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Partitions, Compositions and Divisibility

Abstract. The paper deals with the connection between parti­
tions, compositions and divisibility. The main result is derivation 
of an identity connecting these three notions. This identity enables 
us to compute the number of partitions of an integer n.

1. Introduction. The basic notions occuring in this paper are 
already classical at this time. The exact definition of them can be 
found for example in [1], [4], [5] or [9]. In what follows we shall use 
the following standard notation. We shall denote by cr(n) the sum of 
all divisors of n and by p(n) the number of partitions of n. As usual, 
We define p(0) := 1. Further, Cn denotes the set of all compositions 
of n and Cn,k the set of all compositions of n to exactly k summands. 
Finally, 7Vn(fc) represent the number of all numbers k which occur in 
all p(n) partitions of n.

The structure of the paper is as follows. We first derive a re­
currence formula for the number of partitions of an integer n. This 
formula is of infinite order and reveals the connection of this problem 
with the area of divisibility. However, the connection between par­
titions and divisibility has been known already from Euler’s works 
(see e.g. the monograph of Mac Mahon, [8]). On the other hand, 
the aim of this paper is to express this connection in the form of
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the recurrence formula for p(n). Moreover, we show that this con­
nection can be clarified by means of simple and elementary methods. 
Furthermore, by means of the formula we derive a new expression 
of the generating function of the sequence of the number of parti­
tions. It turns out that the final form of the generating function is 
exponential. Finally, from its development to the power series we ob­
tain the principal result. The terminal identity, given by comparing 
the coefficients of power series, reveals the connection of partitions, 
compositions and divisibility.

We remark that in the proofs we shall use only standard and 
classical methods. In particular, we shall employ the machinery 
of power series, generating functions and elementary combinatorical 
techniques.

2. The recurrence formula for p(n). The aim of this section is 
to prove the recurrence formula and its modification for the number 
p(n) by means of elementary methods. We also demonstrate the 
computation by means of our formulas and compare with the well- 
known Euler’s formula (see Theorem 2). For the proof of Euler’s 
formula see e.g. [1] or [10].

Theorem 1. For each positive integer n we have the formula

(1) p(n) =-^a(n-k)p(k).
n *—'

Proof. Clearly, we have the following identity 
n

(2) k • Nn(k) = n • p(n).
fc=i

We first determine the value 7Vn(h) for 1 < k < n. Let n = rrik-k + Zk, 
where Zk < k is the remainder after division of n by k and rrik is the 
partial quotient. Then we see that the number of all partitions of n, 
which contain at least r numbers k, 1 < r < mk, is p(n — rfc). Hence 
the number of all k's in all p(n) partitions is

(3) iV„(fc) = p(n - k) -1------- (- p(n - mjtfc).
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Further, the relations (2) and (3) together give the following formula 
for p(n)

(4) p(n) = - Y2 k(p(n - k) + - ■ + p(n - mkk)).
n L'Jfe=i

Now we simplify the formula (4). Let 0 < s < n — lbea natural 
number. Let us consider when p(s) occurs among the members of the 
sum p(n — &) + ••• + p(n — m^h), i.e. when n — r ■ k — s for some 
1 < r < mk. Clearly, the relation n — r • k = s holds iff k divides
n — s. Therefore p(s) occurs in all the sums p(n — fc)d------|-p(n —mjfch)
where k divides n — s. Then the number of all occurrances of p(s) 
in the sum k(p(n — &) + ••• + p(n — mjth)) is exactly <r(n — s),
since p(s) occurs in the sum h(p(n — fc) + • • • + p(n — ro^h)) k
times for every natural divisor k of the number n — s. Thus we have

n n —1
k(p(n - k)-\------ \-p(n- mkky) = 52 CT(n ~ 5)p(5)-

fc=l S=O

This completes the proof of (1). □
Now we quite easily derive the following simple modification of

the formula (1). Notice that the formula (1) and its modification (5) 
have the same form, but the coefficients are different.

Corollary 1. For each positive integer n we have the formula

1 n_1
(5) p(n) = - \^(<t(1) H------ |-cr(n - fc) - fc)p(fc).

n fc=o

Proof. By addition of the first n formulas (1) we obtain

è = 52 52aW-
k=l k=0 ¿=1

Now an easy simplification yields (5). □
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Remark 1. The relation (3) from the proof of Theorem 1 gives an­
other possibility for enumeration of p(n). Indeed, from (3) it follows
that 2V„+i(l) = p(0) 4------ Hp(n) and 2V„(1) = p(0) 4------ hp(n - 1).
Hence by subtraction we find

(6) p(n) = JV„+1(1) - JV„(1).

Now we introduce important and practical Euler’s recurrent rela­
tions for the functions p(n) and er(n).

Theorem 2 (Euler). For each positive integer n we have

p(n) — p(n — 1) — p(n — 2) 4- p(n — 5) 4- p(n — 7)
(7) - p(n - 12) - p(n - 15) 4- ...-----h (-l)mp(n - |m(3m - 1))

4- (—l)mp(n - |m(3m 4-1)) 4- • • • = 0, 

where we define p(k) — 0 for every integer k < 0.

Theorem 3 (Euler). For each positive integer n we have

<r(n) — cr(n — 1) — a(n — 2) 4- <r(n — 5) 4- <r(n — 7) — cr(n — 12)

(8)

— <r(n — 15) 4- •

+ (-l)ma(n - 

( (-l)*+1n
= 1 0

. .••• + (-l)mcr(n- ^m(3m-l))

|m(3m 4-1)) 4-. ..

if n = (3fc2 ± h)/2, 
otherwise,

where we define a(k) = 0 for every integer fc 0.

Example 1. We find the number of partitions of n = 5 by means 
of (1), (5) and (7). We first compute a(l) = 1, <r(2) = 3, <r(3) = 4, 
a(4) = 7, o(5) = 6 and p(0) = 1, p(l) = 1, p(2) = 2, p(3) = 3 
and p(4) = 5. By recurrence (1) we have p(5) = |(6p(0) + 7p(l) 4- 
4p(2) 4- 3p(3) 4- p(4)) = j(6 4-74-84-9-|-5) = 7. Analogously, using
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(5) we have p(5) = |(21p(0) 4- 14p(l) + 6p(2) + p(3) - 3p(4)) = 
|(21 4- 14 4- 12 4- 3 — 15) = 7. Finally, by recurrence (7) we have 
p(5) = p(4) + p(3) - p(0) = 54-3 — 1 = 7.

Remark 2. We remark that the recurrences (1) and (5) are not prac­
tical for computation of the values p(n). The best way to compute 
p(n) is to use the well-known Euler’s formula (7). We point out that 
our formulas (1) and (5) reveal the connection between the functions 
p(n) and cr(n), i.e. between partitions and divisibility. Recurrences 
for the computation of <r(n) were studied by J. A. Ewell in [2] and [3]. 
But the best method for computing <r(n) is applying the formula (8), 
which also comes from Euler. It turns out that there is an interesting 
analogy with p(n) here (compare relations (7) and (8)). This is also 
proved in [9].

3. The generating function of the sequence p(n). In this 
section we derive a new important form of the generating function 
of p(n) by means of our recurrence (1). Let P(x) = ^2™=op(ri)xn 
be the generating function of the sequence p(n). Leonard Euler has 
proved that this function satisfies

o° x
(9) P(x) = F[ ------ where |x| < 1.

1 X
n=l

Remark 3. The series <r(n)a:n and ^~xn converge for
every |r| < 1. To prove this, it suffices to use the comparison test 
and the root test.

Theorem 4. The generating function P(x) of the sequence p(n) 
satisfies

(10) P(i) = e n=1 n , where |r| < 1.

Proof. Let S(x) = ^2^-! <r(n)xn be the generating function of 
CT(n). Multiplicating (1) by nxn and then evaluating the sum for
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n = 1,2,... we get

oo

np(n)xn
n=l

OO z OO

= E(p(‘)E<’(n>”+‘
k=0 ' n=l

) = ê (p^xk £

' k=o' n=l '
oo

= S(x) y^p(fc)æfc = S(x)P(x).
Jt=O

Furthermore,

OO oo

np(n)xn = x ■ np(n)a:n-1 = xP'(x). 
n=l n=l

This implies

(11) xP'(x) — S(x)P(x),

Now (11) easily gives lnP(x) = which is nothing else
than (10). The theorem is proved. □

From the expression (10) of the generating function of p(n) one 
deduces easily the following estimates.

Corollary 2. Let |x| < 1. Then the generating function P(x) satis­
fies the following inequalities

(12) e*/(1-*) < P(x) < ex^~x)\

Proof. We have n < cr(n) < n2 for every natural number n. Then 
13^=1 ~-xn > Z2Xi - T=7 - 1 = 1^7 and on the other hand
E~ , < E“=i $»* = 1 (*)' = (T^p- This completes

the proof. □

4. Development of the generating function of p(n) into power 
series. The aim of this section is to prove a new assertion, which is 
the principal result of this paper. The following identity (13) reveals 
the connection between partitions, compositions and divisibility. This
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result turns out to be of theoretical importance most of all. Indeed, in 
one formula there are connected the number of partitions of an integer 
n, the set Cn of all compositions and the arithmetical multiplicative 
function a. To prove the identity (13), we use the above deduced 
form (10) of the generating function p(n), which we develop into 
power series.

Theorem 5. We have the following identity for the number p(n)

(13) p(n) 1 <r(si) 
„ fc! æilid--- hx*6Cn

g(gfc)

Proof. Let F(x') := Then (10) yields P(x) =
Let us develop function P into the series of powers of the function F. 
We have

P(x) = Ê

m=0

Fm(x)
mi

cr(xk)
xk

<r(a;i) a(xk) .rid--- Hz*
Xk

Hence after involution of the series F we obtain the development 
of function P into the series of powers of x. Now we determine the 
coefficient by xn in the development of function P. Let fc be a natural 
number. Clearly, each member of the series Fk arises as the product 
of k factors. The general member of the series Fk has the form 

g(si)

If k > m, then there is no member with xn or with the lower power 
of x in the series Fk, so that only a part of the series pFk con­
tains members with xn. Furthermore, in the series Fk the coefficient 
~~~ •.. is by xn iff a?i + • • • + Xk = n. Clearly, the number of 
coefficients with this property is equal to cardCn)fc. So in the series 
Fk the coefficient

Q-(æi)
æi Xk

x*1 —X ] = Xi

Elid-- t-ifc€Cni*
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is by the member xn and finally in the series 77T coefficient

ii +
E
•+**€Cn,*

E
+-+x*ec„

1 g(ji) 
k\ xi

cr(xk)
Xk

is by xn. By comparison of the coefficients by xn with the series 
b2=o p(n)xn we obtain (13). This completes the proof. □

At the end we present an example, which demonstrates the identity
(13) for the case of an integer n.

Example 2. We find the number of partitions of n = 4 by means our 
identity (13). We shall suppose that the values cr(l) = 1, cr(2) = 3, 
cr(3) = 4 and cr(4) = 7 are known. For enumeration of these numbers 
we can use Euler’s formula (8). Now by identity (13) it holds

/„x * 1 a(4) , b^3)^1) , ^GM3) , ^(2)^(2)
p(4) = i! — + 2!(_r— + —T + “2“—)+

1 a(2) cr(l) g(l) q(l) o(2) q(l) g(l) <r(l) g(2) 
3P 2 1 11 2 11 1 2 '

1 q(l) q(l) q(l) q(l) _ 17 159 19 11
4! 1 1 1 1 1! 4 2! 12 3! 2 4! 1

Remark 4. Applications of the results of this paper and especially 
of the ideas of proofs can be founded in our work [7]. Here we study 
the connection between partitions and posets from the point of view 
of enumeration of the numbers Pn of non-isomorphic posets.
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