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The Equivalence of Some Classes of Algorithms

Abstract. This paper is a starting point of investigations on uni­
form transposition of well known notions of formal algorithms (Tur­
ing machines, Markov normal algorithms, unlimited register ma­
chines), formal grammars, as well as programming languages like 
PASCAL, by means of iterative systems [6]. Using the same idea we 
are able to introduce new classes of Markov-like ¿-algorithms. In this 
paper only two classes MAk and MAk of Markov-like ¿-algorithms 
are introduced and briefly characterized. The equivalence of each of 
the above classes and the class A'lA/’A of Markov normal algorithms 
is shown. This equivalence implies the closure properties of MAk 
and A'lAjt under the same operations as those in MM A.

1. Introduction. Iterative systems have been used by Pawlak to de­
fine some classes of computing machines [6] and by Mazurkiewicz [4] 
to define a very general class of programming languages. We extend 
this idea to unify the well known notions of formal algorithms (Tur­
ing machines [5], Markov normal algorithms [3], unlimited register 
machines [1]), formal grammars, as well as programming languages 
like PASCAL. We are also able to define easily new classes of Markov- 
like ^-algorithms which are equivalent to the class M.N A of Markov 
normal algorithms. The unified definition of classes of algorithms 
mentioned above allows us to prove easily their equivalence.

In this paper only two classes MAk and M.Ak of left-hand side 
Markov-like ^-algorithms are introduced and briefly characterized 
(the ’’symmetric” classes 7£A4.Afc and 7£A4.4jt of right-hand side
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Markov-like fc-algorithms will be introduced in the next authors’ pa­
per). The equivalence of the classes MAk and MAk and the class 
Ad AM of Markov normal algorithms is shown. It follows immediately 
from this equivalence that both classes are closed under composition, 
ramification, propagation and iteration.

Let us summarize reasons motivating research on uniform formal­
ization of different kinds of objects (formal grammars, effective algo­
rithms and programming languages):

(1) Uniform formalization of different kinds of objects allows us 
to distinguish some class of problems which are essential for 
all objects; these problems can be easily reformulated from 
one formulation into another;

(2) It is possible to compare solutions of identical problems by 
means of different kinds of objects with respect to complexity 
of these solutions;

(3) Uniform formalization of the majority of algorithms allows us 
to prove the equivalence of particular classes;

(4) The classes MAk and MAk of ^-algorithms form an infinite 
sequence with respect to increasing k. In order to solve some 
problems we choose an algorithm A of MAk U MAk for some 
fc > 1;

(5) The used formalism allows us to simulate the algorithms of 
the above mentioned classes by means of computing machines.

2. Algorithms. A subclass A of algorithms of class IS of the 
iterative systems will be considered.

An iterative system IS is a pair (T, </>), where T is a nonempty set 
( finite or infinite) and (j> is a partial function, </>: T t—> T. Then T is 
called the set of states and </> the transition function of IS.

An iterative system IS — (T,</>) is said to be an algorithm iff the 
following conditions hold:
T = P x V, where V is a set of objects and P is an indexed set 
{(zi,ih) € V2 : 1 < i < n} whose elements are called the productions, 
(/> = (Contr, TP), where Contr : P x V •-» P, called control, is a 
partial function and Tr : P x V t—> V, called transformation, is a 
total function.

An algorithm A = (P, V, Contr, Tr) is called empty and denoted
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by A° iff Dom(Contr) = 0; otherwise A is called nonempty.
An algorithm A = (P, V, Contr, Tr) is called total iff

Dom(Confr) = Dom(Tr) = P x V.1
Let A denote the class of all algorithms including the empty algo­

rithm A° which are defined in a common set of objects V.
A sequence v = tq, u2,... € V°° is said to be a computation of an

algorithm A = (P, V, Contr, Tr) iff there exists a sequence of produc­
tions (trace) of P of the form p = (x«^ ,2/ij),(x<2, J/j2),... satisfying 
the conditions:
(2.1) /(v) = /(p), where /(v), /(p) denote the lengths of v and p;
(2.2) For every j , l<j< l(v), we have (xi>+1,t/l>+1) =

Contr^Xi^y^^vj) and uJ+1 = Tr((«<p ),v>);
(2.3) For every m > 1, if Z(v) = m then

i P>vcn(Contr).

The set of all computations of an algorithm A is called its compu­
tation set and denoted by C(A).

Let C(.4) denote the class of all computation sets of all algorithms 
of A.

Remark 2.1 Let us assign to every computation v = iq, v2,... € V°° 
of an algorithm A a sequence d = ((xq, y,x ), tq), ((x^2, y^), u2),... 
such that /(v) = /(d) and (x^, y^), (x,2, y^),... is a trace of v.

A sequence d of the above form is called a derivation according to 
A. The set of all derivations according to A is called its derivation 
set and denoted by P(A).

3. The designated algorithms. The subclass DA of A of the 
designated algorithms will be considered here. The algorithms of 
DA can be the models of programming languages like PASCAL or 
PROLOG. It will be shown in the next section that DA contains the 
class AdAfA of Markov normal algorithms, as well as two new classes 
MAk and AdAk of Markov-like ^-algorithms.

By a designated algorithm of DA we mean an algorithm A = 
(P,V, Contr, Tr) for which two nonempty subsets Pi and Pf of P 
°f the initial and final productions are distinguished.

1 Dom(<£) denotes the domain of </>.
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A designated algorithm will be written in the form:

DA = (P, Pi ,Pf,V, Contr, Tr) .

An activity of a designated algorithm DA = (P, Pi,Pf, V, Contr, Tr) 
can be described by a set of sequences (finite or infinite) whose ele­
ments are the configurations. By a configuration we mean an element 
of P x V.

A configuration ((x,-, yf), u) transforms directly a configuration 
((ij, yj),u) according to DA, in symbols ((xi?yf),w) =>DA ((xj, j/j), u), 
iff (aTj, 2/j) = Contr (fxi,yi),v) and u = Tr((xi,yi),v), where (xm, ym) 
is an m-th element of the set of productions P, called the m-th pro­
duction.

A sequence of configurations (finite or infinite) of the form:

d = (On, J/«T ), ^i)> ((^«2 > !/«2)> *>2), • • - e (P x V)°°

is said to be a derivation of DA iff (x^ ,yif) £ Pi and ((x^ , y^), vj)
=>da (Oj+i,l/«,+i),u>+l) for a11 1 J < z(d)-

A derivation is called successful if it is finite and its last element 
(Op,!/ip),*>p) has the property: (xip,y,p) 6 Pf and 
Contr(fxip, yip), vp) is undefined.

A partial function 7r : V —► V is said to be computable by an algo­
rithm DA iff for every v € Dom(7r) there exists a successful derivation 
of the form:

d = ((*i,,!/«!), ui),... , ((x,p, yip), vp) 

such that v = rq and 7r(v) = Tr((xip, yip), vp).

Remark 3.1 The iterative Mazurkiewicz’s algorithms [4] which are 
models of programs without procedures can be easily reformulated as 
the designated algorithms. We omit here this reformulation but we 
give only some examples.

Example 3.2. Let us consider a program in PASCAL computing 
the function tt-.NxN^N'x.N such that 7r(0,n) = (n!,0) 
s := n;
while n > 1 do
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begin
n := n — 1; 
3 := 3 * n;
end;
Now we define the designated algorithm DA = (P, Pi,Pf, V, Contr, Tr) 
which computes the function ir:
V = N xN,
Tr(((m,1,m*2),(n,1,n,2)),(xi,2:2)) = (?Zi, 2/2)
and

(¡/i,y2)
(a?i — n*i,a:2 — n*2) if m\ > m‘2

< (æi + n’i,a:2 + n*2) if mJ = nij
(xi * X2 * n‘i, X2 * n’2) otherwise

Contr^m1!, m’2), (n‘i, n’2)), (æi, x2)) = ((mJ’i, m>2), (n>i, rp2)), 
where

i + 1 if m\ > m'2 and x2 = 1 
i — 1 otherwise,

P = {P, =((0,0),(1,0)),P2=((0,1),(1,1)),P3=((1,0),(0,1)), 
p4 = ((0,0),(0,0))}, P, = {P,}, P, = {P4}.
One can easily see that DA computes the function 7r.

4. Markov-like ^-algorithms. It will be shown that the class 
of designated algorithms DA contains the class M.NA of Markov 
normal algorithms, as well as two new classes MAk and MAk of 
Markov-like ^-algorithms. The algorithms of both classes are defined 
analogously as algorithms of MNA, by means of an indexed set of 
productions but the manner of use of the productions to the trans­
formed words is different for every one of these classes. The succession 
of use of the productions for the algorithms of MAk (resp. MAk) is 
the same (resp. different) as for algorithms of MNA.

Let us introduce at the beginning some notations.
For an alphabet S let L* denote the set of all finite sequences

(words) over S including the empty word e.
Let u and v be arbitrary words of S* of the lengths p and m(p <

^), respectively.
A word u is said to be a subword of v, u v, iff there are the 

words z, w € S* (possibly empty) such that v = zuw.



90 Z. Grodzki and J. Mycka

If v = Vi.. .vm then for all 1 < z < j < m vpjj will denote a 
sequence v, .. .Vj. For brevity we shall write instead of V[,We 
assume that if i > j then V[,j] = e.

Let us define the set of the initial positions of all occurrences of u 
in v as follows

Wv;u = {j € N : = u} .
Let us set

^v;u = {j € ^v;u ■ j < q} ■
A sequence vrr r+„_u is said to be the i-th occurrence of u in v,ui,v,iffr = n!inî(î4ul = .').

Example 4.1 Let u = 01 and v = 1010111011. Then Nv-U = 
{2,4,8} and ,V»„ = = 0;^.u = JVj.„ = {2};JV;.U for i =
4,5,6,7 is equal to {2,4} and for j > 8 N^.u = {2,4,8}.

Therefore the 2-nd occurrence of u in v is equal to Vj4)5j, because 
mini(l^;ul = 2) = 4.

We say that a sequence V[j j+TO_!] is at most i-th occurrence of u 
in v, u v, iff u v or there exists 1 < I < i such that u v 
and ->(u ^/+i v).

First, it will be shown that Markov normal algorithms can be 
defined by means of the designated algorithms.

A designated algorithm
DA = (P, Pi, Pf, V, Con/ri, Trj)

is said to be Markov normal algorithm in the alphabet E iff the 
following conditions hold:
V = E*, P is an indexed set {(x^yi) : 1 < z < n} of productions, 
where Xi,yi € E* for all z(l < z < n) and (x„,?/n) € Pj with xn = 
yn = e, Pi = {(xi,yi)}2;
Contri is the partial function, Tri is the total function of P x V into 
P and V, respectively, which are defined as follows3:

Conin((xi,z/,),v)
(xi,z/i) if Xi v and (xi,yi) $ Pf
(æ.+nî/t+i) if -•(xi r<i v)
undefined if Xi ^i v and (x,-,z/i) G Pf

2 We do not assume that Pi fl Pf =0.
3In the definition of Contri in the second case -’(a:,- Xi u) implies the inequal­

ity i < |F|, because otherwise (i = |P|) the third case holds.
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{
V[l,J-l]2/«V[j+m,/(v)] if v[>,j+m-l] ÎS first 

occurence of Xi in v

v otherwise

Markov normal algorithm DA is said to be an algorithm over an 
alphabet E iff it is an algorithm in some alphabet E' such that E C E'.

It follows immediately from the above definition that every deriva­
tion of DA is finite iff the last used production (xIp, y,p ) € Pf and 
Conir((æ,p, j/ip ), Up) is undefined.

Let us make some comments. For the whole class MM A of Markov 
normal algorithms the controls and transformations are the same. 
Therefore to define an algorithm of M.JMA it is sufficient to construct 
an indexed set P of productions, in which the final productions are 
indicated (first production is always initial). In Markov [3] the final 
productions are denoted by Xi —* -yi but the remaining ones by

—> yi and the author said that last production of the form £ —» •£ 
can be ommited.

Example 4.2. Let us define a Markov normal algorithm DA in the 
alphabet E = {0,1} by means of the following set of productions:
P = {(01,11), (111, 10), (£,£)} and the following set of final produc­
tions: Pf = {(01,11),(£,£)}.

For v = 1111 the derivation of DA has the form:

d = ((oi, ii), mi),((in, io), mi), ((oi, ii), 101).

The result of the application of DA to the word 1111 is equal to 
^((01,11), 101) = 111.

Let us observe that the first production is final but a derivation 
does not stop when this production is used first time, because ->(01 2^1 
Ull).

Before giving formal definitions of the ¿-algorithms of MAt and 
MAk let us give some intuitive remarks.

Every algorithm of both classes is defined by means of an indexed 
set P of productions, which is called a schema of productions. We
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additionally assume that P consists of the empty production (e,e) 
which is an element of a subset Pf of P of the final productions and 
this production has the maximal index. An algorithm A of MAk 
works in the following way. Given a word Vo € S* we choose a 
production (xj,yt), with the least index i, such that Xj is a subword 
of Vo- If such a production does not exist then we stop, otherwise we 
put a word y, instead of the m-th left-hand side occurrence of x, in 
Vo for the maximal m < k. If the above production is in Pf then we 
stop, otherwise we follow analogously with the new obtained word vj 
as with Vo-

If A Ç MAk then we follow in a slightly different way. Given a 
word Vo € S* we choose a production (xj,yj), with the least index 
j, such that Xj occurs in v0 at least k times. If such a production 
does not exist we choose a production (xm,ym) with the least index 
m such that xm occurs in v0 (k — 1) times and so on. Let p < k 
be the maximal number for which there exist a production (x/,y/) 
with the least index I such that x/ occurs in Vo p times. Then we 
put yi instead of the p-th left-hand side occurence of x/ in v0. If this 
production is in Pf then we stop, otherwise we analogously follow 
with the new obtained word Vi as with Vo-

Let us give at the end a remark. The algorithms of both classes 
MAk and finish their computations in such a moment when
the last effectively used production is finished, i.e. element of Pf.

Let us formalize the above considerations.

Definition 4.3. By a Markov-like k-algorithm A G MAk in the 
alphabet S we mean a designated algorithm

A = (P,Pi,Pf, V, Contr2,Tr2)

such that V = £*, P = {(x1,yi),(x2,y2),... ,(x„,y„)}, where 
Xj,j/j € S*, for all i (1 < z < n) xn = e, yn = e and (x„,y„) € Pf, 
Pi = {(xi,yi)} and Contr2,Tr2 are defined as follows:

{
(x!,yi) if Xi v and (xj,yj P;
(xi+i,yj+i) if ->(ii ^<k v) 
undefined if x< v and (xi,yi) € Pf
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(
v[l,j — l]!/jv[j+m,/(v)] if — 1] 'S UlOSt

k occurence of Xi in v

v otherwise

Definition 4.4. By a Markov-like k-algorithm A € in the
alphabet S we mean a designated algorithm

A = (P,P,,P/,V,C ontr3, Tr3 )

such that V = E*, P = {(xi, z/i), (a:2,2/2), • • • , (xtn+i, !/Jtn+i)}, where 
for all i, 1 < i < kn + l,Xi,yi € E*, and for all j(n < j < fcn + l) Xj = 

xj-n, yj = yj-n and Xfc„+1 = e,ykn+i = c, (xkn+i,ykn+i) e Pf and 
Pi = {(£1,1/1)} and the functions Contr3 and Tr3 are equal

(xi,yi)

Contr^Xi.yi^yr) = « (xj+i,2/i+i)
undefined

if Xi v, I = fc — (i — l)/n 

and (xj,2/j) £ Pf 
if -<(xi v),l = k — (z — l)/n 
if Xj ^1 v,l = k — (i — l)/n 

and (xi,yi)ePf

' vllJ-i]IKvtf+m,i(v)] if vB,j+m-i] is I occurence 
of Xj in v
where I = k — (z — l)/n 

v otherwise

The notions of direct transformation of configurations as well as 
a derivation can be analogously defined for algorithms of the classes 
■M .4* and MAk as for designated algorithms in Section 3 by replacing 
only Contr and Tr by Contri and Tr,, z — 2,3 respectively.

Let us give some comments on Definition 4.4. The schema of pro­
ductions P of an algorithm A is, informally speaking, a sequence 
^i,B2,... ,Bfc,(e,e) where each Bj,(l < z < fc) is a sequence of 
Productions (X(j_l)„+1, y(j_l)n+l)> (a:(«-l)n+2, !/(i-l)n+2), ••• ,
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(æ(«'-i)n+n, !/(i-i)n+n)- The j-th production of Bi has identical left 
and right sides (but different indexes) to left and right side (respec­
tively) of the j-th production of Bi (1 < i,l < k). For brevity, the 
schema of productions of A will be written in the form: Bi,(e,e).

The j-th production of Bi is applied to a transformed word v in 
such a way that k — i + 1 occurence of the left side of the production 
(x(i_1)n+j, î/(,_1)n+>) of Bi is replaced by the right side (=j/(t_1)n+i), 
if such an occurence there exists. Otherwise we go to the next pro­
duction.

Remark 4.5. Let us see that each of the classes MAi and MAi 
are equal to the class A4 AT A of Markov normal algorithms.

Remark 4.6. If the class of Markov-like ¿-algorithms is known then 
every algorithm of this class can be defined by means of a schema of 
productions.

Example 4.7. Let us consider the following mapping fk : Nm 
jym-l

fkÇ^-l i æ2 , • • • i-Efn) —
(3?1, . . . , Xk + æfc+1j • • • j æm) k < 772 

(xx,...,xrn_i~|-xni) k > m

Let us assume the convention that every m-tuple (aq,... , xm) will 
be written in the form:

Il 12 Zm

Now we define the algorithm A € MAT A over the alphabet E = 
{1,|} which computes the fuction fk- We define new alphabet E' = 
E U {71,... ,7jt, A}. Schema of productions P has the form:
P = ((7i|,l72),(7il,l7i),
(721, |73),(72l,l72),

(7Jt-i|,|7*:))(7fc-il,l7fc-i), 
(7fc|,e),(7fcl,l7fc), 
(7i£,A),... ,(7fc£,A),
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(lA,Al),(|A,e),
(e, e))>
p. = {(71IJ72)} , Pf = {(7*he),(IV),(e,e)}.

Now we define the algorithm A' G MAk in the alphabet E = {1, |} 
which computes this mapping. In this case P = {(|,e),(£,e)},Pi = 
{(|,£)},P/ = {(|,e),(e,e)}.

One can see that algorithm A' G MAk has fewer productions than 
A e MNA.

Example 4.8. Let us consider three 3-algorithms A G AIA3 , A! G 
MAj, and A" € MN A in the alphabet V = {0,1} with the same 
schema of productions of the form: P = {(0,1), (10,01), (1,0)} with
(1,0) ePz.
Then the sequences

c = 1010,1011,1111,1101 
c' = 1010,1011,1010 
c" = 1010,1110,1111,0111

are the computations of A, A1 and A", respectively.

5. Equivalence of the classes MAk, MAk, and MNA of algo­
rithms. It will be shown that every class of functions computable by 
the algorithms of MAk and MAk is equal to the class of functions 
computable by Markov normal algorithms.

At the beginning let us introduce some notations.
For x = X1X2.. .xn G E* let In(x,a) denote a word • -xn ■

A schema of productions: (xcqj/, a;i/),(a;a2y,zy),... , (xany, xy), whe­
re E = {cq,... ,a„} will be briefly denoted by (xay, xy), a G E. The 
additional symbols E) will be denoted by 7,£,X,Vb^ (with or 
without subscripts and superscripts).

Now we give two theorems on equivalence of the classes A4Ajt, 
■MAfc and MN A.

Theorem 5.1. (1) For every k-algorithm A G MAk in an alphabet 
£ there exists an equivalent algorithm M G MN A over an alphabet 
£ such that A(v) = Al(v) for every v G E*;
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(2) For every algorithm M G M.AÎ A in an alphabet S there exists 
an equivalent algorithm Ai € MA/t over an alphabet S such that 
Ai(v) = Af(v) for every v Ç S*.

Proof. First we prove (1).
Let S' = SU{7/, A’}) where 1 < i < n and 1 < j < k. For an algo­

rithm A G MAk with the schema of productions (æi, j/i ),... , (xn,yn) 
we create for each production (x,, j/j) an auxiliary block of produc­
tions Sri of the form:

(7/®bIn(xi,7J+/)) for j < k

this production is final iff (ar., 2/») is final

(7/0,07/) for j < k
(7?M’)

(A’xi,!/,)
(oA‘, A’o)

(eA‘,-n‘+1).

for j < k

This determines a Markov normal algorithm M = (Srj, Sr2,... , 
Srn, (7in+1,e),(e,7i1)) (the production (7i”+1,e) is final) over S 
such that Af(v) = A(v), for arbitrary v G S*.

To prove (2) let us consider a Markov normal algorithm M in the 
alphabet S with a schema of productions of the form: (xj, j/i ),... , 
(^n, J/n) •

Let us assign to each j-th production (1 < j < n) a schema of pro­
ductions Srj (in the alphabet S' = SU {£i,... , Cn+i} U {71, • • • ,7n}) 
of the form:

this production is final iff is final

(6«,«^) (a € S)

(07,, 7,0)

(£7j,G+i)
Let Ai G MAk be an algorithm with a schema of productions 

(Sri,Sr2,... , Srjt,(ÎJt+i,e))(£56)) ((Îfc+i,e) € Pf). One can easily 
see that A/v) — JVf(v), for arbitrary v G S*. ■
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Theorem 5.2. (1) For every k-algorithm A € in an alphabet
S there exists an equivalent algorithm M E MAS A over an alphabet 
S such that A(v) = M(v) for every v G S*;

(2) For every algorithm M E MAS. A in an alphabet S there exists 
an equivalent algorithm Ai E MAk over an alphabet S such that 
A2 (v) = A/(v) for every v E S*.

Proof. First we prove (1).
Let S' = S U {7/’’, A’}) where 1 < i < n and 1 < j, & < 

k. For an algorithm A E MAk with the schema of productions 
(æi,î/i),... ,(xn,yn) (productions are without repetition, see com­
ments after Definition 4.4 ) we create for each production (xi,yS) an 
auxiliary block of productions Sr/ of the form:

(7j ’ xii In^Xi, 7j+i ’ ))

(oA'^A^a)

(eA,’’,71/>‘+1)

for j < k

this production is final iff (rr^, j/^) is final 

for j < k 

for j < k

if i + 1 = n then right side = 71i_1,1 .

Let M E MAS A be an algorithm with a schema of productions 
(Sr?, Sr2\... ,Srn*,Srifc-1,Sr2fc-1,... ,Srnk-\... ,Sr?, 
5r2x,... ,Srn1,(7i°’1,e),(e,7ifc-1)), ((7i°-1,e) E Pf). One can easily 
see that A(u) = IW(v), for arbitrary v G S*.

To prove (2) let us consider an algorithm M of MAS A in the alpha­
bet S with the schema of productions of the form: (27,1/1),... ,(xn,yn). 

Let us construct an algorithm A2 E MAk in the alphabet (S' =
^0 {&,... ,£k+i} U {71,... ,7fc}) as follows.

Let us assign to the j-th production (ff/î/j) (1 < j < n) the 
following schema of productions Sr/

(3ja,a/îj)
(^,7>) («es)
(/?>£,£)
(<*7/7j<*)
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Let A2 € A4Ak be an algorithm with a schema of productions 
(without repetition) of the form: ((£1X1, (i), ■ • • , (£„xn, (n), Sri, 
Sr2,... ,5rn,(£7n,e) € P/,(e,6)), where (,• = yi(3, if i £Pf and 
otherwise (,• = yi and this production is final.

One can easily see that ^(v) = M(v), for arbitrary v € S*. ■

6. Closure properties of the classes AdAk and Analo­
gously as for Markov normal algorithms one can define the operations 
on the ¿-algorithms of respective class, such as composition, ramifi­
cation, propagation and iteration.

Only for illustration the operation of composition will be recalled 
after Mendelson [5], the remaining operations can be found in [5].

Let Ai and A2 be two ¿-algorithms in the alphabet L of MAk U 
AAAk- A ¿-algorithm A in the alphabet S is said to be obtained from 
Ai and A2 by operation of composition (A10A2) iff A(v) = Ai(^2(v)) 
for arbitrary v € 52*•

Lemma 6.1. For every k > 1, (A4>lfc,o) and 0) form the
semigroup with unity. The empty algorithm is the unity of these 
semigroups.

Theorem 6.2. The classes MAk and AAAk are closed under the 
following operations:

(1) composition;
(2) ramification;
(3) propagation;
(4) iteration.

Proof immediately follows from the fact that MA'A is closed under 
the above operations (see [5], pp. 214-218) and from Theorems 6.1 
and 6.2.

7. Final remarks. Only one aspect of the equivalence problem 
of the classes MAk and M-4* and MAfA has been examined. The 
same aspect of the equivalence problem will be continued for the other
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classes of algorithms.
The authors’ next paper will be devoted to the equivalence of 

the classes 7vA4>U and 7£A4.4fc of right-hand side Markov-like k- 
algorithms and the class MJ\Z"A of Markov normal algorithms.

The complexity problem of algorithms and their computations re­
mains open till now. It would be interesting to compare the ability 
of algorithms of particular classes for computations of Boolean func­
tions.
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