UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN-POLONIA

VOL. XLIX, 7

SECTIO A

1995

Halina HEBDA - GRABOWSKA (Lublin)

On the Rate of Convergence for Distributions of Linear Type Functionals for Sums of Infima of Independent Random Variables

ABSTRACT. Let $\{X_n, n \geq 1\}$ be a sequence of random variables uniformly distributed on [0,1]. Put $X_m^* = \inf(X_1, X_2, \ldots, X_m)$, $m \geq 1$; and $S_n = \sum_{m=1}^n X_m^*$, $n \geq 1$.

In this paper the convergence rate for distributions of linear functionals in the invariance principle is obtained.

1. Introduction and results. Let $\{X_n, n \geq 1\}$ be a sequence of independent random variables uniformly distributed on [0,1].

Let us put

$$X_m^* = \inf (X_1, X_2, \dots, X_m), \ m \ge 1,$$

$$\widetilde{S}_n = \sum_{m=1}^n X_m^*, \ n \ge 1, \ \widetilde{S}_0 = 0,$$

and define

(1)
$$\widetilde{S}_{n,k} = \left(S_k - \sum_{i=1}^k \frac{1}{i}\right) / \left(2\sum_{m=1}^n \frac{1}{m}\right)^{1/2}, \quad 1 \le k \le n,$$

 $\widetilde{S}_{n,0} = 0, \quad n \ge 1.$

We will denote by $S_n = \{S_n(t), t \in [0,1]\}, n \geq 1$, the random functions given as follows:

(2)
$$S_{n}(t) = \widetilde{S}_{n,k} + \frac{t - t_{k}}{t_{k+1} - t_{k}} \left(\widetilde{S}_{n,k+1} - \widetilde{S}_{n,k} \right) ,$$

$$for \ t \in [t_{k}, t_{k+1}), \ 0 \le k \le n - 1 ,$$

$$S_{n}(0) = 0 , \quad n \ge 1 ,$$

where $t_k = \sum_{i=1}^k \frac{1}{i} / \sum_{m=1}^n \frac{1}{m}, \ 1 \le k \le n, \ t_0 = 0$.

Let $\{C_{[0,1]}, \mathcal{B}_C\}$ be the space of continuous functions with the uniform metric, and let \mathcal{L} be a linear continuous functional defined on $C_{[0,1]}$. It is known that \mathcal{L} may be written in the form

(3)
$$\mathcal{L}(x) = \int_0^1 x(t) \, d\mu(t) ,$$

where $\mu(t)$ is a function with bounded variation on [0, 1] (see f.e. [2], p. 304).

We are interested in finding the rate of convergence in the invariance principle:

$$\mathcal{L}(S_n) \stackrel{D}{\longrightarrow} \mathcal{L}(W)$$
, as $n \to \infty$,

where $W = \{W(t), t \in [0,1]\}$ is a Wiener process on $(C_{[0,1]}, \mathcal{B}_C)$. For simplicity of notations we write

$$\Delta(X,Y) = \sup_{\lambda} |P[\mathcal{L}(X) < \lambda] - P[\mathcal{L}(Y) < \lambda]|,$$

where X, Y are random elements from (C, \mathcal{B}_C) . We can now formulate the following:

Theorem. Let $S_n = \{S_n(t), t \in [0,1]\}, n \geq 1$ be a sequence of random functions given by (2). Then for any linear continuous functional \mathcal{L} defined on $C_{[0,1]}$ we have

(4)
$$\Delta(S_n, W) \le C_{\mathcal{L}}(\log n)^{-2/5},$$

where $C_{\mathcal{L}}$ is a positive constant dependent only on \mathcal{L} .

This type Theorem for independent random variables has been obtained in [2].

The rate of convergence in the invariance principle for integral type functionals for sums of infima of independent random variables was investigated in [5].

2. Proof. In the proof we apply some lemmas given by P. De-héuvels ([3], [4], lemmas 3.1, 3.2) and H. Hebda-Grabowska ([5], lemmas 3.3, 3.4) which we state in Section 3 in the interests of clarity.

To shorten notation we denote $c_n = \left(2\sum_{m=1}^n \frac{1}{m}\right)^{1/2}, n \ge 1$ and set

$$V_{n,k} = rac{[au_{k+1} - au_k - E(au_{k+1} - au_k)]}{kc_n} \;, \quad 1 \le k \le n$$
 $V_{n,0} = 0 \;, \quad n \ge 1 \;,$

where r.v's. τ_n , $n \ge 1$ are given in Section 3 by (3.1) $(\varepsilon(n) = n^{-1})$. Put

(5)
$$U_{n,k} = \sum_{m=1}^{k} V_{n,k} , \quad 1 \le k \le n , \quad n \ge 1$$

and

$$L_n^{(s)} = \sum_{k=1}^n E|V_{n,k}|^s , \quad s \ge 2 .$$

By Lemma 3.2 r.v's. $V_{n,k}$, $1 \le k \le n$ are independent and

$$EV_{n,k} = 0$$
, $\sigma^2 V_{n,k} = \frac{2}{kc_n^2}$, $\sigma^2 U_{n,k} = t_k$, $\sigma^2 U_{n,n} = 1$, $1 \le k \le n$, $n \ge 1$,

moreover

(6)
$$L_n^{(s)} = O\left(s! \left(\log n\right)^{-\frac{s}{2}+1}\right), \ s \ge 2, \ n \ge 1.$$

Let us define the random functions $W_n^{(1)} = \{W_n^{(l)}(t), t \in [0,1]\},$ $n \ge 1$:

(7)
$$W_n^{(1)}(t) = U_{n,k} + \frac{t - t_k}{t_{k+1} - t_k} (U_{n,k+1} - U_{n,k}) ,$$
$$W_n^{(1)}(0) = 0 , n \ge 1 ,$$

where t_k , $0 \le k \le n$ are as in (2).

Now using Theorem 3 ([2], p. 295) we obtain

(8)
$$\Delta\left(W_n^{(1)}, W\right) \le C_{\mathcal{L}}^{(1)} \left(L_n^{(s)}\right)^{\gamma(s)},$$

where $\gamma(s) = \min(\frac{2}{s}, \frac{1}{s-2})$, s > 2, and $C_{\mathcal{L}}^{(1)}$ is a positive constant dependent only on the functional \mathcal{L} .

Adding s=4 to (6) we get $L_n^{(4)}=O\left(4!(\log n)^{-1}\right)$ and $\gamma(4)=1/2$ hence from (8)

(9)
$$\Delta(W_n^{(1)}, W) \le C_{\mathcal{L}}^{(2)} (\log n)^{-1/2},$$

where $C_{\mathcal{L}}^{(2)}$ depends only on \mathcal{L} .

Now define

$$W_n^{(2)}(t) = \widetilde{S}_{n,\tau_k} + \frac{t - t_k}{t_{k+1} - t_k} \left(\widetilde{S}_{n,\tau_{k+1}} - \widetilde{S}_{n,\tau_k} \right) ,$$

$$(10) \qquad \qquad t \in [t_k, t_{k+1}), \ 0 \le k \le n - 1,$$

$$W_n^{(2)}(0) = 0 , \quad n \ge 1 ,$$

where

(11)
$$\widetilde{S}_{n,\tau_k} = \left(\sum_{i=1}^{\tau_k} X_i^* - \sum_{i=1}^k \frac{1}{i}\right) / c_n , \quad 1 \le k \le n$$

$$\widetilde{S}_{n,\tau_0} = 0 , \quad n \ge 1 .$$

By the form (3) of functional \mathcal{L} , (7), (10), and simply evaluations

we can see that

(12)
$$P[|\mathcal{L}(W_{n}^{(2)}) - \mathcal{L}(W_{n}^{(1)})| \geq \delta_{n}]$$

$$= P\left[\left|\int_{0}^{1} \left(W_{n}^{(2)}(t) - W_{n}^{(1)}(t)\right) d\mu(t)\right| \geq \delta_{n}\right]$$

$$= P\left[\left|\sum_{k=1}^{n} \int_{t_{k-1}}^{t_{k}} \left(W_{n}^{(2)}(t) - W_{n}^{(1)}(t)\right) d\mu(t)\right| \geq \delta_{n}\right]$$

$$\leq P\left[\max_{1 \leq k \leq n} |U_{n,k} - \widetilde{S}_{n,\tau_{k}}|V_{0}^{1}\mu \geq \delta_{n}\right],$$

where $V_0^1 \mu$ is a variation of μ on [0,1]. So, by Lemma 3.3 putting $\delta_n = (\log n)^{-2/5}$ we obtain

(13)
$$P\left[\left|\mathcal{L}(W_n^{(2)}) - \mathcal{L}(W_n^{(1)})\right| \ge (\log n)^{-2/5}\right] \le C_l^{(3)} (\log n)^{-2/5}$$

where $C_{\mathcal{L}}^{(3)}$ is a positive constant dependent only on \mathcal{L} .

By simple arguments we get

$$\Delta\left(W_{n}^{(2)}, W\right) \leq \Delta\left(W_{n}^{(1)}, W\right) + P\left[\left|\mathcal{L}(W_{n}^{(2)}) - \mathcal{L}(W_{n}^{(1)})\right| \geq \delta_{n}\right]$$

$$+ \max\left[\sup_{x} |P[\mathcal{L}(W) < x + \delta_{n}] - P[\mathcal{L}(W) < x]|,$$

$$\sup_{x} |P[\mathcal{L}(W) < x] - P[\mathcal{L}(W) < x - \delta_{n}]|\right].$$

By (9), (13) and the fact that

$$\mathcal{L}(W) = \int_0^1 W(t) \, d\mu(t)$$

is normaly distributed with zero mean and variance $\sigma^2 = \int_0^1 (\mu(1) - \mu(t))^2 dt$ ([2], p. 305) we obtain

(15)
$$\Delta(W_n^{(2)}, W) \le C_L^{(4)} (\log n)^{-2/5} ,$$

as

$$\sup_{x} |P[\mathcal{L}(W) < x \pm \delta_n] - P[\mathcal{L}(W) < x]| \le (2\pi)^{-1/2} \frac{\delta_n}{\sigma} ,$$

([6], p. 143).

Similar arguments (as in (12)), apply to the case of $S_n = \{S_n(t), t \in [0,1]\}$ we have

(16)
$$P\left[\left|\mathcal{L}(S_n) - \mathcal{L}(W_n^{(2)})\right| \ge \delta_n\right]$$

$$\le P\left[\max_{1 \le k \le n} |\widetilde{S}_{n,k} - \widetilde{S}_{n,\tau_k}|V_0^1 \mu \ge \delta_n\right]$$

$$\le C_{\mathcal{L}}^{(5)} (\log n)^{-2/5} ,$$

by Lemma 3.4.

Replacing in (14) $W_n^{(2)}$ by S_n , $W_n^{(1)}$ by $W_n^{(2)}$ and using (15) - (16) we get (4). This finishes the proof.

3. Lemmas. In this section we present some lemmas we needed in the proof of our Theorem.

Let $\{\varepsilon(n), n \geq\}$ be a sequence of positive numbers strictly decreasing to zero.

By $\{\tau_n = \tau(\varepsilon(n)), n \ge 1\}$ we denote the sequence of r.v's. such that

(3.1)
$$\tau_n = \inf \left\{ m : \inf(X_1, \dots, X_m) \le \varepsilon(n) \right\},\,$$

where $\{X_n, n \geq 1\}$ is a sequence of i.r.v's. u.d. on [0,1].

Lemma 3.1. The sequence $\{\tau_n, n \geq 1\}$ increases with probability one and $\tau_n \to \infty$ a.s., as $n \to \infty$.

Lemma 3.2. The random variables $\tau_{n+1} - \tau_n$, $n \ge 1$ are independent and if $\varepsilon(n) = n^{-1}$, then

$$E(\tau_{n+1} - \tau_n) = 1 , \quad \sigma^2(\tau_{n+1} - \tau_n) = 2n , \quad n \ge 1$$

$$\sum_{k=1}^n E(\tau_{k+1} - \tau_k)^p / k^p \sim p! \log n .$$

Lemma 3.3.

$$P\Big[\max_{1\leq k\leq n}|\widetilde{S}_{n,\tau_k}-U_{n,k}|\geq \delta_n\Big]\leq \frac{C}{\delta_n^4c_n^4},$$

where $U_{n,k}$ and \widetilde{S}_{n,τ_k} are as in (5) and (11) in Section 2, and $c_n = \left(2\sum_{m=1}^n \frac{1}{m}\right)^{1/2}$.

Lemma 3.4.

$$P\left[\max_{1 \le k \le n} |\widetilde{S}_{n,k} - \widetilde{S}_{n,\tau_k}| > (\log n)^{-2/5}\right] = O\left((\log n)^{-2/5}\right),\,$$

where $\widetilde{S}_{n,k}$ are given by (1).

REFERENCES

- [1] Bilingsley, P., Convergence of Probability Measures, J. Wiley, New York, 1968.
- [2] Borisov, J. S., On the rate of convergence for distributions of integral type functionals, Teor. Verojatn. i Primenen 21 (1976), 293-308.
- [3] Dehéuvels, P., Sur la convergence de sommes de minima de variables aléatoires, C. R. Acad. Sci. Paris 276, A (1973), 309-313.
- [4] _____, Valeurs extrémales d'échantillons croissants d'une variable aléatoire réelle, Ann. Inst. H. Poincaré Probab. Statist. 10 (1974), 89-114.
- [5] Hebda-Grabowska, H., On the rate of convergence for distributions of integral type functionals for sums of infima of independent random variables, Probab. Math. Statist. 14(2) (1993).
- [6] Petrov, V. V., Sums of independent random variables, Nauka, Moscow 1972.
- [7] Prohorov, Yu. V., Schodimost slucajnych processov i predelnyje theoremy veroyatnosti, Teor. Ver. i ee Prim. I (1956), 177-238.

Instytut Matematyki UMCS Plac Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland

received May 8, 1995