
ANNALES
U NIV E RS IT AT IS MARIAE C U RI E-S K L 0 D O W S K A

LUBLIN-POLONIA
VOL. XLIX, 6_________________ SECTIO A__________________________ 1995

Zdzisław GRODZKI and Jerzy MYCKA (Lublin)

The Equivalence of Some Classes of Algorithms

Abstract. This paper is a starting point of investigations on uni
form transposition of well known notions of formal algorithms (Tur
ing machines, Markov normal algorithms, unlimited register ma
chines), formal grammars, as well as programming languages like
PASCAL, by means of iterative systems [6]. Using the same idea we
are able to introduce new classes of Markov-like ¿-algorithms. In this
paper only two classes MAk and MAk of Markov-like ¿-algorithms
are introduced and briefly characterized. The equivalence of each of
the above classes and the class A'lA/’A of Markov normal algorithms
is shown. This equivalence implies the closure properties of MAk
and A'lAjt under the same operations as those in MM A.

1. Introduction. Iterative systems have been used by Pawlak to de
fine some classes of computing machines [6] and by Mazurkiewicz [4]
to define a very general class of programming languages. We extend
this idea to unify the well known notions of formal algorithms (Tur
ing machines [5], Markov normal algorithms [3], unlimited register
machines [1]), formal grammars, as well as programming languages
like PASCAL. We are also able to define easily new classes of Markov-
like ^-algorithms which are equivalent to the class M.N A of Markov
normal algorithms. The unified definition of classes of algorithms
mentioned above allows us to prove easily their equivalence.

In this paper only two classes MAk and M.Ak of left-hand side
Markov-like ^-algorithms are introduced and briefly characterized
(the ’’symmetric” classes 7£A4.Afc and 7£A4.4jt of right-hand side

86 Z. Grodzki and J. Mycka

Markov-like fc-algorithms will be introduced in the next authors’ pa
per). The equivalence of the classes MAk and MAk and the class
Ad AM of Markov normal algorithms is shown. It follows immediately
from this equivalence that both classes are closed under composition,
ramification, propagation and iteration.

Let us summarize reasons motivating research on uniform formal
ization of different kinds of objects (formal grammars, effective algo
rithms and programming languages):

(1) Uniform formalization of different kinds of objects allows us
to distinguish some class of problems which are essential for
all objects; these problems can be easily reformulated from
one formulation into another;

(2) It is possible to compare solutions of identical problems by
means of different kinds of objects with respect to complexity
of these solutions;

(3) Uniform formalization of the majority of algorithms allows us
to prove the equivalence of particular classes;

(4) The classes MAk and MAk of ^-algorithms form an infinite
sequence with respect to increasing k. In order to solve some
problems we choose an algorithm A of MAk U MAk for some
fc > 1;

(5) The used formalism allows us to simulate the algorithms of
the above mentioned classes by means of computing machines.

2. Algorithms. A subclass A of algorithms of class IS of the
iterative systems will be considered.

An iterative system IS is a pair (T, </>), where T is a nonempty set
(finite or infinite) and (j> is a partial function, </>: T t—> T. Then T is
called the set of states and </> the transition function of IS.

An iterative system IS — (T,</>) is said to be an algorithm iff the
following conditions hold:
T = P x V, where V is a set of objects and P is an indexed set
{(zi,ih) € V2 : 1 < i < n} whose elements are called the productions,
(/> = (Contr, TP), where Contr : P x V •-» P, called control, is a
partial function and Tr : P x V t—> V, called transformation, is a
total function.

An algorithm A = (P, V, Contr, Tr) is called empty and denoted

The Equivalence of Some Classes ... 87

by A° iff Dom(Contr) = 0; otherwise A is called nonempty.
An algorithm A = (P, V, Contr, Tr) is called total iff

Dom(Confr) = Dom(Tr) = P x V.1
Let A denote the class of all algorithms including the empty algo

rithm A° which are defined in a common set of objects V.
A sequence v = tq, u2,... € V°° is said to be a computation of an

algorithm A = (P, V, Contr, Tr) iff there exists a sequence of produc
tions (trace) of P of the form p = (x«^ ,2/ij),(x<2, J/j2),... satisfying
the conditions:
(2.1) /(v) = /(p), where /(v), /(p) denote the lengths of v and p;
(2.2) For every j , l<j< l(v), we have (xi>+1,t/l>+1) =

Contr^Xi^y^^vj) and uJ+1 = Tr((«<p),v>);
(2.3) For every m > 1, if Z(v) = m then

i P>vcn(Contr).

The set of all computations of an algorithm A is called its compu
tation set and denoted by C(A).

Let C(.4) denote the class of all computation sets of all algorithms
of A.

Remark 2.1 Let us assign to every computation v = iq, v2,... € V°°
of an algorithm A a sequence d = ((xq, y,x), tq), ((x^2, y^), u2),...
such that /(v) = /(d) and (x^, y^), (x,2, y^),... is a trace of v.

A sequence d of the above form is called a derivation according to
A. The set of all derivations according to A is called its derivation
set and denoted by P(A).

3. The designated algorithms. The subclass DA of A of the
designated algorithms will be considered here. The algorithms of
DA can be the models of programming languages like PASCAL or
PROLOG. It will be shown in the next section that DA contains the
class AdAfA of Markov normal algorithms, as well as two new classes
MAk and AdAk of Markov-like ^-algorithms.

By a designated algorithm of DA we mean an algorithm A =
(P,V, Contr, Tr) for which two nonempty subsets Pi and Pf of P
°f the initial and final productions are distinguished.

1 Dom(<£) denotes the domain of </>.

88 Z. Grodzki and J. Mycka

A designated algorithm will be written in the form:

DA = (P, Pi ,Pf,V, Contr, Tr) .

An activity of a designated algorithm DA = (P, Pi,Pf, V, Contr, Tr)
can be described by a set of sequences (finite or infinite) whose ele
ments are the configurations. By a configuration we mean an element
of P x V.

A configuration ((x,-, yf), u) transforms directly a configuration
((ij, yj),u) according to DA, in symbols ((xi?yf),w) =>DA ((xj, j/j), u),
iff (aTj, 2/j) = Contr (fxi,yi),v) and u = Tr((xi,yi),v), where (xm, ym)
is an m-th element of the set of productions P, called the m-th pro
duction.

A sequence of configurations (finite or infinite) of the form:

d = (On, J/«T), ^i)> ((^«2 > !/«2)> *>2), • • - e (P x V)°°

is said to be a derivation of DA iff (x^ ,yif) £ Pi and ((x^ , y^), vj)
=>da (Oj+i,l/«,+i),u>+l) for a11 1 J < z(d)-

A derivation is called successful if it is finite and its last element
(Op,!/ip),*>p) has the property: (xip,y,p) 6 Pf and
Contr(fxip, yip), vp) is undefined.

A partial function 7r : V —► V is said to be computable by an algo
rithm DA iff for every v € Dom(7r) there exists a successful derivation
of the form:

d = ((*i,,!/«!), ui),... , ((x,p, yip), vp)

such that v = rq and 7r(v) = Tr((xip, yip), vp).

Remark 3.1 The iterative Mazurkiewicz’s algorithms [4] which are
models of programs without procedures can be easily reformulated as
the designated algorithms. We omit here this reformulation but we
give only some examples.

Example 3.2. Let us consider a program in PASCAL computing
the function tt-.NxN^N'x.N such that 7r(0,n) = (n!,0)
s := n;
while n > 1 do

The Equivalence of Some Classes ... 89

begin
n := n — 1;
3 := 3 * n;
end;
Now we define the designated algorithm DA = (P, Pi,Pf, V, Contr, Tr)
which computes the function ir:
V = N xN,
Tr(((m,1,m*2),(n,1,n,2)),(xi,2:2)) = (?Zi, 2/2)
and

(¡/i,y2)
(a?i — n*i,a:2 — n*2) if m\ > m‘2

< (æi + n’i,a:2 + n*2) if mJ = nij
(xi * X2 * n‘i, X2 * n’2) otherwise

Contr^m1!, m’2), (n‘i, n’2)), (æi, x2)) = ((mJ’i, m>2), (n>i, rp2)),
where

i + 1 if m\ > m'2 and x2 = 1
i — 1 otherwise,

P = {P, =((0,0),(1,0)),P2=((0,1),(1,1)),P3=((1,0),(0,1)),
p4 = ((0,0),(0,0))}, P, = {P,}, P, = {P4}.
One can easily see that DA computes the function 7r.

4. Markov-like ^-algorithms. It will be shown that the class
of designated algorithms DA contains the class M.NA of Markov
normal algorithms, as well as two new classes MAk and MAk of
Markov-like ^-algorithms. The algorithms of both classes are defined
analogously as algorithms of MNA, by means of an indexed set of
productions but the manner of use of the productions to the trans
formed words is different for every one of these classes. The succession
of use of the productions for the algorithms of MAk (resp. MAk) is
the same (resp. different) as for algorithms of MNA.

Let us introduce at the beginning some notations.
For an alphabet S let L* denote the set of all finite sequences

(words) over S including the empty word e.
Let u and v be arbitrary words of S* of the lengths p and m(p <

^), respectively.
A word u is said to be a subword of v, u v, iff there are the

words z, w € S* (possibly empty) such that v = zuw.

90 Z. Grodzki and J. Mycka

If v = Vi.. .vm then for all 1 < z < j < m vpjj will denote a
sequence v, .. .Vj. For brevity we shall write instead of V[,We
assume that if i > j then V[,j] = e.

Let us define the set of the initial positions of all occurrences of u
in v as follows

Wv;u = {j € N : = u} .
Let us set

^v;u = {j € ^v;u ■ j < q} ■
A sequence vrr r+„_u is said to be the i-th occurrence of u in v,ui,v,iffr = n!inî(î4ul = .').

Example 4.1 Let u = 01 and v = 1010111011. Then Nv-U =
{2,4,8} and ,V»„ = = 0;^.u = JVj.„ = {2};JV;.U for i =
4,5,6,7 is equal to {2,4} and for j > 8 N^.u = {2,4,8}.

Therefore the 2-nd occurrence of u in v is equal to Vj4)5j, because
mini(l^;ul = 2) = 4.

We say that a sequence V[j j+TO_!] is at most i-th occurrence of u
in v, u v, iff u v or there exists 1 < I < i such that u v
and ->(u ^/+i v).

First, it will be shown that Markov normal algorithms can be
defined by means of the designated algorithms.

A designated algorithm
DA = (P, Pi, Pf, V, Con/ri, Trj)

is said to be Markov normal algorithm in the alphabet E iff the
following conditions hold:
V = E*, P is an indexed set {(x^yi) : 1 < z < n} of productions,
where Xi,yi € E* for all z(l < z < n) and (x„,?/n) € Pj with xn =
yn = e, Pi = {(xi,yi)}2;
Contri is the partial function, Tri is the total function of P x V into
P and V, respectively, which are defined as follows3:

Conin((xi,z/,),v)
(xi,z/i) if Xi v and (xi,yi) $ Pf
(æ.+nî/t+i) if -•(xi r<i v)
undefined if Xi ^i v and (x,-,z/i) G Pf

2 We do not assume that Pi fl Pf =0.
3In the definition of Contri in the second case -’(a:,- Xi u) implies the inequal

ity i < |F|, because otherwise (i = |P|) the third case holds.

The Equivalence of Some Classes ... 91

{
V[l,J-l]2/«V[j+m,/(v)] if v[>,j+m-l] ÎS first

occurence of Xi in v

v otherwise

Markov normal algorithm DA is said to be an algorithm over an
alphabet E iff it is an algorithm in some alphabet E' such that E C E'.

It follows immediately from the above definition that every deriva
tion of DA is finite iff the last used production (xIp, y,p) € Pf and
Conir((æ,p, j/ip), Up) is undefined.

Let us make some comments. For the whole class MM A of Markov
normal algorithms the controls and transformations are the same.
Therefore to define an algorithm of M.JMA it is sufficient to construct
an indexed set P of productions, in which the final productions are
indicated (first production is always initial). In Markov [3] the final
productions are denoted by Xi —* -yi but the remaining ones by

—> yi and the author said that last production of the form £ —» •£
can be ommited.

Example 4.2. Let us define a Markov normal algorithm DA in the
alphabet E = {0,1} by means of the following set of productions:
P = {(01,11), (111, 10), (£,£)} and the following set of final produc
tions: Pf = {(01,11),(£,£)}.

For v = 1111 the derivation of DA has the form:

d = ((oi, ii), mi),((in, io), mi), ((oi, ii), 101).

The result of the application of DA to the word 1111 is equal to
^((01,11), 101) = 111.

Let us observe that the first production is final but a derivation
does not stop when this production is used first time, because ->(01 2^1
Ull).

Before giving formal definitions of the ¿-algorithms of MAt and
MAk let us give some intuitive remarks.

Every algorithm of both classes is defined by means of an indexed
set P of productions, which is called a schema of productions. We

92 Z. Grodzki and J. Mycka

additionally assume that P consists of the empty production (e,e)
which is an element of a subset Pf of P of the final productions and
this production has the maximal index. An algorithm A of MAk
works in the following way. Given a word Vo € S* we choose a
production (xj,yt), with the least index i, such that Xj is a subword
of Vo- If such a production does not exist then we stop, otherwise we
put a word y, instead of the m-th left-hand side occurrence of x, in
Vo for the maximal m < k. If the above production is in Pf then we
stop, otherwise we follow analogously with the new obtained word vj
as with Vo-

If A Ç MAk then we follow in a slightly different way. Given a
word Vo € S* we choose a production (xj,yj), with the least index
j, such that Xj occurs in v0 at least k times. If such a production
does not exist we choose a production (xm,ym) with the least index
m such that xm occurs in v0 (k — 1) times and so on. Let p < k
be the maximal number for which there exist a production (x/,y/)
with the least index I such that x/ occurs in Vo p times. Then we
put yi instead of the p-th left-hand side occurence of x/ in v0. If this
production is in Pf then we stop, otherwise we analogously follow
with the new obtained word Vi as with Vo-

Let us give at the end a remark. The algorithms of both classes
MAk and finish their computations in such a moment when
the last effectively used production is finished, i.e. element of Pf.

Let us formalize the above considerations.

Definition 4.3. By a Markov-like k-algorithm A G MAk in the
alphabet S we mean a designated algorithm

A = (P,Pi,Pf, V, Contr2,Tr2)

such that V = £*, P = {(x1,yi),(x2,y2),... ,(x„,y„)}, where
Xj,j/j € S*, for all i (1 < z < n) xn = e, yn = e and (x„,y„) € Pf,
Pi = {(xi,yi)} and Contr2,Tr2 are defined as follows:

{
(x!,yi) if Xi v and (xj,yj P;
(xi+i,yj+i) if ->(ii ^<k v)
undefined if x< v and (xi,yi) € Pf

The Equivalence of Some Classes ... 93

(
v[l,j — l]!/jv[j+m,/(v)] if — 1] 'S UlOSt

k occurence of Xi in v

v otherwise

Definition 4.4. By a Markov-like k-algorithm A € in the
alphabet S we mean a designated algorithm

A = (P,P,,P/,V,C ontr3, Tr3)

such that V = E*, P = {(xi, z/i), (a:2,2/2), • • • , (xtn+i, !/Jtn+i)}, where
for all i, 1 < i < kn + l,Xi,yi € E*, and for all j(n < j < fcn + l) Xj =

xj-n, yj = yj-n and Xfc„+1 = e,ykn+i = c, (xkn+i,ykn+i) e Pf and
Pi = {(£1,1/1)} and the functions Contr3 and Tr3 are equal

(xi,yi)

Contr^Xi.yi^yr) = « (xj+i,2/i+i)
undefined

if Xi v, I = fc — (i — l)/n

and (xj,2/j) £ Pf
if -<(xi v),l = k — (z — l)/n
if Xj ^1 v,l = k — (i — l)/n

and (xi,yi)ePf

' vllJ-i]IKvtf+m,i(v)] if vB,j+m-i] is I occurence
of Xj in v
where I = k — (z — l)/n

v otherwise

The notions of direct transformation of configurations as well as
a derivation can be analogously defined for algorithms of the classes
■M .4* and MAk as for designated algorithms in Section 3 by replacing
only Contr and Tr by Contri and Tr,, z — 2,3 respectively.

Let us give some comments on Definition 4.4. The schema of pro
ductions P of an algorithm A is, informally speaking, a sequence
^i,B2,... ,Bfc,(e,e) where each Bj,(l < z < fc) is a sequence of
Productions (X(j_l)„+1, y(j_l)n+l)> (a:(«-l)n+2, !/(i-l)n+2), ••• ,

94 Z. Grodzki and J. Mycka

(æ(«'-i)n+n, !/(i-i)n+n)- The j-th production of Bi has identical left
and right sides (but different indexes) to left and right side (respec
tively) of the j-th production of Bi (1 < i,l < k). For brevity, the
schema of productions of A will be written in the form: Bi,(e,e).

The j-th production of Bi is applied to a transformed word v in
such a way that k — i + 1 occurence of the left side of the production
(x(i_1)n+j, î/(,_1)n+>) of Bi is replaced by the right side (=j/(t_1)n+i),
if such an occurence there exists. Otherwise we go to the next pro
duction.

Remark 4.5. Let us see that each of the classes MAi and MAi
are equal to the class A4 AT A of Markov normal algorithms.

Remark 4.6. If the class of Markov-like ¿-algorithms is known then
every algorithm of this class can be defined by means of a schema of
productions.

Example 4.7. Let us consider the following mapping fk : Nm
jym-l

fkÇ^-l i æ2 , • • • i-Efn) —
(3?1, . . . , Xk + æfc+1j • • • j æm) k < 772

(xx,...,xrn_i~|-xni) k > m

Let us assume the convention that every m-tuple (aq,... , xm) will
be written in the form:

Il 12 Zm

Now we define the algorithm A € MAT A over the alphabet E =
{1,|} which computes the fuction fk- We define new alphabet E' =
E U {71,... ,7jt, A}. Schema of productions P has the form:
P = ((7i|,l72),(7il,l7i),
(721, |73),(72l,l72),

(7Jt-i|,|7*:))(7fc-il,l7fc-i),
(7fc|,e),(7fcl,l7fc),
(7i£,A),... ,(7fc£,A),

The Equivalence of Some Classes ... 95

(lA,Al),(|A,e),
(e, e))>
p. = {(71IJ72)} , Pf = {(7*he),(IV),(e,e)}.

Now we define the algorithm A' G MAk in the alphabet E = {1, |}
which computes this mapping. In this case P = {(|,e),(£,e)},Pi =
{(|,£)},P/ = {(|,e),(e,e)}.

One can see that algorithm A' G MAk has fewer productions than
A e MNA.

Example 4.8. Let us consider three 3-algorithms A G AIA3 , A! G
MAj, and A" € MN A in the alphabet V = {0,1} with the same
schema of productions of the form: P = {(0,1), (10,01), (1,0)} with
(1,0) ePz.
Then the sequences

c = 1010,1011,1111,1101
c' = 1010,1011,1010
c" = 1010,1110,1111,0111

are the computations of A, A1 and A", respectively.

5. Equivalence of the classes MAk, MAk, and MNA of algo
rithms. It will be shown that every class of functions computable by
the algorithms of MAk and MAk is equal to the class of functions
computable by Markov normal algorithms.

At the beginning let us introduce some notations.
For x = X1X2.. .xn G E* let In(x,a) denote a word • -xn ■

A schema of productions: (xcqj/, a;i/),(a;a2y,zy),... , (xany, xy), whe
re E = {cq,... ,a„} will be briefly denoted by (xay, xy), a G E. The
additional symbols E) will be denoted by 7,£,X,Vb^ (with or
without subscripts and superscripts).

Now we give two theorems on equivalence of the classes A4Ajt,
■MAfc and MN A.

Theorem 5.1. (1) For every k-algorithm A G MAk in an alphabet
£ there exists an equivalent algorithm M G MN A over an alphabet
£ such that A(v) = Al(v) for every v G E*;

96 Z. Grodzki and J. Mycka

(2) For every algorithm M G M.AÎ A in an alphabet S there exists
an equivalent algorithm Ai € MA/t over an alphabet S such that
Ai(v) = Af(v) for every v Ç S*.

Proof. First we prove (1).
Let S' = SU{7/, A’}) where 1 < i < n and 1 < j < k. For an algo

rithm A G MAk with the schema of productions (æi, j/i),... , (xn,yn)
we create for each production (x,, j/j) an auxiliary block of produc
tions Sri of the form:

(7/®bIn(xi,7J+/)) for j < k

this production is final iff (ar., 2/») is final

(7/0,07/) for j < k
(7?M’)

(A’xi,!/,)
(oA‘, A’o)

(eA‘,-n‘+1).

for j < k

This determines a Markov normal algorithm M = (Srj, Sr2,... ,
Srn, (7in+1,e),(e,7i1)) (the production (7i”+1,e) is final) over S
such that Af(v) = A(v), for arbitrary v G S*.

To prove (2) let us consider a Markov normal algorithm M in the
alphabet S with a schema of productions of the form: (xj, j/i),... ,
(^n, J/n) •

Let us assign to each j-th production (1 < j < n) a schema of pro
ductions Srj (in the alphabet S' = SU {£i,... , Cn+i} U {71, • • • ,7n})
of the form:

this production is final iff is final

(6«,«^) (a € S)

(07,, 7,0)

(£7j,G+i)
Let Ai G MAk be an algorithm with a schema of productions

(Sri,Sr2,... , Srjt,(ÎJt+i,e))(£56)) ((Îfc+i,e) € Pf). One can easily
see that A/v) — JVf(v), for arbitrary v G S*. ■

The Equivalence of Some Classes ... 97

Theorem 5.2. (1) For every k-algorithm A € in an alphabet
S there exists an equivalent algorithm M E MAS A over an alphabet
S such that A(v) = M(v) for every v G S*;

(2) For every algorithm M E MAS. A in an alphabet S there exists
an equivalent algorithm Ai E MAk over an alphabet S such that
A2 (v) = A/(v) for every v E S*.

Proof. First we prove (1).
Let S' = S U {7/’’, A’}) where 1 < i < n and 1 < j, & <

k. For an algorithm A E MAk with the schema of productions
(æi,î/i),... ,(xn,yn) (productions are without repetition, see com
ments after Definition 4.4) we create for each production (xi,yS) an
auxiliary block of productions Sr/ of the form:

(7j ’ xii In^Xi, 7j+i ’))

(oA'^A^a)

(eA,’’,71/>‘+1)

for j < k

this production is final iff (rr^, j/^) is final

for j < k

for j < k

if i + 1 = n then right side = 71i_1,1 .

Let M E MAS A be an algorithm with a schema of productions
(Sr?, Sr2\... ,Srn*,Srifc-1,Sr2fc-1,... ,Srnk-\... ,Sr?,
5r2x,... ,Srn1,(7i°’1,e),(e,7ifc-1)), ((7i°-1,e) E Pf). One can easily
see that A(u) = IW(v), for arbitrary v G S*.

To prove (2) let us consider an algorithm M of MAS A in the alpha
bet S with the schema of productions of the form: (27,1/1),... ,(xn,yn).

Let us construct an algorithm A2 E MAk in the alphabet (S' =
^0 {&,... ,£k+i} U {71,... ,7fc}) as follows.

Let us assign to the j-th production (ff/î/j) (1 < j < n) the
following schema of productions Sr/

(3ja,a/îj)
(^,7>) («es)
(/?>£,£)
(<*7/7j<*)

98 Z. Grodzki and J. Mycka

Let A2 € A4Ak be an algorithm with a schema of productions
(without repetition) of the form: ((£1X1, (i), ■ • • , (£„xn, (n), Sri,
Sr2,... ,5rn,(£7n,e) € P/,(e,6)), where (,• = yi(3, if i £Pf and
otherwise (,• = yi and this production is final.

One can easily see that ^(v) = M(v), for arbitrary v € S*. ■

6. Closure properties of the classes AdAk and Analo
gously as for Markov normal algorithms one can define the operations
on the ¿-algorithms of respective class, such as composition, ramifi
cation, propagation and iteration.

Only for illustration the operation of composition will be recalled
after Mendelson [5], the remaining operations can be found in [5].

Let Ai and A2 be two ¿-algorithms in the alphabet L of MAk U
AAAk- A ¿-algorithm A in the alphabet S is said to be obtained from
Ai and A2 by operation of composition (A10A2) iff A(v) = Ai(^2(v))
for arbitrary v € 52*•

Lemma 6.1. For every k > 1, (A4>lfc,o) and 0) form the
semigroup with unity. The empty algorithm is the unity of these
semigroups.

Theorem 6.2. The classes MAk and AAAk are closed under the
following operations:

(1) composition;
(2) ramification;
(3) propagation;
(4) iteration.

Proof immediately follows from the fact that MA'A is closed under
the above operations (see [5], pp. 214-218) and from Theorems 6.1
and 6.2.

7. Final remarks. Only one aspect of the equivalence problem
of the classes MAk and M-4* and MAfA has been examined. The
same aspect of the equivalence problem will be continued for the other

The Equivalence of Some Classes ... 99

classes of algorithms.
The authors’ next paper will be devoted to the equivalence of

the classes 7vA4>U and 7£A4.4fc of right-hand side Markov-like k-
algorithms and the class MJ\Z"A of Markov normal algorithms.

The complexity problem of algorithms and their computations re
mains open till now. It would be interesting to compare the ability
of algorithms of particular classes for computations of Boolean func
tions.

References

[1] Cutland, N. J., Computability and introduction to recursive function the
ory, Cambridge University Press,, Cambridge, London, New York, Sydney,
Melbourne, 1980.

[2] Golomb, S.W., Shift-register sequences, Aegen Park Press, Laguna Hills,,
1982.

[3] Markov, A., The Theory of Algorithms (in Russian), Trudy Mat. Inst. Steklov
XLII (1954).

[4] Mazurkiewicz, A., Foundation of programming theory, Problemy Przetwarza
nia Informacji, Wydz. Naukowo-Tech., Warszawa 1974,, 39-94.

[5] Mendelson, E., Introduction to Mathematical Logic, The University Series in
Mathematics, Princeton, 1964.

[6] Pawlak, Z., Stored program computers, Algorytmy 10 (1969), 7-22.

Authors’ addresses: received March 16, 1995
Institute of Management and Foundation of Technics
Department of Applied Mathematics
Technical University of Lublin
ul. Bernardyńska 13
20-950 Lublin, Poland

Jerzy Mycka
Institute of Mathematics
Mariae Curie-Sklodowska University
pi. M. Curie-Skłodowskiej 1
20-031 Lublin, Poland

