w_{1}^{\star}\right|<\left|z_{1}^{\star}-w_{2}^{\star}\right|$.
In this case we have

$$
d(z)=\left|z_{1}-\frac{1}{3} \sigma_{1}(z)-\frac{1}{3} \sqrt{\sigma_{1}^{2}(z)-3 \sigma_{2}(z)}\right|
$$

locally on A^{2} near the point z^{\star}, with an appropriate branch of the root.

Because $\left.d\right|_{A^{2}}$ has a local maximum at z^{*}; the maximum principle yields

$$
z_{1}-\frac{1}{3} \sigma_{1}(z)-\frac{1}{3} \sqrt{\sigma_{1}^{2}(z)-3 \sigma_{2}(z)} \equiv \mathrm{const}
$$

locally near z^{*} on A^{2}. It follows that $\left|z_{1}-w_{1}(z)\right| \equiv d^{*}$ on $A^{2} \cap \Delta^{3}$. Therefore the conclusion of Theorem 2 follows if $d(z) \equiv\left|z_{1}-w_{1}(z)\right|$ on $A^{2} \cap \Delta^{3}$. If $d(z) \not \equiv\left|z_{1}-w_{1}(z)\right|$ on $A^{2} \cap \Delta^{3}$, there must be a point $\tilde{z} \in A^{2} \cap \Delta^{3}$ such that

$$
\left|\tilde{z}_{1}-w_{1}(\tilde{z})\right|=\left|\tilde{z}_{1}-w_{2}(\tilde{z})\right|=d^{\star}
$$

But then we are done due to the case 1 , which completes the proof of Theorem 2.

Problem 3. Determine the greatest codimension k such that the following is true: If A^{n-k} is an arbitrary complex plane of dimension $n-k$ with $A^{n-k} \cap \Delta^{n} \neq \emptyset$, then

$$
\max _{z \in A^{n-k} \cap \Delta^{n}} d(z)=\max _{z \in A^{n-k} \cap \partial\left(\Delta^{n}\right)} d(z)
$$

With k as in the problem $3, k=n-1$ would imply ($\star \star$) and therefore the Sendov-Conjecture. However, in general $k<n-1$. This can be seen from the figure 2 , which deals with degree $n=8$. Shown there is the graph of $d\left(z_{1}, z_{2}^{\star}, \ldots, z_{8}^{\star}\right)$ plotted over the unit disk $\left|z_{1}\right| \leq 1$, for $z_{2}^{\star}=1, z_{3,4}^{\star}=e^{ \pm i \pi / 6}, z_{5,6}^{\star}=e^{ \pm i \pi / 3}, z_{7,8}^{\star}= \pm i$. According to the figure 2 , the restriction of $d(z)$ to the one-dimensional z_{1}-plane has maxima at inner points but not on the boundary of the unit disk.

Fig. 2

REFERENCES

[1] Goodman, A.W., Q.I. Rahman and J.S. Ratti, On the zeros of a polynomial and its derivative, Proc. AMS, 21 (1969), 273-274.
[2] Phelps, D., and R.S.Rodriguez, Some properties of extremal polynomials for the Ilieff Conjecture, Kodai Math. Sem. Rpt. 24 (1972), 172-175.
[3] Miller,M.J., Continuous independence and the Mieff-Sendov conjecture, Proc. AMS 115 (1992), 79-83.
[4] Whitney, H., Complex Analytic Varieties, Addison-Wesley Publ. Co., Reading, Massachusetts 1972.

Volker Kasten
Mathematisches Institut
der Universitt Hannover
Welfengarten 1
30167 Hannover, F.R.G.

