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Applications of the Idea of Mobius Invariance 
to Obtain Equivalent Definitions of Bloch Function

Abstract. In this paper we investigate the Bloch class B of func­
tions (|iz'(z)| = O((l — |z|2)-1), for z G D) and ’’the little” Bloch 
class Bo (max|2|=r |ff'(z)| = o((l - |z|2)-1, for |z| -+ 1"). Applying 
the idea of Mobius invariance we give a few conditions equivalent to 
the definitions of B and Bq .

1. Introduction. A function g holomorphic in the unit disc D is 
called a Bloch function if

l’,WI = i’(T-t_),

for z € D. The space of all Bloch functions is denoted by B and

IMIb := |^(0)l + supC1 - M2W)I < °°-
|z|<l

Moreover, let Z?(0) = {g E B : </(0) = 0} and Bq be the family of 
functions g holomorphic in D such that
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for |z| —> 1 . Obviously Bo C B.
For a G D let the Mobius function (j)a : D —> D be defined by

, . . a + z „
4>a(z) = for z G D.1 + az

If f is a function locally univalent in D then the order of f is 
defined as follows

ord f = sup 
a€D

/(M*)) - /(a) ) 
/'(«)(! - l«|2) J2

where {h(z)}2 denotes the second Taylor coefficient of the function 
h(z) = z + ....

The universal linearly invariant (or universal Mobius invariant) 
family Ua (see [5]) is the class of all functions /(z) = z + ... holo- 
morphic in D such that:
1° /'(z) / 0 in D,
2° ord f < a.

In this paper we give equivalent definitions of the Bloch classes. 
In Section 2 we prove necessary and sufficient conditions for a holo- 
morphic function in D to be in B. In Section 3 we deal with the class 
Bo.

We start with a result which gives us the relationship between the 
Bloch space and the universal Mobius invariant family.

Lemma 1.1. The folowing equality holds: B(0) = {log/' : / € 
Ua<oo^a)- Moreover, if g = log/' 6 5(0) and ord f = a, then 
2(a-l)<]]g]]8<2(a + l).

f"(z) i-ld2
f'(z) 2

<Proof. Let g(z) = log/'(z) and ord/ = a. Then
o + l, ([5; Lemma 1.2]). Thus (1 — |z|2)|g'(z)| < 2(o + 1), and this 
proves that g G Z?(0) and ||g||8 < 2(o + 1).

Assume now that g G Z?(0). Let

/(z) = / expg(s)ds. 
Jo



Applications of the Idea of Möbius Invariance ... 43

Note that /(0) = 0, /'(0) = 1 and consequently

— za — ord f = sup 

1-lzl2
/'(*)

= sup 
zGD

ll?lls< + 1

This proves our Lemma. □

Now, let us give a few examples extending some known results on 
Ua to the Bloch class.

Let us denote by Ta a family of all complex-valued functions g of 
bounded variation on [0,27r] such that:

Corollary 1.1. Let g be a function holomorphic in D. Then g G B 
if and only if there exist a > 1 and a sequence pn € such that

9(z)~g(0)= lim [ (-2log(l - 2e*<))d//n(t) , 
Jo

where
a = ord [ exp(s(s)- 

Jo
9(0))ds

Proof. It was shown in [8] that f € UQ if and only if there exists a 
sequence pn E La such that

lim exp[—2 / log(l - ze*<)d/in(f)]. 
n-+oo Jo

Using Lemma 1.1 we get our result. □
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Now, let for x € [0,1), q € [—1,1]

^•4)=y„ dt

1 /;----- y/l-q2x2 + X\/l-q2
= x V1 “ 92 log / - .------ 7=—^ + g arcsm x

yl — q2x2 — xy/l — q2

<i^ogi^+ arcsm x .

In [5] Ch. Pommerenke proved the following inequality for a function 
ftUa:

|Re{e'Alog((l - |z|2)/’M)}| < ( 14, sin A'
a

Observe that the function aS(|z|, 5!^) is increasing with respect to 
a. Hence using Lemma 1.1, we obtain the following 

Corollary 1.2. Let g E 13, X be a real number and a = ord fQz exp(g(s) 

—g(0y)ds. Then for z 6 D

|Re{(fl,(z) “ g(0))e_,A} + cos ALog(l - |z|2)| < 2S(|z|,

< i + H 
l-|z|

+ 2 arcsin |ż| .

Moreover, the function g(z) — <7(0) maps the disc {z : |z| < r) into 
a domain with the boundary 2ae,AE(r, 5!^) — log(l — |z|2), where
x e [0,2tt].

From Corollary 2.2 in [5] and Lemma 1.1 we obtain the following 
result.
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Corollary 1.3. Let g G B, A-a real number and a — ord exp(</(s) 
—g(Qy)ds. Then for 21,22 € D, we have

Re g(*2)-g(*i) + log
1-N2
i-l*i I2

+ 2iarg(l

22 — 21 , sin A>.<2aS(l 2 _ - ,-----  •
v 1 — 2122 a

In [8] it was shown that for all f G Ua the functions

and
0+1

0-1

with every 8 G [0,2%], are decreasing for r, r G (0,1) and they have 
limits (as r —> 1“) belonging to [0,1]. Thus, after differentiation and 
applying Lemma 1.1 we get the following

Corollary 1.4. Let f G 13. Then, for every 6 G [0,2%] the following 
functions

Re[g(reiff) - ÿ(0)] + (a + l)log(l - r) - (a - l)log(l + r)

and

maxRe[q(re,d) - #(0)] + (a + l)log(l - r) - (a - l)log(l + r)

are decreasing for r G (0,1) and have limits (as r —> 1“) which are 
less than or equal to 0. Moreover, the limits can be equal 0 for a 
fixed a only for the function

g(z) = g(O) - (a + l)log(l - ze‘e) + (a - l)log(l + ze,e).

Here a — ord J~ exp[</(s) — g(O)]ds.
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2. The class 13.

Theorem 2.1. Let g be a function holomorphic in D. Then g € 13 
if and only if there exists a positive constant C(g) such that for all 
z £ D

sup |$(<M*)) - ff(a) - 2 log(l + O2)|
/ \ a€D
(2-1) 1+r

< C(j)log--------- log(l — r2) ,
1 — r

where r = \z|. Here C(g) = ord exp[</(s) — g(O)]ds and this con­
stant is the best.

Proof. It is enough to prove the theorem for the class 5(0).
1°. Let g € 5(0). By Lemma 1.1 there exists a function f € Ua

and a = ord f such that g(z) = log/'(z). Since the family Ua is 
Mobius invariant, we have

F(2) = f (¿a(*))
/'(a)(l + as)2

ds € UQ

for all a 6 D. For the function F we have ([5]) the following inequal­
ity:

|log(F'(z)(l - |z|2))| < a log ’

Thus
1 + 1*1
1-1*1

n<M0)(i-kl2)
/'(a)(l + az)2

< a log

and consequently

1 + 1*1|<7(^a(z)) ~g(a) ~ 21og(l + az) + log(l - |z|2)| < a log—j

2°. Now, let a holomorphic function g satisfy (2.1) (with <7(0) = 0). 
If we put /(z) = exp g(s)ds, then by (2.1) we have

loS 71
/'(M*))

/'(a)(l + az)2
< C (</) log y-—— log(l -r2), 

1 — r
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for |z| = r. Thus

|Re{log/' (^(2)) - log f'(a) - 21og(l + 02)} |

< C(g)log - log(l - r2) .

From the last inequality (after differenting with respect to r at the 
point z — re"1 = 0) we get

-C(j) < S C(<Z)

and consequently

AQi-l«!2 - 
f'(a) 2

< <?(</) .

Hence ord/ = a. By Lemma 1.1 we get g(z) = log f'(z) € H(0). □

It is clear that the inequality in Theorem 2.1 can be written in an 
equivalent form

sup \g (¿a(z)) - g(a)\ < Kg log ----- — ,
a€D 1 — lZl

where the best constant Kg = ||<7(2) — <7(0)||b, (see [2], p.230).
For z,a e D, the pseudo-hyperbolic distance d(a, 2) between a and

z is defined by
d(a, 2) = |</>a(^)| •

For a G D and r G (0,1), the pseudo-hyperbolic disc D(a,r) with 
(pseudo-hyperbolic centre a and pseudo-hyperbolic radius r) is de­
fined by

D(a,r) = {z e D : d(a,r) < r} .

Since (f>a is a fractional linear transformation, the pseudo-hyperbolic 
disc Z)(a, r) is also an Euclidean disc. Except for the special case 
D(a,r) = rD, the Euclidean and pseudo-hyperbolic radii and cen­
tres do not coincide. The measure of D(a,r) with respect to the 
normalized area will be denoted by |P(a,r)|.
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Corollary 2.1. Let 0 < r < 1. Then, for functions g holomorphic 
in D, the following conditions are equivalent:
i) g€B,
ii) There exists a constant Cg such for all a € D and all z 6 D(a, r)

|g(z)-2(a)| < Cg .

Let us observe that for p > 1,

?T i ~ 9(a)\PdA(z)
r)l JdM

1/P

< sup
Cp !/P

a€pL|D(a,r) = ca|T>(a,r)|

Thus by Theorem 1 from [2] we get g € B.
Our next result depends upon the following

Lemma 2.1. Let </>(() and £ = $(2) be functions holomorphic in 
their domains and let the function </>($(z)) be defined. Moreover, let
ji,... ,ji,mi,... , mi be nonnegative integers and k = mj H------(-mi.
Then all components of the derivative

(¿«•’(z))”" •••

have the form (up to constants)

</>(k+p\^(z)) ($(i2)(z))n2 ••• ($^>(2))"’ ,

where p = 0,1,... , n and rii + ... + nq = k + p.

Proof. It is enough to prove the Lemma in the case n 
n > 2 the result follows by induction.

We have

1. For

_d
dz

1

0=1
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H(4o.>wr.
a=l

I I

0 = 1 a=l 
a^0

□

Now, for a positive integer n, let us define B^ as the family of all 
holomorphic functions g in D such that

The following result is well known ([2],[10]), but we give an alternative 
proof.

Theorem 2.2. B^ — B, for each positive integer n.

Proof.
1°. First, we show by induction that B^ C B. For n = 1 the 

theorem is true by the definition.
Now, let us assume that we have proved the inclusion for a positive 

integer n and we will prove it for n + 1.
Let

'9 ( Jl - (i - |2|2)n+1 ’

for z G D. Then, for z = re'^

- 9<“>(0)| < ji" |9‘"+1’(te‘*)|di < £ (1AlT‘)(nLJ<

= K"+'MUa (l-i’)"+1<“ + / (1-«’)»+■ *)

< 2Kn+1(g)^ _r2)n •
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Thus there exists a constant Kn(g) such that 

li7 1 - (1 - |z|2)"

in D and by assumption g € B.
2°. Let g(z) = w" € B. It is known ([6]) that |cn| <

2 ||g || 8. We will again use induction.
For n = 1 our result is true. Let us assume that for some positive

(l-|2|2)”|?”>W|<A-(S,n),
for z € D. From the proof of Theorem 2.1 it follows that the function

i/>a(z) = g(<f>a(z)) ~ g(a) - 21og(l + az)
belongs to B.

We have _
V’ai2) = g'^a^))^) ~ 1+02

and
|4‘>(0)| = +1 - |a|2) .

By Lemma 2.1 the following expression

d’+1)M + - s<”+1’(^W)(4W)"+1

= 4"+1’(2)+2(a)»+1n!(-l)"(l+a2)---- - -<ZI"+1)(«*))(4M)”+1
is a sum (with 7V(n) components) of functions of the form (up to 
constants)

s<1+rt(^w) nitf-’Mr’.
0=1

where ^,a=i mQ = 1 + P and P is an integer satisfying 0 < p < n — 1. 
By our assumption we get

|ff(1+>,)0.<o)) fhtf+o))-!

o=l

=i«z<i+p)(»)in«j«)!(>-w2))"-
0=1

<((n + l)!)*+1|9<1++a)|(l-|ap)1+<’
< ((„ + l)!)"+,K,+.(j) .



Applications of the Idea of Möbius Invariance ... 51

Thus

ls("+1,(^(0))«(0))"+1| < |4"+»(0)| +2|<.|”«n!

+JV(n)((n + 1)!)"+1 max A'p+i(9) 
p€{0,l,... ,n —1}

which is equivalent to

|S(“+1>(<.)|(1 - |a|2)”+1

< 2 Hills (n + 1)! + 2n! + JV(n)((n + l)!)”+‘

x max /<p+i(fif) := J\n+1(ii) . 
p€{0,l,...,n-l}

This proves that g € B^n\ □

3. The class Bq. In this section we give some results concerning 
the class Bo.

Theorem 3.1. Let g be a function holomorphic in D. Then g E Bo 
if and only if there exists a function e(r, |a|) defined on [0,1) x [0,1) 
such that

0) e(0, |a|) = 0,
(ii) there exists the right hand side derivative de/dr(0, |a|) and 

de/dr(0, |a|) —> 0 , as |a| —> 1“, and 

(3.1) |p(^a(z)) - s(a)| < e(r, |a|) ,

for all z, |^| = r < 1.

Proof. o
1°. Assume g E Bq- Let us denote

e(|z|) = max|/(z)|(l - |z|) .
Id=r

By our assumptions e(|z|) —> 0 as |z| -+ 1“. Using the Schwarz 
lemma we get

l^-[sO.M) - sWUO - kl) < W.MI)
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for all a € D. Thus

WM) ~ 0(a)l =

< f < 2maxe(|<£„(s)|)(-log(l - r))
Jo 1 - M l*l<»-

= 2max e(|</>|0,(z)|)(—log(l - r)) .
!«!<»•

We denote by e(r, |a|) the last term and we put e(0, |a|) = 0. Then 
we have

dr e(0,|a|) = 2 lim 
i—>o +

-log(l - r)
max e(|</>|a|(z)|) 
l*l<r

2e(|a|).

Moreover, e(|a|) —♦ 0 as |a| —> l-.
2°. Now let us assume that there exists a function e(r, |a|) as in

the theorem. For r = 0 we have the equality in (3.1). Thus 

(3-2) - fl'(a)l < ^(r, |a|).

Since
(I (I
¿¿\g(MzY) ~ g(a)\ = \g(Mz)) - s(a)|^Relog(s(<M*)) “ s(a)),

we get
y- WaW) - s(a)| = lsr'(a)l(l - |«|2) 
ar |r=o

if g'(a) / 0 . If g'(a) = 0, the result is true, too. Thus (1.2) is 
equivalent to

|i/(a)|(l - |a|2) < e(r, |a|).
|r=0

Moreover the last expression tends to 0 as |a| —> 1. This proves that 
g e Bo. □

Remark 3.1. If g € Bo and e(r) = max0<r<i |</(r)|(l — r), then we 
can choose

e(r, |a|) = -21og(l - r) sup e(|</>|a,(z)|) .
p|<r
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Corollary 3.1. Let 0 < r < 1. Then, for functions g holomorphic 
in D, the following conditions are equivalent:

(i) g € Bo,
(ii) raaxzeD((1)r) |<z'(^)|(l - |*|2) -> 0, as |a| -> 1”,
iii) maxz€£)(air) |g(z) - 0(a)| -> 0, as |a| -> 1“.

Proof. We show forst that (i) and (ii) are equivalent.
Let g € Bq and let ra = maxz€o(ar) |z|. Let us observe that

ra —> 1“ as |a| —> 1“. Thus

max [(1 - \z|2)|</(z)|] < max [(1 - r2)|5'(z)|] -> 0 , 
zeD(a,r)

as |a| —> l-.
Now, assume that g Bo- Then there exists a sequence zn G D, 

|zn| —* 1~ , such that

(1 - |Zn|2Wn)| - * > 0 .

However,

max f(l - |z|2)|</(z)|] < (1 - |Zn|2Wn)| 
zeD(a,r))

and this contradicts (ii).
Now, we show that (i) and (iii) are equivalent. Let us first assume 

that g € Bo- By Theorem 3.1 there exists e(r, |a|) such that

max |$r(z) - ff(a)| < e(r, |a|) -> 0 
z€D(a,r)

as |a| -> 1“.
Suppose (iii) holds and e(|a|) = maxz€£,(a)r) |fir(^) — sr(ot)| —> 0 as 

|a| —► 1“. Then for p, p > 1:

Î l?(*) - 9^\pdA(z)
JD(a,r)

1/p

\D(a, r)l 7o(a,r)

i/peP(|a|)
|P(a,r) = e(|a|) -♦ 0

□
U-D(a,r)|

as |a| —> 1“. Thus by [2; Th.2] we get g G Bo. 
We will need the following lemmas.
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Lemma 3.1. Let g be a holomorphic function in D. Then g € Bq if 
and only if g(<t>a(z) € Bq for each a € D.

Proof. Let g £ Bo. Let us denote Ga(z) = <7(</>a(z)), and 

e(r) = max |p'(z)|(l - r2) .

Then

Thus

|Gi(z)|(l - |z|’) = |j’(A,(x))|2-JL(1 - |zp) 

= |9'(^.(^))|(1 - |«z)|2) < e(|«z)D • 

max |G'a(z)|(1 - r2) < max e(|</>a(z)|)
|x|=r

= max|e(r) : r €

|z|=r 

|«| — r , |a| + r
11 - |a|r 1 ’ 1 + |

Since lim,.-.!- e(r) = 0 we have proved that Ga 6 Bq 
The rest of the proof is trivial. □

H r 1 
a|rj J '

Lemma 3.2. Let g € Bq, a 6 D and Ga(z) := g(<t>a(z)} = 
52nLO cn(a)z”- Then for each nonnegative integer n we have

max |cj^(a)| —> 0 
|o|=p

as p —> 1“.

Proof. We have

n'Cn(°)l = 2^r dz

< maxt \g'((j)a(relty)\(l - |a|2)
(1 — |a|r)

Since maxf we get

relt +a , r + |a| i(
max \g (----------7) < max \g (---- ——e ) .t iy v 1 + area 71 t |yvl + |a|r 71
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Let e(r) will be as in the proof of Lemma 3.1. Then, for fixed r G 
(0,1), we obtain

n|c„(a)| <
(l+r|a|)2

^(l-r)2 1-r2
1 + r

rn-l(l _ r)3
r + l«l x 

1 + |a|r
<

Letting |a| —> 1 we get e( ) —* 0 and this completes the proof of
the Lemma. □

Now, for a positive integer n, let us introduce the class Bq^ as a 
family of all holomorphic functions g in D such that

max|g(n)(2)| = o( 1
)(1-H2)"

as |z| —> 1 . The next result , similarly as Theorem 2.2, is well known 
([2],[10]), but we give an alternative proof.

Theorem 3.2. Bq = Bo, for each positive integer n.

Proof.
1° Using induction we show that Bq"1 C Bo- For n — 1 this is true 

Ly definition. Now, let us assume that

max|^+1\z)|(l-k|2r+1-,0,
|z|=r

for |z| —> 1 which is equivalent to

max |/"+1)W|(l - |z|)"+1 := «W 0 
|z|=r

for r = |2| —+ 1“. The function e(r) is continuous in [0,1). Let 
us choose a sequence (rm) such that lim„l_oo rm = 1, rm e (0,1). 
Moreover, let rm < r < 1 for a fixed m and em = max(e[rmr] e(t), 
2 = re’^, zm — rme'^ for a fixed <f>. Then

Jrm
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Thus

<-L e(t)
dt <im r

J rm
dt ¿m

(1 -t)n+1 “ n(l - r)n '

|y«n>(rei'‘)|(l - r)" < |j‘">(rme,*)|(l - r)" +
n

and

max |p(n)(z)|(l - r)n < max |g(n)(rme,<,s)|(l - r)n + 
|i| = r <Ae[o,2ir]

¿m

n

Hence
limsup(max |</n\z)|(l — r)n) < 
r—i- ld=r

¿m
n

Since limrn_oo em = 0, we have g € Bo.
2°. Let g £ Bq. We use induction. For n = 1 the result is true.

Let us assume that for some positive integer n

max (1 - M W.’MI = »0)

as |^| —> 1. By Lemma 3.1 the function Ga(z) = ff(<fra(z)) £ Bq for 
each a £ D. Similarly, as in the proof of Theorem 2.2, let us observe 
that

G<”+1)(0) - <z<”+1>(M0))(^(0))”+1 

is a sum of terms of the form (up to constants)

s'<i+',>o=(o)) nwi'-’io))
Of=l

where J2 l=i ma = 1 + P- By assumption we get

l<Z<1+,,)(<M0))l II <((n + l)!)n+1|s<1+'’’(a)|(l-|a|2)1+'’
a=l

< ((n + l)!)n+Iep+,(|a|) , 

where ep+i(|a|) —> 0 for |a| —> 1.



Applications of the Idea of Möbius Invariance ... 57

Thus

l9<’+,)(M0))IW(0)r+1 = |j<"+1)(o)l(i - M2)"+1 

< |G<"+1>(0)| + JV(n)((„ + l)!)”+1e(l«l) ,

where
e(|a|)= max ep(|<z|) —> 0

p€{l,...,n)

as ,a| —> 1. From Lemma 3.2 we have

max |G<”+1>(0)| -> 0 
l“l=P

as p —> l. 
Thus

max |p("+1)(a)|(l — |a|2)”+1 = o(l)
|a| = p

as p —> l. □
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