ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XLIX, 7
SECTIO A
1995

> Halina HEBDA-GRABOWSKA (Lublin)

On the Rate of Convergence for Distributions of Linear Type Functionals for Sums of Infima of Independent Random Variables

> A bstract. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of random variables uniformly distributed on $[0,1]$. Put $X_{m}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{m}\right)$, $m \geq 1 ;$ and $S_{n}=\sum_{m=1}^{n} X_{m}^{*}, n \geq 1$.
> In this paper the convergence rate for distributions of linear functionals in the invariance principle is obtained.

1. Introduction and results. Let $\left\{X_{n}, n \geq 1\right\}$ be a sequence of independent random variables uniformly distributed on $[0,1]$.

Let us put

$$
\begin{aligned}
X_{m}^{*} & =\inf \left(X_{1}, X_{2}, \ldots, X_{m}\right), m \geq 1 \\
\widetilde{S}_{n} & =\sum_{m=1}^{n} X_{m}^{*}, n \geq 1, \widetilde{S}_{0}=0
\end{aligned}
$$

and define

$$
\begin{align*}
& \widetilde{S}_{n, k}=\left(S_{k}-\sum_{i=1}^{k} \frac{1}{i}\right) /\left(2 \sum_{m=1}^{n} \frac{1}{m}\right)^{1 / 2}, \quad 1 \leq k \leq n \tag{1}\\
& \widetilde{S}_{n, 0}=0, \quad n \geq 1
\end{align*}
$$

We will denote by $S_{n}=\left\{S_{n}(t), t \in[0,1]\right\}, n \geq 1$, the random functions given as follows:

$$
\begin{align*}
S_{n}(t)= & \widetilde{S}_{n, k}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\widetilde{S}_{n, k+1}-\widetilde{S}_{n, k}\right), \\
& \text { for } t \in\left[t_{k}, t_{k+1}\right), 0 \leq k \leq n-1 \tag{2}\\
S_{n}(0)= & 0, \quad n \geq 1
\end{align*}
$$

where $t_{k}=\sum_{i=1}^{k} \frac{1}{i} / \sum_{m=1}^{n} \frac{1}{m}, 1 \leq k \leq n, t_{0}=0$.
Let $\left\{C_{[0,1]}, \mathcal{B}_{C}\right\}$ be the space of continuous functions with the uniform metric, and let \mathcal{L} be a linear continuous functional defined on $C_{[0,1]}$. It is known that \mathcal{L} may be written in the form

$$
\begin{equation*}
\mathcal{L}(x)=\int_{0}^{1} x(t) d \mu(t) \tag{3}
\end{equation*}
$$

where $\mu(t)$ is a function with bounded variation on $[0,1]$ (see f.e. [2], p. 304).

We are interested in finding the rate of convergence in the invariance principle:

$$
\mathcal{L}\left(S_{n}\right) \xrightarrow{D} \mathcal{L}(W), \text { as } n \rightarrow \infty,
$$

where $W=\{W(t), t \in[0,1]\}$ is a Wiener process on $\left(C_{[0,1]}, \mathcal{B}_{C}\right)$.
For simplicify of notations we write

$$
\Delta(X, Y)=\sup _{\lambda}|P[\mathcal{L}(X)<\lambda]-P[\mathcal{L}(Y)<\lambda]|
$$

where X, Y are random elements from $\left(C, \mathcal{B}_{C}\right)$.
We can now formulate the following:
Theorem. Let $S_{n}=\left\{S_{n}(t), t \in[0,1]\right\}, n \geq 1$ be a sequence of random functions given by (2). Then for any linear continuous functional \mathcal{L} defined on $C_{[0,1]}$ we have

$$
\begin{equation*}
\Delta\left(S_{n}, W\right) \leq C_{\mathcal{L}}(\log n)^{-2 / 5}, \tag{4}
\end{equation*}
$$

where $C_{\mathcal{L}}$ is a positive constant dependent only on \mathcal{L}.

This type Theorem for independent random variables has been obtained in [2].

The rate of convergence in the invariance principle for integral type functionals for sums of infima of independent random variables was investigated in [5].
2. Proof. In the proof we apply some lemmas given by P. De-héuvels ([3], [4], lemmas 3.1, 3.2) and H. Hebda-Grabowska ([5], lemmas 3.3, 3.4) which we state in Section 3 in the interests of clarity.

To shorten notation we denote $c_{n}=\left(2 \sum_{m=1}^{n} \frac{1}{m}\right)^{1 / 2}, n \geq 1$ and set

$$
\begin{aligned}
& V_{n, k}=\frac{\left[\tau_{k+1}-\tau_{k}-E\left(\tau_{k+1}-\tau_{k}\right)\right]}{k c_{n}}, \quad 1 \leq k \leq n \\
& V_{n, 0}=0, \quad n \geq 1
\end{aligned}
$$

where r.v's. $\tau_{n}, n \geq 1$ are given in Section 3 by (3.1) $\left(\varepsilon(n)=n^{-1}\right)$.
Put

$$
\begin{equation*}
U_{n, k}=\sum_{m=1}^{k} V_{n, k}, \quad 1 \leq k \leq n, n \geq 1 \tag{5}
\end{equation*}
$$

and

$$
L_{n}^{(s)}=\sum_{k=1}^{n} E\left|V_{n, k}\right|^{s}, \quad s \geq 2
$$

By Lemma 3.2 r.v's. $V_{n, k}, 1 \leq k \leq n$ are independent and

$$
\begin{aligned}
E V_{n, k} & =0, \quad \sigma^{2} V_{n, k}=\frac{2}{k c_{n}^{2}}, \quad \sigma^{2} U_{n, k}=t_{k} \\
\sigma^{2} U_{n, n} & =1, \quad 1 \leq k \leq n, n \geq 1
\end{aligned}
$$

moreover

$$
\begin{equation*}
L_{n}^{(s)}=O\left(s!(\log n)^{-\frac{2}{2}+1}\right), s \geq 2, n \geq 1 \tag{6}
\end{equation*}
$$

Let us define the random functions $W_{n}^{(1)}=\left\{W_{n}^{(l)}(t), t \in[0,1]\right\}$, $n \geq 1$:

$$
\begin{align*}
& W_{n}^{(1)}(t)=U_{n, k}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(U_{n, k+1}-U_{n, k}\right), \tag{7}\\
& W_{n}^{(1)}(0)=0, n \geq 1
\end{align*}
$$

where $t_{k}, 0 \leq k \leq n$ are as in (2).
Now using Theorem 3 ([2], p. 295) we obtain

$$
\begin{equation*}
\Delta\left(W_{n}^{(1)}, W\right) \leq C_{i}^{(1)}\left(L_{n}^{(s)}\right)^{\gamma(s)} \tag{8}
\end{equation*}
$$

where $\gamma(s)=\min \left(\frac{2}{s}, \frac{1}{s-2}\right), s>2$, and $C_{\mathcal{L}}^{(1)}$ is a positive constant dependent only on the functional \mathcal{L}.

Adding $s=4$ to (6) we get $L_{n}^{(4)}=O\left(4!(\log n)^{-1}\right)$ and $\gamma(4)=$ $1 / 2$ hence from (8)

$$
\begin{equation*}
\Delta\left(W_{n}^{(1)}, W\right) \leq C_{\mathcal{L}}^{(2)}(\log n)^{-1 / 2} \tag{9}
\end{equation*}
$$

where $C_{\mathcal{L}}^{(2)}$ depends only on \mathcal{L}.
Now define

$$
\begin{align*}
W_{n}^{(2)}(t)= & \widetilde{S}_{n, \tau_{k}}+\frac{t-t_{k}}{t_{k+1}-t_{k}}\left(\widetilde{S}_{n, \tau_{k+1}}-\widetilde{S}_{n, \tau_{k}}\right), \\
& t \in\left[t_{k}, t_{k+1}\right), 0 \leq k \leq n-1 \tag{10}\\
W_{n}^{(2)}(0)= & 0, \quad n \geq 1
\end{align*}
$$

where

$$
\begin{align*}
& \tilde{S}_{n, \tau_{k}}=\left(\sum_{i=1}^{\tau_{k}} X_{i}^{*}-\sum_{i=1}^{k} \frac{1}{i}\right) / c_{n}, \quad 1 \leq k \leq n \tag{11}\\
& \tilde{S}_{n, \tau_{0}}=0, \quad n \geq 1
\end{align*}
$$

By the form (3) of functional $\mathcal{L},(7),(10)$, and simply evaluations
we can see that

$$
\begin{aligned}
& P\left[\left|\mathcal{L}\left(W_{n}^{(2)}\right)-\mathcal{L}\left(W_{n}^{(1)}\right)\right| \geq \delta_{n}\right] \\
= & P\left[\left|\int_{0}^{1}\left(W_{n}^{(2)}(t)-W_{n}^{(1)}(t)\right) d \mu(t)\right| \geq \delta_{n}\right]
\end{aligned}
$$

$$
\begin{align*}
& =P\left[\left|\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}}\left(W_{n}^{(2)}(t)-W_{n}^{(1)}(t)\right) d \mu(t)\right| \geq \delta_{n}\right] \tag{12}\\
& \leq P\left[\max _{1 \leq k \leq n}\left|U_{n, k}-\widetilde{S}_{n, \tau_{k}}\right| V_{0}^{1} \mu \geq \delta_{n}\right],
\end{align*}
$$

where $V_{0}^{1} \mu$ is a variation of μ on $[0,1]$.
So, by Lemma 3.3 putting $\delta_{n}=(\log n)^{-2 / 5}$ we obtain

$$
\begin{equation*}
P\left[\left|\mathcal{L}\left(W_{n}^{(2)}\right)-\mathcal{L}\left(W_{n}^{(1)}\right)\right| \geq(\log n)^{-2 / 5}\right] \leq C_{l}^{(3)}(\log n)^{-2 / 5} \tag{13}
\end{equation*}
$$

where $C_{\mathcal{L}}^{(3)}$ is a positive constant dependent only on \mathcal{L}.
By simple arguments we get

$$
\begin{align*}
\Delta\left(W_{n}^{(2)}, W\right) \leq & \Delta\left(W_{n}^{(1)}, W\right)+P\left[\left|\mathcal{L}\left(W_{n}^{(2)}\right)-\mathcal{L}\left(W_{n}^{(1)}\right)\right| \geq \delta_{n}\right] \\
+ & \max ^{2}\left[\sup _{x}\left|P\left[\mathcal{L}(W)<x+\delta_{n}\right]-P[\mathcal{L}(W)<x]\right|\right. \tag{14}\\
& \left.\sup _{x}\left|P[\mathcal{L}(W)<x]-P\left[\mathcal{L}(W)<x-\delta_{n}\right]\right|\right]
\end{align*}
$$

By (9), (13) and the fact that

$$
\mathcal{L}(W)=\int_{0}^{1} W(t) d \mu(t)
$$

is normaly distributed with zero mean and variance $\sigma^{2}=\int_{0}^{1}(\mu(1)-$ $\mu(t))^{2} d t$ ([2], p. 305) we obtain

$$
\begin{equation*}
\Delta\left(W_{n}^{(2)}, W\right) \leq C_{\mathcal{L}}^{(4)}(\log n)^{-2 / 5} \tag{15}
\end{equation*}
$$

as

$$
\sup _{x}\left|P\left[\mathcal{L}(W)<x \pm \delta_{n}\right]-P[\mathcal{L}(W)<x]\right| \leq(2 \pi)^{-1 / 2} \frac{\delta_{n}}{\sigma}
$$

([6], p. 143).
Similar arguments (as in (12)), apply to the case of $S_{n}=\left\{S_{n}(t), t \in\right.$ $[0,1]\}$ we have

$$
\begin{align*}
& P\left[\left|\mathcal{L}\left(S_{n}\right)-\mathcal{L}\left(W_{n}^{(2)}\right)\right| \geq \delta_{n}\right] \\
& \leq P\left[\max _{1 \leq k \leq n}\left|\widetilde{S}_{n, k}-\widetilde{S}_{n, r_{k}}\right| V_{0}^{1} \mu \geq \delta_{n}\right] \tag{16}\\
& \leq C_{\mathcal{L}}^{(5)}(\log n)^{-2 / 5}
\end{align*}
$$

by Lemma 3.4.
Replacing in (14) $W_{n}^{(2)}$ by $S_{n}, W_{n}^{(1)}$ by $W_{n}^{(2)}$ and using (15) - (16) we get (4). This finishes the proof.
3. Lemmas. In this section we present some lemmas we needed in the proof of our Theorem.

Let $\{\varepsilon(n), n \geq\}$ be a sequence of positive numbers strictly decreasing to zero.

By $\left\{\tau_{n}=\tau(\varepsilon(n)), n \geq 1\right\}$ we denote the sequence of r. s s. such that

$$
\begin{equation*}
\tau_{n}=\inf \left\{m: \inf \left(X_{1}, \ldots, X_{m}\right) \leq \varepsilon(n)\right\} \tag{3.1}
\end{equation*}
$$

where $\left\{X_{n}, n \geq 1\right\}$ is a sequence of i.r.v's. u.d. on $[0,1]$.
Lemma 3.1. The sequence $\left\{\tau_{n}, n \geq 1\right\}$ increases with probability one and $\tau_{n} \rightarrow \infty$ a.s., as $n \rightarrow \infty$.

Lemma 3.2. The random variables $\tau_{n+1}-\tau_{n}, n \geq 1$ are independent and if $\varepsilon(n)=n^{-1}$, then

$$
\begin{gathered}
E\left(\tau_{n+1}-\tau_{n}\right)=1, \quad \sigma^{2}\left(\tau_{n+1}-\tau_{n}\right)=2 n, n \geq 1 \\
\sum_{k=1}^{n} E\left(\tau_{k+1}-\tau_{k}\right)^{p} / k^{p} \sim p!\log n
\end{gathered}
$$

Lemma 3.3.

$$
P\left[\max _{1 \leq k \leq n}\left|\widetilde{S}_{n, \tau_{k}}-U_{n, k}\right| \geq \delta_{n}\right] \leq \frac{C}{\delta_{n}^{4} c_{n}^{4}},
$$

where $U_{n, k}$ and $\widetilde{S}_{n, \tau_{k}}$ are as in (5) and (11) in Section 2, and $c_{n}=\left(2 \sum_{m=1}^{n} \frac{1}{m}\right)^{1 / 2}$.

Lemma 3.4.

$$
P\left[\max _{1 \leq k \leq n}\left|\tilde{S}_{n, k}-\tilde{S}_{n, r_{k}}\right|>(\log n)^{-2 / 5}\right]=O\left((\log n)^{-2 / 5}\right)
$$

where $\tilde{S}_{n, k}$ are given by (1).

References

[1] Bilingsley, P., Convergence of Probability Measures, J. Wiley, New York, 1968.
[2] Borisov, J. S., On the rate of convergence for distributions of integral type functionals, Teor.Verojatn. i Primenen 21 (1976), 293-308.
[3] Dehéuvels, P., Sur la convergence de sommes de minima de variables aléatoires, C. R. Acad. Sci. Paris 276, A (1973), 309-313.
[4] , Valeurs extrémales d'échantillons croissants d'une variable aléatoire réelle, Ann. Inst. H. Poincaré Probab. Statist. 10 (1974), 89-114.
[5] Hebda-Grabowska, H., On the rate of convergence for distributions of integral type functionals for sums of infima of independent random variables, Probab. Math. Statist. 14(2) (1993).
[6] Petrov, V. V., Sums of independent random variables, Nauka, Moscow 1972.
[7] Prohorov, Yu. V., Schodimost slucajnych processov i predelnyje theoremy veroyatnosti, Teor. Ver. i ee Prim. I (1956), 177-238.

Instytut Matematyki UMCS
received May 8, 1995
Plac Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland

