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Two — Slit Harmonic Mappings

Abstract. We consider the class S//(A,°f complex func
tions f which are univalent, harmonic, orientation preserving on 
the open unit disk A, satisfy /(0) = /y(0) = 0 < A(0), and 
have the fixed range /(A) = Qo,t, where a < 0 < b and = 
C\ {(—oo,a] U [6,+oo)}. In particular, we describe the closure 
SH(A,naii)) and characterize its extreme points. Also, an auxil
iary class So of univalent harmonic orientation preserving functions 
f on A with /(0) = /t(0) = /,(0) — 1 = 0 and /(A \R) = C\R has 
been examined.

1. Introduction. Let ?f(A) be the linear space of all analytic func
tions on the disk A = {z € C : |z| < 1}, with the topology of locally 
uniform convergence.

There has been recently interest [1-3, 5-6, 8] in studying the class 
Sh of all functions f which are complex valued, harmonic, orientation 
preserving, univalent mappings of A, with the normalization

(1) /(0) = 0 < A(0).

If we let F and G be in A) and satisfy Re F = Re f, Re <7 = Im f,

fn\ r i — -it F iG . F — iG(.2) f = h + g with h =—-  and g = —  ,
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and the Jacobian of f, given by

(3) J/(*) = |/>'(*)|2 - |s'(z)|2 ,

is positive on A. For uniqueness of the presentation (2) we usually 
assume h(0) = <z(0) = 0. From (l)-(3) it follows that for f = h + g G 
Sh we have |gr'(O)| < |Ziz(0)| = Az(0), and hence the sets

(4) = {/ € : HO) = 0}

and
{/-(sWMO))/: f=h + geS„}

are the same. Assuming that /z(0) varies within a bounded ( resp. 
compact ) set W of positive numbers, we obtain a normal ( resp. 
compact ) family

{/ 6 : A(0) 6 IV} ( resp. {f 6 S°„ ■. /,(0) € IV}),

for the proof see [3].
In contrast to conformal mappings, harmonic univalent functions 

f are not at all determined ( up to normalization (1) ) by their image 
domains. Given a general simply connected domain Q C with any 
prescribed point wo € fi, it is natural to study harmonic orientation 
preserving univalent mappings f of A onto Q with /(0) = w0. If f is 
such a mapping,

oo oo
/(*) = W0 + ^2 aiz3 + 52 

j=l j=l

then .7/(0) = |«i |2 — |&i |2 > 0, all the affine transformations
(5)
w T(w) = wo + te ia [ai(w — w0) — ii(w — w0)] , < > 0, a € R, 

map C onto itself univalently, T(wo) = wq, and the function

T(/ (e’“2))-w0



Two - Slit Harmonic Mappings 61

is in the class (4). Since the set T(Q) is affinely similar Q, and as 
equality T(fi) = Q may occur for a suitable choice of t > 0 and a E R, 
we may restrict ourselves to the class

(6) 5h(A,Q) = {/: f-woeS°H, /(A) = ft} .

Let us consider the following examples.

Example 1. Choose a G R and t > 0 so that

Im {e‘“(ai - 6X)} = 0 < t = 1 /Re {ei"(a1 + &i)} •

Then (5) maps every strip

{w : a < Imw < b}, a < Imw0 < b,

onto itself. Indeed, under the above assumptions, ImT(w) = Imw, 
and if

Re {6%! + 6i)} = Im {e’^ax - b^} = 0

for a real æ, then |«i | = |i>i|, which contradicts the positivity of (3). 
Hence the desired choice of a and t is possible.

Example 2. Let Rewo be positive, and take a 6 R and t > 0 so 
that

Im{e’a(ûi +&i)} = Q<t = l/Re{e*'Q(ai - 6i)} .

Like before, the choice of parameters a, t is possible, and (5) maps 
the right half-plane onto itself. Here ReT(w) = Rew.

Example 3. If —oo a < u>o < b +oo, t = l/|ai — &i| and
e~ta = (Ql _ ¿J /|Ol _ b-i |, then (5) maps every set

(7) = C\ {(—oo,a] U [6,+oo)}

onto itself. Observe here that T(x) = x for all real x and

ImT(w) = [(|ai |2 - |£>i |2) /|«i ~ |2 ] Imw.

Hengartner and Schober [6] and later Cima and Livingston [2] 
considered the case of Q being a strip, Abu-Muhanna and Schober [1]
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considered the case of Q being a wedge or half-plane, and Livingston
[8] considered the case of fi = <C\(—oo,a], a < 0.

Our purpose is to study the closure of the class <Stf(A,fia,&) for 
arbitrary a < 0 < b, including the limit cases a = — oo or b = 
+oo, see (6-7) with wo = 0. It appears that <SH(A,fia,f>) is the 
union of a disjoint uncountable collection of compact convex sets 
with integral representations of Choquet’s type. This paper contains 
results presented by the second author on the international conference 
’’Planar harmonic mappings”, Technion (Haifa, Israel), May 8-15, 
1995.

2. Auxiliary results. This section presents some preliminaries and 
provides a detailed exposition of the class 5o, defined by (23). Ob
serve first that the set

Hh(A) = {h + g : h,g € H(A), flr(0) = 0} ,

with the topology of locally uniform convergence, is a locally con
vex topological vector space that contains 7f(A) and 7f(A) = 
{<7 : g G 7f(A)} as its subspaces. The topological dual space 7Y'H(A) 
can be represented by complex measures with compact supports in 
A [6]. Let h,g G H(A) with <7(0) = 0 and L G H'h(A). Then 
Z(/i + <?) = ■i'i(h) + ^(fii), where both the functionals L\ = L|7Y(A)
and g 1—> Z2(<7) = (z|7Y(A)) (<7) are in ?f'(A). Thus, for continuous

complex-linear functionals on Hh(A), the sequence form of Toeplitz 
type is possible.

Let A be a subset of a locally convex topological vector space. We 
shall use the notation EA, crA, co A and coA to denote the set of 
extreme points of A, the set of support points of A, the convex hull 
of A and the closed convex hull of A, respectively. The set of all 
probability measures on K we denote by P/<.

Let P be the class of functions p G H(A) for which p(0) = 1 and 
Rep > 0 on A. From the Riesz-Herglotz representation formula we 
get

(8) P = co{p, : |p| = 1} = {pM : p g Psa},
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where

(9)

Also

(10)

see e. g. [4].

for |t/| = 1 and
1 — T1Z

p^z) = y pn(z)dp(rf) for p e Psa- 

9A

EP = {pr, : |?7| = 1} and aP = co(EP),

Remark 1. Applying the Lebesgue dominated convergence theorem, 
we may deduce from (9) that for any p € Psa and q € dA, the 
function z (1 — rjz^p^z) has a nontangential limit at the point q: 
(11) _
(1 — T]z)pll(z') —> 2p ({??}) as A 9 z —► q with z — q = 0(1 — |z|).

In particular, (11) implies that for q € <9 A, 6 > 0 and all G P 
having analytic extensions to AU{z : 0 < |2 — 771 < <5}, the following 
equivalences hold:

(i)
(ii)

p ({t/}) = 0 iff Pfi is analytic at 77; 

M({V}) > 0 iff p,i has a simple pole at q.

The class P will play an important role in the considered sets of 
harmonic functions. For any -1 ^c^l, zG A and p G P, denote

(12)

and

(13)

qc(z) = q(z, c) = z /(l - 2cz + 22)

fc(z,c,p) = Re i ^(C)p(O^+ zTm9c(z). 
Jo

By means of (8-9) and (12-13), we may define some classes of har
monic typically real functions:

(14) P(c) = {fc(-,c,p): peP}, -1 c C 1,
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and

(15) T = U Ac).

Clearly, F C 7îh(A), and from (8-10) we deduce easily that

(16) P(c) = < y fc(-,c,pv)dp(p) : p e PaA > , -1 c < 1,

La J
(17) EP(c) = {fc(-,c,p„) : |r/| = 1}, a^(c) = co(EP(c))

and

(18) E^= J EP(c).

Each class T-’(c) is compact convex and invariant under the map
ping f f, where

/(*) = /(z).

In fact,

(19) / = fc(-,c,p) implies /=fc(-,c,p).

Moreover, if we denote p(£) = p(—£), then p € P iff p € P,

-k(-z,c,p) = k(z,-c,p) and
^(-c) = -f(-z) ■ f € p(c)}, -1 < c 1.

Also, .P(l) is homeomorphic to the class discussed by A. E. Livingston 
[8]:

(21) 5„(A,il„,+oo) = |: / € Z(l)|,

who observed that

(22) E5„(A,«„,+«,) = |: f e EJF(1)|.
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Obviously, the union 7" is also compact but not convex. Let us con
sider the class

(23) S0 = {fES°H: /z(0) = 1 and/(A \ R) = <C \ R} , 

and let

C- = {z : lmz < 0}, C+ = {z : Im:> 0}, 

A_=AnC_, A+ = AflC+.

Using standard methods [1-3, 5-6, 8] we shall examine the class 
T ( which is interesting in itself ). Its properties and some convexity 
techniques allow us to extend the results of Livingston [8] to the 
classes

«S#(A, QOifc) with a < 0 < b (a^ —oo or b / -f-oo).

Theorem 1. <So C F C <S^. Moreover, for each f £ f, every 
horizontal line has a non-empty connected intersection with /(A).

Proof. Let f = h + g € So with h,g € ?Y(A) and #(0) = 0. Then 
a = d'Ih' satisfies the hypothesis of Schwarz’s lemma, and, like in [3, 
6, 8], we first observe that

(h — g) o f x(w) = (/- 2Regf) 0 / x(w) = w - 2Re [fi o / x(w)] .

Since Ifi'l < \h'\ everywhere, we conclude that

~ Re [(fc - s) 0 /-'(< + ;«)] = A [(fc _ s)o /-■(« + ia)] e R \ {0}

for all f € R, if a 6 R \ {0}, and all t € /_1(R), if a = 0 ( by 
definition, /-1(R) C R ). In fact, h' — g' does not vanish on A, and, 
for any fixed a and z(f) = /_1(t + ia) we have

1 = IfM)]' = fMWW + MWM
i- e. z'(t) 0 for all t € R. Consequently, the function (h — <7) 0
f~l maps univalently each horizontal line into itself. Hence h — g is
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a classically normalized univalent function on A with Im(h — g) = 
Im/ = 0 a. e. on dA. By uniqueness in the Riemann mapping 
theorem, h — g = qc for a suitable c € [—1,1], see (12). Thus

f = Re(h + g) + i Im(h — g) = k c, see (13).

Let now f = fc(-,c,p) € ^(c) for some c € [—1,1] and p € P. 
Analogously to [3, 6, 8] we conclude that the function f o q~y maps 
horizontal lines into themselves, and

Q
& [f 0 9c + ««)] =Re[po971(i + ia)J >0

for every t E R and a € R \ {0}, and every t E «/^(R) and a = 0. 
This means that the functions t h-> Re [/ o q~ + ia)], a E R, are 
strictly increasing, i. e. / E and every horizontal line has a 
nonempty intersection with /(A).

The following Lemma will be useful for our next results.

Lemma 1. Suppose p to be v or v, where v = e,~1 with 0^7^%, 
let c = cos 7, and let p € V be analytic at p. Consider the function

(24) F(z) =
Jo

Then the function wv defined by
(25)

F(z) - p(p)gc(z) + log (1 - pz), if p2 / 1,p-p
wv(z) - S _ p(p)qc(z) - \p'(rf) + pp"(p)} log —-— +

I ;r>)2 = i,

is analytic at p. Furthermore, ifRep(rf) = 0, then

(26) IP'M < 6
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and

(27) 7/p'(?7) + Re [p2p"(p)] < 0.

Proof. The functions
z F'(z) - p(rj)q'c(z) - p2p'(p)/[(l - p2)(z - 77)] , if p2 / 1,

and

z F'(z) - p(r})q^(z) + 2tjP'(tj)/(z - p)2

+ [p'M + w"(p)]/(^ -»?), if »?2 = 1, 

are analytic at z = rj. The property (26) follows from the obvious 
facts:

/?(x) =f Rep (pe11) Rep(p) = /?(0) = 0 for all real £, 

p'(p) 0 (examine the net change in the argument of p — p(p)) and

Rep(xp) Rep(p) = 0 for 0 < x 1.

Finally, (27) is a consequence of the evident inequality /?"(0) 0.

Theorem 2. Fix any 7 € [0,7r] and suppose that p € F is analytic at 
v = e‘7 ( resp. at v = e-’7 ). Consider the function f = k(-,c,p) with 
c = cos7. If Rep(v) > 0 ( resp. Rep(u) > 0 ), then ,f(A+) = C+ 
( resp. /(A_) = C_ ).
Proof. Let rj = v or q = u, and consider the function (24). By 
Lemma 1, the function (25) is analytic at p. Since |arg(l — pz)| < 
tt/2 for all 2 £ A, the unrestricted limit

lim [(1 - pz)log(l -pz)]A9z—r/
exists and equals 0. Thus

F(z) = pc(z)[p(p) + 0(1)] +wv(F) as A 9 z -> rj.
Finally, on the preimages of horizontal lines, i. e. on the sets
(28)

{z € A : Im/(z) = Imgc(z) = 0} with a/0 and crimp > 0, 
we have

Re/(z) = ReF(z) —► ±00 as Repc(z) —♦ ±00.

The proof is complete.
As a corollary we get
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Theorem 3. For —1 c 1, let 5o(c) = «So A F(c). Then

(i) ¿>o(c) = F(c) for — 1 c 1,

(ii) So =
(iii)
(1 — A)«So(c) + A.F(c) = <So(c) for all 0 A < 1 and — 1 c 1.

Proof, (i). It is sufficient to observe that each f = k(-,c,p) 6 F(c) 
is the locally uniform limit of the sequence fn = h(-,c,pn), where 
pn(z) = p((l — l/n)z). Clearly, all the fn € 5"(c), and all the numbers 
Rep„(u), Rep„(ü) are positive. So the conclusion follows from the 
previous theorem.

(ii). The class F is compact as the image of the compact set 
[—1,1] x V under the continuous mapping (c,p) h-> h(-,c,p). By 
Theorems 1 and 2,

So= J S0(c)D J So(c) = ^DSo.

(iii). If f = (1 — A)/i + A/2 with 0 A < 1, /1 € So(c) and 
/2 € .F(c), then on the level set (28) we have

Re/i(z) —* +00, liminfRe/2(z) > —00 as Repc(z) —> +00,

and

Re/i(z) —> —00, limsupRe/2(z) <+00 as Regc(z) —* —00.

This means that f 6 So(c).
The next two theorems complete Theorem 2.

Theorem 4. Under the assumptions and notation of Lemma 1, the 
function f — k(-,c,p} with Rep(rf) — 0 has the following properties:

(i) if p2 / 1, then

f(A+) = D(u) A C+ for the case p = v,
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and

f(A-) = -D(v) D C_ for the case p = v, 

where D(rf) is a strip of the form

(29) {(z,2/) : |a: + t/Imp(i/)-Rew,(»7)| < -ttt/p'(t/)/[4 sin7]} ;

(ii) if r/2 = 1 and pp'(p) + Rep"(r/) < 0, then /(A \ R) = C \ R, i. 
e- f € So;

(iii) if p2 = 1 and pp'(p) + Rep"(p) = 0, then

/(A \ R) = {(x, y) : y / 0, (x - <^(y)h > 0},

where

(30) ^(j/) = -ylmp(r?) — 7/(77) - tt Imp"(?7) sign(y)/2 + Re 777,(77). 

The proof of the parts (ii)-(iii) needs a simple lemma.

Lemma 2.
(i) If p2 = 1, z = q-1 (»?/t2 + io), t > 0 and a € R \ {0}, then

(31)

t(l + pz) 
1 — pz = 2t 1 +

t2(l + 41077)
r~

t2(i+47077)
+ O(t4) as f -> 0+.= 2 1 +

In particular,

--------= 1 + x + O(t2) and log -—-— = ^ + O(t2) as t —> 0+.
1 - pz 2 1 - 772 2

(ii) If p2 = 1, z = y“1 (—77/t2 + io), t > 0 and o € R \ {0}, then

t(l + 772) 
1 — 772

2iyfl - <2(1 +44ia^

= 2ip sign(o)
f2(l + 47077) + O(t4)

8
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as t —► 0+. In particular,

= rji sign(ct) + - + O(t2) and

Proof. If 2/(1 — rjz)2 — 77/t2 + ia, t > 0, then

f2(l + Z72)2/(I - rjz)2 = 4 [l + f2(l + 4iai/)/4] ,

i. e. (31) holds because of Re[(l + z)2)/(l — Z72)] > 0. Similarly, if 
2/(1 — rjz)2 = —ri/t2 + zo, t > 0, then

f2(l + z/2)2/(l - rfzj2 = -4 [l - f2(l + 4zaz/)/4] , 

i. e. (32) holds because of Re[(l + z72)/(l — r/z)] > 0.

Proof of Theorem 4. (i). Fix a so that almzj > 0. If z € A, 
Imgc(z) = a and Re ^(2) —> ±00, then, according to (25),

and hence the form (29).
(ii)-(iii). It is sufficient to apply (25) and Lemma 2. If zy2 = 1, 

2 = q~x (z//t2 + za), t > 0 and a £ R \ {0}, then

ReF(2) = —olmp(z/) — p'(z/) + Rew^(z/)
2p'(zy) + [p'(z7) + z/Re p"(z?)] flogt

+ O(t)

as t —> 0+, i. e. for t —* 0+ we get

+00 if Z7 = 1,
—00 if zy = — 1.
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If now 7j2 = 1, 2: = 1 (—r]/t2 + io), t > 0 and a € R \ {0}, then

ReF(z) = -olmp(ij) - p'W - 7rsign(a)ImP"(T?) + ReWfj(^)
£

- p [pp'(rf) + Rep"(p)\ logt + 0(t) as t —> 0+,

i. e. for t —> 0+ we obtain

ReF(z)
' (-r/)oo, if r/p'(p) + Rep"(p) < 0,

* —a Imp(z/) — p'(y) — ,rs|gn(tt)2ImP (*» _|_ Re w(z/),

if T/p'(y)+ Rep"(p) = 0,

and hence the shape of (30). This finishes the proof.

Theorem 5. Let p be either v or v, where v = e,y with 0^7^%, 
and let c = cos 7. Consider any function f = k^-^c^p^ with p € PdA 
and p({t?}) > 0, see (9), (12-13) and Remark 1. Then

(i) /(A+) = C+ for Imz7>0,
(ii) /(A_) = C_ for Imr/<0,

and

(iii) f € 50, if p2 = 1.

To prove it we need

Lemma 3. Let p be either v or v, where u = e’7 = c + is with 
0 < 7 < 7r, and consider the function f = k(-,c,prj). If we denote

P = {(x,y) : 0 < x + |y|c/s + (7 - sc) /(4s3) < 7r /(4s3) } , 

then

(i) /(A) = C+ U {(x, y) e D : y 0} for rj = v,

and

(“) /(A) = C_ U {(x, y) e D : y > 0} for p = v.
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Proof. Since the total cluster sets of f at all points of dA \ {v,v} 
consist of real numbers, it is sufficient to examine the cluster sets of 
f at q and rj, and next to calculate the limits /( —1+), /(l-). To this 
end, denote

F(z) = f qc(t wm.
Jo

A simple calculation shows that

Re /(z) = Re F(z) = —A Re —----- B Im *** - C arg |
1 — t/z (1 — rfzy 1 —rjz

C = sign(Im?/) /(4s3)where A = c/(2s2), B = sign(Imr/)/(25), 
and arg 1=0. On every set (28) we have 
(33)

whenever a Im rj > 0 and t —► 0.

t2 + O(f3),

Similarly,
(34)

i \
2 Im r/ 8 Im3 tj /

if a Im rj = — a Im r? > 0 and f » 0.

t2 + O(f3),

(I) The cluster set at 77. Since |arg[(1 — r/z)/(l — »7z)]| < tt for all 
z € A, and since for z defined by (33),

Im [qz /(I — rizj2 ] = —8ct Im2 q/t + 0(1) as t —> 0,

we get
ReF(z) = 4almr//f + 0(1) as t —+ 0. 

Thus ReF(z) —> ±oo as t —► O2*1 (II).

(II) The cluster set at r/. On the curve (34) we have

7rjz i + 2i Im rj
1 — r/z t 1 + ¿o — 4 Im2 T),
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1. e.
7)2 1 , .

Re-------- =----— 2o Im ?7 + O(i) as t —> 0.
1 — 7/2 2

Moreover, on the curves (34) the following limit passages

arg
1 — 7/2 

1 — rjz

arg 7/ + 7T, if — 7T < arg 7/ < 0 and t —♦ 0+,
arg 7/ — 7T, if 0 < arg 7/ < 7r and t —♦ 0+,
arg 7/, if t —> 0“,

hold. In fact, the Möbius transformation z i-+ t = (1 — 7/2)/( 1 — rjz) is 
conformal and the points t = rj, 1, — 77,0 correspond to 2 = —1,0,1,7/, 
respectively. Finally observe that

ReF(—1+) = Re?/ /(41m2 7/) — (arg7/) /(41m3 7/) = (sc — 7) /(4s3)

and

ReF(l ) = (7T + sc — 7)/(4s3) . 

Lemma 4. If 7/2 = 1 and f = then

/(A) = C\(-oo,-l/6] for 7/= 1,0)

and

(Ü) /(A) = C\ [1/6,+00) for 7/=-1.

Proof. Observe first that

/(2) = Re P
1 + 7/2V _ 

,1-7/2/
+ zlm ^(2),

and hence the radial limits: /(—z/) = —77/6 and = +00. From
Lemma 2 we deduce that

1° on the curve 2 — g"1 (77/f2 + za), t > 0, with a 0, we have

/ 1 + 7/2 \3 _ 8_ 

\1 — 772/ t3
1 + |f2(l + 4zO7/) 

o
+ O(/) as i —> 0+,
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and
2° on the curve z = q^1 (—rj/t2 + zo), t > 0, with a/0, we have

l. e.

3 . . /riz\ —8zz? sign(o)
7/2 t3

1 - |f2(l 4-4zaz?) 
o

+ 0(f) as f —> 0+,

Re
1 + rjz\ 3 — 12|or|

+ 0(f) as f —> (T
1 — rjz J f

Thus, for rj = 1 or rj = —1, ReF(z) —> ±oo as Re q^z) —> ±oo.

Proof of Theorem 5. By assumption, f = fc(-,c,p^-) for fz ({??}) = 
1, and

f = + [1 -/* ({*?})] ¿(-’C,/^),

if p ({z?}) < 1 and v = [p — p({rjY) /(I — p ({»?})), where means 
the Dirac measure concentrated at £. If now /z({?/}) < 1 and 
Reqn(z) —* -f-oo ( resp. Re^(z) —> —oo ), then liminf Re fc(-,c,py) > 
—oo ( resp. limsupRefc(-,c,pp) < 4-oo ). According to Lemmas 3-4, 
the suitable passage to the limit is possible and the proof is complete.

Remark 2. Consider f = A:(-,c,p^) with — 1 c 1 and |£| = 1. It
follows from Lemmas 1-3 and Theorems 4-5 that

(i) f E So iff £ = c, i. e. iff c2 = 1 and £ = c;
(ii) in the case c2 = 1 and £ c, the set /(A) is the union of three 

disjoint sets: two convex wedges Vi C C+ and V2 C C_ whose the 
common boundary Vi C V2 is a real half-plane starting at some o, 
and Vi A V2 \ {0};

(iii) in the case — 1 < Re£ = c < 1, the set /(A) is the union of 
a non-horizontal strip and one from the two half-planes C+ or C_ 
( strictly speaking, the case implies that /(A) is the union of: a 
half-strip, a half-plane and a real segment );

(iv) in the case c2 1 and Re£ / c, the set /(A) is the union 
of three disjoint sets: two non-horizontal half-strips Vj C C+ and 
V2 C C_ whose the common boundary V\ Cl V% is a closed real 
segment joining some oi and «2, and Vi Pl V2 \ {01,02}-

Remark 3. In cases (ii)-(iv) of the previous remark the real com
ponents are as large as possible. For any function f = k(-,c,Pn)
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with a finitely discrete measure /z, its range /(A) may have some 
real slits. However, the only possibilities for /(A+) and /(A_) are: 
half-planes ( upper or lower ), half-strips or wedges. For instance, 
(1 — A)fc(-,c,p^) + Afc(-,c,p^) € «So whenever 0 < A < 1 and Re£ = c.

Remark 4. A property of the Poisson integral concerning cluster 
sets at boundary points is well known, see [6; proof of Th. 2.9] or 
[14; Th. IV.3]. Consider any f € T and let a < ¡3 with 0 (a,/?)- If
the set /(A) A {w : a < Imw < /3} is bounded to the left ( resp. to 
the right ), then it is bounded to the left ( resp. to the right ) by a 
straight line segment. This observation leads us to open questions:

1° Is there an f € J- whose range differs from that described in 
Remark 3?

2° Find the range of &(•, c,pM) for a singular and non-atomic mea
sure n e Psa-

Remark 5. The best bounds for |a„|, |6„|, ||a„| — |6n|| and |a„ — 6„| 
oo oo

among all functions f in J7, where /(z) = Z + Z are 
fc=l fc=2

assumed in the classes JF(1) and ^7( —1) so that Th. 5 from [8] with 
a = 1/6 extends to the whole class T. In fact, if f — fc(-,cos7,pM), 
0 7 <C 7r, then a simple calculation shows that

nan
A jsin(j7)^n_ j
t—' sin 7 j=i

n = 1,2,...,

and

yl j sin(j7)^n_,

sin 7 j=i '
d/z(£), n = 2,3,....

Thus

|an| ^2 J2/n = (n + l)(2n + l)/6, n = 1,2,..., 
j=i 
n —1

|&„| ^ Z ?/« = (n - l)(2n - l)/6, n = 2,3,..., 
j=i
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and

|^n| l^nll |®n 6n | —
sin(n7)

sm7
n, n = 2,3,...,

with equality only for 7 = 0 with p = ¿1 and for 7 = 7r with p = 
Let us add that JF(1) and /"(—I) do not play an essential role 

in extremal problems over F. For instance, Re 03 —4/3 for all
/ = fc(-,cos7,pM) € F with equality only for 7 = 7r/2 with /z = 8i or 
P = 8-i.

3. Some convexity tools. The main result concerns the existence 
of non-trivial variations preserving a system of constraints.

Theorem 6 [9, 13]. Let A be a non-empty compact convex subset of 
a locally convex Hausdorff vector space with zero element 0. Suppose 
that $ : A —> Rn is affine continuous. Then for every a £ A at least 
one of the following holds:

(i) a € co{ei,... ,en+i} for some ei,... ,en+i eEA, 
or

(ii) there exists a variational formula:

a + eb € A for all — 1 ^ £ ^ 1 with 6/0,

which preserves the constraints:

$(a + e6) = $(a) for all — 1 e 1.

Application 1 [9, 13]. Under the assumption of Theorem 6, for ev
ery non-empty compact convex set W C $(.4), the preimage $-1 (W) 
is a compact convex subset of A with

n+l

x = Xjej : Xj 0, ej € E A, 
j=i 
n+l

A> =1 and $(*) € w
i=l

For better supersets see [9, 13]. The proof for n = 1 and A = P[a,i] 
one can also find in [7]. As a corollary we get
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Application 2 [11, 13]. Let A be a non-empty compact convex 
subset of a locally convex Hausdorff vector space X and let

Z = {Ax : A 0, x 6 A}.

Suppose that $ : X —» R" is linear continuous with B $(A) ( here 
B means the zero element in Rn ). Then for every compact convex 
set W C $(£), the preimage (<$|Z)-1(W) is compact convex with

E(^Z)~\W) C B C (^Z)-\dW),

where
(35)

n

x = V ^jej • 0, ej € E A, $(ej) $(es) for j ± s
>=i

and $(x) € dW

In (35) we do not claim that Ai + • • • + A„ = 1.

Application 3 [8, 13]. Suppose X is a locally convex Hausdorff 
vector space, </> : X —> C is positively homogeneous ( i. e. 0(Ax) = 
A</>(x) for all A 0 and x € X ), c E C \ {0} and A is a compact 
convex subset of 1 (c). Let : A —> R be affine continuous with 
0 £ t/>(A) and let B = {a/V>(a) : a € A}. Then

1) B is compact convex,
2) the map a »—> a/ip(a) is a homeomorphism of A onto B,
3) EB = {o/^(a) : a € EA}.

In the proof there is no loss of generality in assuming that 

V’(A) = [a0,l»o] C (0,+oo)

( if otherwise, instead of ip consider —)• Then B C Am = {Ax : 
0 A M, x 6 A} for all M 1/ao, E Am C M • (E A) U {#} and 
B = t/>_1(l), where means the affine extension of ip to {Ax : A 
0, x € A}. Thus we may apply Application 1 to Am, V’ and IT = {1}. 
The conclusion EB C {a/xp^a) : a € E A} follows from the fact that 
Af may be arbitrarily large. A direct proof of Application 3 one can 
find in [8, 13].
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4. The class ¿>h(A, f2a>j,). We follow the notation of (6-9), (12-15) 
and (23). Let us consider

(36) Q = {Xf : A 0 and f € S},

the cone generated by F. The main idea is to show that the set

(37) Qa,b = {uEG’. u(A)nR = (a,f>)}

is the closure of «Sh(A, Qa,i>)- Next, since (36) is the union of the 
convex sets

(38) £(c) = {Xf: A 0 and f € ^(c)}, -1 c 1,

we are able to conclude that (37) is the union of some compact convex 
sets

(39) £a>6(c) = {« € S(c): «(A) flR = (a,6)}

with integral representations of Choquet’s type. For short, let u(—1) 
and u(l) stand for the radial limits u(—1+) and u(l-), respectively. 
Clearly, the functionals

(40) u t-> $x(«) = “(1) + Att(—1), A > 0,

are well-defined on (36), see a lemma below, and all of them are 
continuous on each <?(c) with — 1 < c < 1. Some properties of (40) 
one can find in

Lemma 5. Assume 0 C 7 tt, c = cos7, s = sin7, and consider 
f = k(',c,p) with p EV. Then

(41) fc(x,c,p_i) f(x) k(x,c,pi) for all — 1 $$ x 1,

and, excluding x0 = c = ±1, if /(i0) = fc(xo,c,P±i) for an Xo 6 
[—1,0) U (0,1], then f = k(-,c,p±i'), respectively. In particular,

(i) /(±1) = ±00 and =F /(=Fl) G [1/6,1/2] iff c = ±1,
7T — 7 — S 7T — 7 + S

(ii) {/(l) : f € J-(c)} =

(iii)

{/(-I): f G JT(c)} =

2(1 + c)s ’ 2(1 - c)s

—7 — s —7 + s 
2(1 + c)s’ 2(1 — c)s

if - 1 < c < 1,

if — 1 < c < 1,
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and, except for c = ±1,

(iv) <MJF(C)) = [^(fc^, c,p_x)), <&x(fc(-,c,Pl))]

- ~ C1 + ^)(7 + 5) 7T - (1 + A)(t - s)
2(l + c)$ ’ 2(1 - c)s

Moreover, 0 € $a(.F(c)) if and only if

(42) ¿(7)
7T

7 + sin 7
1 A 0(7) d= 7T

7 — sin7 -1,

i. e. iff (¡> 2(A) 7 ^A).

Proof. For — 1 < x < 1 we have /'(x) > 0, so the radial limits 
/( — l), /(l) exist. To see (41), consider first the case 0 < x < 1, use 
(9) and next (20). Since

0 = fc(x0,c,p) - fc(x0,c,p_i)

/ q'c^Re^t) -p_i(f)]d< if 0 < x0 1, 
o

/ q'c(-t)Re\pi(t) - p(-t)]dt if - 1 x0 < 0, 
o

then p = p_i. The similar conclusion follows from equality 0 = 
k(æo,c,pi) - k(x0,c,p).

(i). A simple calculation shows that

fc(x,l,p_ï) = -fc(-x,-l,pi) = x/(l - x)

and

fc(x,l,pi) = -fc(-x,-l,p_i) = x(x2 +3)/[3(1 — x)3] .

Thus, (i) follows from (41). 
(ii-iii). Similarly,

fc(x,c,pi) = -fc(-x,-c,p_i) =
arctan[xs/(l — ex)] t x—c 

(i-c)s +(1 -
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and the conclusion follows from (41), too.
(iv). Combining (ii) with (iii) we deduce (iv).

Remark 6. Both the functions </> and ip, defined in (42), strictly 
decrease on (0,7r], </>(0+) = ip(0+) — +oo, </>(7r) = V’(tt) = 0, (p < ip 
on (0,7r), and (p(n — 'y)ip(Ÿ) = 1. Also, the condition

f € T'(c) and $A(/) = $A(*(-,c,p±1)) 

is equivalent to f = k(-,c,p±i), respectively.

Remark 7. From Lemma 5(i), Theorem 3 and Application 3 we 
conclude the above-mentioned results of Livingston: (21-22) so that

<^//(A, ^a,+oo) 

Analogously,

=w *(•,1,Pe) 
3A ¿(“IJ,Pi)

dp(£) : P € PaA

=w
aA *(1,-1,Pi)

<W) : p e PaA

)

In case —oo<a<0<6<+oo the problem occurs more com
plicated. By definition, S7/(A,fia)b) = So A Ga,b = {a///(-l) : f € 
So, $-b/a(f) = 0}, see (36-37) and (40). Further on, we shall use 
Theorem 3, Lemma 6, and either Application 2 with n = 2 or, simul
taneously, Application 1 with n = 1 and Application 3.

Theorem 7. Let —oo < a < 0 < b < +oo and A = —b/a. Then

(43) SH(A,Qaib)= £a,fc(cos7)
i(A) ‘(A)

and each set (39) takes the form

(44) Ga,b(c) = {af / f(—l) : f € ^(c) and <M/) = 0}. 

Remark 8. Exactly two members of the union (43) are singletons:

ah(-,c,p,)
for either c = cos<p (A) and p = — 1GaM =

fc(-l,c,p„)
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or c = cosip J(A) and rj = 1.

Proof of Theorem 7. It is evident that (39) and (44) are equivalent. 
Because of Theorem 3 and Lemma 5, we only need to show that

^ai&(cos7) C 5//(A,Qaii) for all </>_1(A) 7

The proof will be divided into 2 steps.

STEP 1. We may restrict our attention to the case

(45) ^_1(A) < 7 < t/)_1(A).

In fact, both classes <7a,i(cos </>-1(A)) and ^a,i(cos ^>-1(A)) are sin
gletons. If we consider a sequence (/„) with

fn = afc(-,cos7„,p„)/A:(-l,cos7n,pn) € 0a,fc(cos7n),

where pn G P and 7„ —> [</>~1(A)]+ , then for each convergent subse
quence (p&n ) of (pn) we have p = limpfc„ 6 P and

$A(fc(- ,cos<£_1(A),p_i)) = 0

= $A(fc(-,cos7nfc,p„J) -> $a(A:(-,cos</>_1(A),p)).

By Remark 6, p = p_i so that ^a,fc(</)-1(^)) = {lim/n}. Analo
gously, replacing </>-1(A) by t/>-1(A) and 7„ —> [</>-1(A)] + by 7„ —>
hr1^)]" , we show that the only element of ^a,6(V’ J(A)) can be 
locally uniform approximated by arbitrary elements from <ya,&(cos7) 
as 7-> [^(A)] .

STEP 2. Assume (45) so that

(46) cos7,P-i)) < 0 < $a(^(-,cos7,pi)).

Choose any f — afc(-,cos7,p)/A:(—l,cos7,p)) G {5a,i>(cos7), where 
P € P, and define pn by

p„(z) =p((l - l/n)z).
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(47) P„ = (

Consider the functions

(1 - A„)p_i + Xnpn if $yl(fc(-COS7,p„)) > 0,

(1 — tn)pi + tnPn if otherwise,

and

(48) fn = afc(-,cos7,pn)/fc(-l,cos7,p„),

where An, tn are real numbers such that

(49) ^a(^(-, cos 7,p„)) = 0.

The function (48) is correctly defined since, according to (46), 0 < 
An 1 and 0 < tn < 1, which means that pn € P. Hence by Theorem 
3, we deduce that fn G 5h(A,Qq,6) for all n- Because

cos 7,p„)) -> $a(A:(-,cos7,p)) = 0,

(46-47) and (49) imply that pn -> p, i. e. S//(A, Qa>i)) 9 /„ -> /, 
and the proof is finished.

Remark 9. If b = —a, then A = 1 and </>-1(l) = 0.8317..., 
V’-1(l) = 7T — </>-1(l) = 2.3098..., cos</>_1(1) = —cosi/>-1(l) = 
0.6736....

Theorem 8. Let —oo < a < 0 < b < +oo, A = —b/a and fix 
c = cos 7 with </>-1(A) < 7 < ^>-1(A).

(i) The sets

Ti = {£ e 3A : $A(fc(-,c,p$)) 0}

and

r2 = {ieaA: ixW.,c,P<))>0)

are complementary arcs of the unit circle dA with —1 6 Pi and 
1 € T2, both symmetric with respect to the real axis.

(ii) For abbreviation, denote T = Ti xl^ and

I(z,^) = k(z,c,p()/k(-l,c,p().
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Then for (44) we have the integral representation formula 

1(1,0 +A(50) C?a,6(c) = ( Z a
Urjxr2

1(1,0 +A

;l(;01(1,0-1(1,0 

dp(0O : p ePr, p(Pi X r2) = ij>.-0,01(1,0-1(1,0
Moreover, each integrand in (50) is an extreme point of Ga,b(O> and
hence of the whole class Sn(A.,flaO-

Proof, (i). Put x = Re£. Then both the functions

»-*(!.«.«) = / t'Mr-2xl+t2dt
and

f1 1 — t2
x•—> k(~i,c,Po = -k(i,-c,p-0 = - (i'c(-ty1+9xt+t2dt

are continuous and strictly increasing on [—1,1], so are

x t-> ^A(k(-,c,p^ for all A > 0.

(ii). Use Application 2 to the class A = J~(c) with $(tz) = 
(u(—l),u(l)) and W = {(a,&)}, and next refer to the Krein-Milman 
theorem.

Remark 10. In the proof of Theorem 8(ii) we may also take ad
vantage of Application 3 with A = .T(c), ^(/) = f*(0, c — 1 and 
V’(Z) = /(—l), to show that the set

(51) {«///(-!) = / € r(c)}

is compact convex with

B{o///(-l): / €-F(c)} = {a///(-l) : / € EZ(c)), 

and next use Application 1 to the class (51) with $(u) = u( — 1) and
W = {5}-
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