$$
\begin{gathered}
\text { Janusz GODULA (Lublin) } \\
\text { Viktor STARKOV (Karelia) }
\end{gathered}
$$

Applications of the Idea of Möbius Invariance to Obtain Equivalent Definitions of Bloch Function

Abstract. In this paper we investigate the Bloch class \mathcal{B} of functions $\left(\left|g^{\prime}(z)\right|=\mathcal{O}\left(\left(1-|z|^{2}\right)^{-1}\right)\right.$, for $\left.z \in D\right)$ and "the little" Bloch class $\mathcal{B}_{0}\left(\max _{|z|=r}\left|g^{\prime}(z)\right|=o\left(\left(1-|z|^{2}\right)^{-1}\right.\right.$, for $\left.|z| \rightarrow 1^{-}\right)$. Applying the idea of Möbius invariance we give a few conditions equivalent to the definitions of \mathcal{B} and \mathcal{B}_{0}.

1. Introduction. A function g holomorphic in the unit disc D is called a Bloch function if

$$
\left|g^{\prime}(z)\right|=\mathcal{O}\left(\frac{1}{1-|z|^{2}}\right)
$$

for $z \in D$. The space of all Bloch functions is denoted by \mathcal{B} and

$$
\|g\|_{\mathcal{B}}:=|g(0)|+\sup _{|z|<1}\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right|<\infty
$$

Moreover, let $\mathcal{B}(0)=\{g \in \mathcal{B}: g(0)=0\}$ and \mathcal{B}_{0} be the family of functions g holomorphic in D such that

$$
\max _{|z|=r}\left|g^{\prime}(z)\right|=o\left(\frac{1}{1-|z|^{2}}\right)
$$

Key words and phrases. Bloch functions, Möbius invariant family.
for $|z| \rightarrow 1^{-}$. Obviously $\mathcal{B}_{0} \subset \mathcal{B}$.
For $a \in D$ let the Möbius function $\phi_{a}: D \longrightarrow D$ be defined by

$$
\phi_{a}(z)=\frac{a+z}{1+\bar{a} z}, \text { for } z \in D
$$

If f is a function locally univalent in D then the order of f is defined as follows

$$
\text { ord } f=\sup _{a \in D}\left|\left\{\frac{f\left(\phi_{a}(z)\right)-f(a)}{f^{\prime}(a)\left(1-|a|^{2}\right)}\right\}_{2}\right|,
$$

where $\{h(z)\}_{2}$ denotes the second Taylor coefficient of the function $h(z)=z+\ldots$.

The universal linearly invariant (or universal Möbius invariant) family U_{α} (see [5]) is the class of all functions $f(z)=z+\ldots$ holomorphic in D such that:
$1^{0} f^{\prime}(z) \neq 0$ in D,
2^{0} ord $f \leq \alpha$.
In this paper we give equivalent definitions of the Bloch classes. In Section 2 we prove necessary and sufficient conditions for a holomorphic function in D to be in \mathcal{B}. In Section 3 we deal with the class \mathcal{B}_{0}.

We start with a result which gives us the relationship between the Bloch space and the universal Möbius invariant family.

Lemma 1.1. The folowing equality holds: $\mathcal{B}(0)=\left\{\log f^{\prime}: f \in\right.$ $\left.\bigcup_{\alpha<\infty} U_{\alpha}\right\}$. Moreover, if $g=\log f^{\prime} \in \mathcal{B}(0)$ and ord $f=\alpha$, then $2(\alpha-1) \leq\|g\|_{\mathcal{B}} \leq 2(\alpha+1)$.

Proof. Let $g(z)=\log f^{\prime}(z)$ and ord $f=\alpha$. Then $\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)} \frac{1-|z|^{2}}{2}\right| \leq$ $\alpha+1$, ([5; Lemma 1.2]). Thus $\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right| \leq 2(\alpha+1)$, and this proves that $g \in \mathcal{B}(0)$ and $\|g\|_{\mathcal{B}} \leq 2(\alpha+1)$.

Assume now that $g \in \mathcal{B}(0)$. Let

$$
f(z)=\int_{0}^{z} \exp g(s) d s
$$

Note that $f(0)=0, f^{\prime}(0)=1$ and consequently

$$
\begin{aligned}
\alpha & =\operatorname{ord} f=\sup _{z \in D}\left|\frac{1-|z|^{2}}{2} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\bar{z}\right| \\
& =\sup _{z \in D}\left|\frac{1-|z|^{2}}{2} g^{\prime}(z)-\bar{z}\right| \leq \frac{\|g\|_{\mathcal{B}}}{2}+1 .
\end{aligned}
$$

This proves our Lemma.
Now, let us give a few examples extending some known results on U_{α} to the Bloch class.

Let us denote by \mathcal{I}_{α} a family of all complex-valued functions μ of bounded variation on $[0,2 \pi]$ such that:

$$
\begin{equation*}
\int_{0}^{2 \pi} d \mu(t)=1 \tag{i}
\end{equation*}
$$

(ii) $\quad \sup _{|z|<1}\left|\int_{0}^{2 \pi} \frac{z+e^{i t}}{1+\bar{z} e^{i t}} d \mu(t)\right| \leq \alpha$, where $\alpha \geq 1$.

Corollary 1.1. Let g be a function holomorphic in D. Then $g \in \mathcal{B}$ if and only if there exist $\alpha \geq 1$ and a sequence $\mu_{n} \in \mathcal{I}_{\alpha}$ such that

$$
g(z)-g(0)=\lim _{n \rightarrow \infty} \int_{0}^{2 \pi}\left(-2 \log \left(1-z e^{i t}\right)\right) d \mu_{n}(t)
$$

where

$$
\alpha=\operatorname{ord} \int_{0}^{z} \exp (g(s)-g(0)) d s
$$

Proof. It was shown in [8] that $f \in U_{\alpha}$ if and only if there exists a sequence $\mu_{n} \in \mathcal{I}_{\alpha}$ such that

$$
f^{\prime}(z)=\lim _{n \rightarrow \infty} \exp \left[-2 \int_{0}^{2 \pi} \log \left(1-z e^{i t}\right) d \mu_{n}(t)\right]
$$

Using Lemma 1.1 we get our result.

Now, let for $x \in[0,1), q \in[-1,1]$

$$
\begin{gathered}
\Xi(x, q)=\int_{0}^{x} \frac{\sqrt{1-q^{2} t^{2}}}{1-t^{2}} d t \\
=\frac{1}{2} \sqrt{1-q^{2}} \log \frac{\sqrt{1-q^{2} x^{2}}+x \sqrt{1-q^{2}}}{\sqrt{1-q^{2} x^{2}}-x \sqrt{1-q^{2}}}+q \arcsin x \\
\leq \frac{1}{2} \sqrt{1-q^{2}} \log \frac{1+x}{1-x}+\arcsin x
\end{gathered}
$$

In [5] Ch. Pommerenke proved the following inequality for a function $f \in U_{\mathrm{a}}$:

$$
\left|\operatorname{Re}\left\{e^{i \lambda} \log \left(\left(1-|z|^{2}\right) f^{\prime}(z)\right)\right\}\right| \leq 2 \alpha \Xi\left(|z|, \frac{\sin \lambda}{\alpha}\right)
$$

Observe that the function $\alpha \Xi\left(|z|, \frac{\sin \lambda}{\alpha}\right)$ is increasing with respect to α. Hence using Lemma 1.1, we obtain the following

Corollary 1.2. Let $g \in \mathcal{B}, \lambda$ be a real number and $\alpha=\operatorname{ord} \int_{0}^{z} \exp (g(s)$ $-g(0)) d s$. Then for $z \in D$

$$
\begin{aligned}
\mid \operatorname{Re}\{(g(z) & \left.-g(0)) e^{-i \lambda}\right\}+\cos \lambda \log \left(1-|z|^{2}\right) \left\lvert\, \leq 2 \Xi\left(|z|, \frac{\sin \lambda}{\alpha}\right)\right. \\
& \leq \sqrt{1-\frac{\sin ^{2} \lambda}{\alpha^{2}}} \log \frac{1+|z|}{1-|z|}+2 \arcsin |z|
\end{aligned}
$$

Moreover, the function $g(z)-g(0)$ maps the disc $\{z:|z| \leq r\}$ into a domain with the boundary $2 \alpha e^{i \lambda} \Xi\left(r, \frac{\sin \lambda}{\alpha}\right)-\log \left(1-|z|^{2}\right)$, where $\lambda \in[0,2 \pi]$.

From Corollary 2.2 in [5] and Lemma 1.1 we obtain the following result.

Corollary 1.3. Let $g \in \mathcal{B}, \lambda$-a real number and $\alpha=\operatorname{ord} \int_{0}^{z} \exp (g(s)$ $-g(0)) d s$. Then for $z_{1}, z_{2} \in D$, we have

$$
\begin{gathered}
\left|\operatorname{Re}\left\{e^{-i \lambda}\left[g\left(z_{2}\right)-g\left(z_{1}\right)+\log \frac{1-\left|z_{2}\right|^{2}}{1-\left|z_{1}\right|^{2}}+2 i \arg \left(1-\overline{z_{1}} z_{2}\right)\right]\right\}\right| \\
\leq 2 \alpha \Xi\left(\left|\frac{z_{2}-z_{1}}{1-\overline{z_{1}} z_{2}}\right|, \frac{\sin \lambda}{\alpha}\right) .
\end{gathered}
$$

In [8] it was shown that for all $f \in U_{\alpha}$ the functions

$$
\left|f^{\prime}\left(r e^{i \theta}\right)\right| \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}} \text { and } \max _{|z|=r}\left|f^{\prime}(z)\right| \frac{(1-|z|)^{\alpha+1}}{(1+|z|)^{\alpha-1}}
$$

with every $\theta \in[0,2 \pi]$, are decreasing for $r, r \in(0,1)$ and they have limits (as $r \rightarrow 1^{-}$) belonging to $[0,1]$. Thus, after differentiation and applying Lemma 1.1 we get the following

Corollary 1.4. Let $f \in \mathcal{B}$. Then, for every $\theta \in[0,2 \pi]$ the following functions

$$
\operatorname{Re}\left[g\left(r e^{i \theta}\right)-g(0)\right]+(\alpha+1) \log (1-r)-(\alpha-1) \log (1+r)
$$

and

$$
\max _{\theta} \operatorname{Re}\left[g\left(r e^{i \theta}\right)-g(0)\right]+(\alpha+1) \log (1-r)-(\alpha-1) \log (1+r)
$$

are decreasing for $r \in(0,1)$ and have limits (as $r \rightarrow 1^{-}$) which are less than or equal to 0 . Moreover, the limits can be equal 0 for a fixed α only for the function

$$
g(z)=g(0)-(\alpha+1) \log \left(1-z e^{i \theta}\right)+(\alpha-1) \log \left(1+z e^{i \theta}\right) .
$$

Here $\alpha=\operatorname{ord} \int_{0}^{z} \exp [g(s)-g(0)] d s$.

2. The class \mathcal{B}.

Theorem 2.1. Let g be a function holomorphic in D. Then $g \in \mathcal{B}$ if and only if there exists a positive constant $C(g)$ such that for all $z \in D$

$$
\sup _{a \in D}\left|g\left(\phi_{a}(z)\right)-g(a)-2 \log (1+\bar{a} z)\right|
$$

$$
\begin{equation*}
\leq C(g) \log \frac{1+r}{1-r}-\log \left(1-r^{2}\right) \tag{2.1}
\end{equation*}
$$

where $r=|z|$. Here $C(g)=\operatorname{ord} \int_{0}^{z} \exp [g(s)-g(0)] d s$ and this constant is the best.

Proof. It is enough to prove the theorem for the class $\mathcal{B}(0)$.
1^{0}. Let $g \in \mathcal{B}(0)$. By Lemma 1.1 there exists a function $f \in U_{\alpha}$ and $\alpha=$ ord f such that $g(z)=\log f^{\prime}(z)$. Since the family U_{α} is Möbius invariant, we have

$$
F(z)=\int_{0}^{z} \frac{f^{\prime}\left(\phi_{a}(s)\right)}{f^{\prime}(a)(1+\bar{a} s)^{2}} d s \in U_{\alpha}
$$

for all $a \in D$. For the function F we have ([5]) the following inequality:

$$
\left|\log \left(F^{\prime}(z)\left(1-|z|^{2}\right)\right)\right| \leq \alpha \log \frac{1+|z|}{1-|z|}
$$

Thus

$$
\left|\log \frac{f^{\prime}\left(\phi_{a}(z)\right)\left(1-|z|^{2}\right)}{f^{\prime}(a)(1+\bar{a} z)^{2}}\right| \leq \alpha \log \frac{1+|z|}{1-|z|}
$$

and consequently

$$
\left|g\left(\phi_{a}(z)\right)-g(a)-2 \log (1+\bar{a} z)+\log \left(1-|z|^{2}\right)\right| \leq \alpha \log \frac{1+|z|}{1-|z|}
$$

2^{0}. Now, let a holomorphic function g satisfy (2.1) (with $\left.g(0)=0\right)$. If we put $f(z)=\int_{0}^{z} \exp g(s) d s$, then by (2.1) we have

$$
\left|\log \frac{f^{\prime}\left(\phi_{a}(z)\right)}{f^{\prime}(a)(1+\bar{a} z)^{2}}\right| \leq C(g) \log \frac{1+r}{1-r}-\log \left(1-r^{2}\right)
$$

for $|z|=r$. Thus

$$
\begin{aligned}
& \left|\operatorname{Re}\left\{\log f^{\prime}\left(\phi_{a}(z)\right)-\log f^{\prime}(a)-2 \log (1+\bar{a} z)\right\}\right| \\
& \quad \leq C(g) \log \frac{1+r}{1-r}-\log \left(1-r^{2}\right)
\end{aligned}
$$

From the last inequality (after differenting with respect to r at the point $z=r e^{i \eta}=0$) we get

$$
-C(g) \leq \operatorname{Re}\left\{\left(\frac{f^{\prime \prime}(a)}{f^{\prime}(a)} \frac{1-|a|^{2}}{2}-\bar{a}\right) e^{i \eta}\right\} \leq C(g)
$$

and consequently

$$
\left|\frac{f^{\prime \prime}(a)}{f^{\prime}(a)} \frac{1-|a|^{2}}{2}-\bar{a}\right| \leq C(g)
$$

Hence ord $f=\alpha$. By Lemma 1.1 we get $g(z)=\log f^{\prime}(z) \in \mathcal{B}(0)$.
It is clear that the inequality in Theorem 2.1 can be written in an equivalent form

$$
\sup _{a \in D}\left|g\left(\phi_{a}(z)\right)-g(a)\right| \leq K_{g} \log \frac{1}{1-|z|}
$$

where the best constant $K_{g}=\|g(z)-g(0)\|_{\mathcal{B}}$, (see [2], p.230).
For $z, a \in D$, the pseudo-hyperbolic distance $d(a, z)$ between a and z is defined by

$$
d(a, z)=\left|\phi_{a}(z)\right|
$$

For $a \in D$ and $r \in(0,1)$, the pseudo-hyperbolic disc $D(a, r)$ with (pseudo-hyperbolic centre a and pseudo-hyperbolic radius r) is defined by

$$
D(a, r)=\{z \in D: d(a, r)<r\}
$$

Since ϕ_{a} is a fractional linear transformation, the pseudo-hyperbolic disc $D(a, r)$ is also an Euclidean disc. Except for the special case $D(a, r)=r D$, the Euclidean and pseudo-hyperbolic radii and centres do not coincide. The measure of $D(a, r)$ with respect to the normalized area $\frac{d A}{\pi}$ will be denoted by $|D(a, r)|$.

Corollary 2.1. Let $0<r<1$. Then, for functions g holomorphic in D, the following conditions are equivalent:
i) $g \in \mathcal{B}$,
ii) There exists a constant C_{g} such for all $a \in D$ and all $z \in D(a, r)$

$$
|g(z)-g(a)| \leq C_{g}
$$

Let us observe that for $p \geq 1$,

$$
\begin{gathered}
\sup _{a \in D}\left[\frac{1}{|D(a, r)|} \int_{D(a, r)}|g(z)-g(a)|^{p} d A(z)\right]^{1 / p} \\
\quad \leq \sup _{a \in D}\left[\frac{C_{g}^{p}}{\mid D(a, r)}|D(a, r)|\right]^{1 / p}=C_{g}
\end{gathered}
$$

Thus by Theorem 1 from [2] we get $g \in \mathcal{B}$.
Our next result depends upon the following
Lemma 2.1. Let $\phi(\zeta)$ and $\zeta=\Phi(z)$ be functions holomorphic in their domains and let the function $\phi(\Phi(z))$ be defined. Moreover, let $j_{1}, \ldots, j_{l}, m_{1}, \ldots, m_{l}$ be nonnegative integers and $k=m_{1}+\cdots+m_{l}$. Then all components of the derivative

$$
\frac{d^{n}}{d z^{n}}\left[\phi^{(k)}(\Phi(z))\left(\Phi^{\left(j_{1}\right)}(z)\right)^{m_{1}}\left(\phi^{\left(j_{2}\right)}(z)\right)^{m_{2}} \cdots\left(\Phi^{\left(j_{l}\right)}(z)\right)^{m_{l}}\right]
$$

have the form (up to constants)

$$
\phi^{(k+p)}(\Phi(z))\left(\Phi^{\left(i_{1}\right)}(z)\right)^{n_{1}}\left(\Phi^{\left(i_{2}\right)}(z)\right)^{n_{2}} \cdots\left(\Phi^{\left(i_{q}\right)}(z)\right)^{n_{q}}
$$

where $p=0,1, \ldots, n$ and $n_{1}+\ldots+n_{q}=k+p$.

Proof. It is enough to prove the Lemma in the case $n=1$. For $n \geq 2$ the result follows by induction.

We have

$$
\frac{d}{d z}\left[\phi^{(k)}(\Phi(z)) \prod_{\alpha=1}^{l}\left(\Phi^{\left(j_{\alpha}\right)}(z)\right)^{m_{\alpha}}\right]
$$

$$
\begin{gathered}
=\phi^{(k+1)}(\Phi(z)) \Phi^{\prime}(z) \prod_{\alpha=1}^{l}\left(\Phi^{\left(j_{\alpha}\right)}(z)\right)^{m_{\alpha}} \\
+\phi^{(k)}(\Phi(z)) \sum_{\beta=1}^{l}\left[\left(\prod_{\substack{\alpha=1 \\
\alpha \neq \beta}}^{l}\left(\Phi^{\left(j_{\alpha}\right)}(z)\right)^{m_{\alpha}} m_{\beta}\left(\Phi^{\left(j_{\beta}\right)}(z)\right)^{m_{\beta}-1} \Phi^{\left(j_{\beta}+1\right)}(z)\right] .\right.
\end{gathered}
$$

Now, for a positive integer n, let us define $\mathcal{B}^{(n)}$ as the family of all holomorphic functions g in D such that

$$
\left|g^{(n)}(z)\right|=\mathcal{O}\left(\frac{1}{\left(1-|z|^{2}\right)^{n}}\right) .
$$

The following result is well known ([2],[10]), but we give an alternative proof.

Theorem 2.2. $\mathcal{B}^{(n)}=\mathcal{B}$, for each positive integer n.

Proof.

1^{0}. First, we show by induction that $\mathcal{B}^{(n)} \subset \mathcal{B}$. For $n=1$ the theorem is true by the definition.

Now, let us assume that we have proved the inclusion for a positive integer n and we will prove it for $n+1$.

Let

$$
\left|g^{(n+1)}(z)\right| \leq \frac{K_{n+1}(g)}{\left(1-|z|^{2}\right)^{n+1}}
$$

for $z \in D$. Then, for $z=r e^{i \phi}$

$$
\begin{gathered}
\left|g^{(n)}(z)-g^{(n)}(0)\right| \leq \int_{0}^{r}\left|g^{(n+1)}\left(t e^{i \phi}\right)\right| d t \leq \int_{0}^{r} \frac{K_{n+1}(g)}{\left(1-t^{2}\right)^{n+1}} d t \\
=K_{n+1}(g)\left(\int_{0}^{r} \frac{t}{\left(1-t^{2}\right)^{n+1}} d t+\int_{0}^{r} \frac{1-t}{\left(1-t^{2}\right)^{n+1}} d t\right) \\
\leq 2 K_{n+1}(g) \frac{1}{\left(1-r^{2}\right)^{n}}
\end{gathered}
$$

Thus there exists a constant $K_{n}(g)$ such that

$$
\left|g^{(n)}(z)\right| \leq \frac{K_{n}(g)}{\left(1-|z|^{2}\right)^{n}}
$$

in D and by assumption $g \in \mathcal{B}$.
2^{0}. Let $g(z)=\sum_{n=0}^{\infty} c_{n} z^{n} \in \mathcal{B}$. It is known ([6]) that $\left|c_{n}\right| \leq$ $2\|g\|_{\mathcal{B}}$. We will again use induction.

For $n=1$ our result is true. Let us assume that for some positive n

$$
\left(1-|z|^{2}\right)^{n}\left|g^{(n)}(z)\right| \leq K(g, n)
$$

for $z \in D$. From the proof of Theorem 2.1 it follows that the function

$$
\psi_{a}(z)=g\left(\phi_{a}(z)\right)-g(a)-2 \log (1+\bar{a} z)
$$

belongs to \mathcal{B}.
We have

$$
\psi_{a}^{\prime}(z)=g^{\prime}\left(\phi_{a}(z)\right) \phi_{a}^{\prime}(z)-\frac{2 \bar{a}}{1+\bar{a} z}
$$

and

$$
\left|\phi_{a}^{(k)}(0)\right|=k!\left(1-|a|^{2}\right) .
$$

By Lemma 2.1 the following expression

$$
\begin{gathered}
\psi_{a}^{(n+1)}(z)+\left(\frac{2 \bar{a}}{1+\bar{a} z}\right)^{(n)}-g^{(n+1)}\left(\phi_{a}(z)\right)\left(\phi_{a}^{\prime}(z)\right)^{n+1} \\
=\psi_{a}^{(n+1)}(z)+2(\bar{a})^{n+1} n!(-1)^{n}(1+\bar{a} z)^{-n-1}-g^{(n+1)}\left(\phi_{a}(z)\right)\left(\phi_{a}^{\prime}(z)\right)^{n+1}
\end{gathered}
$$

is a sum (with $N(n)$ components) of functions of the form (up to constants)

$$
g^{(1+p)}\left(\phi_{a}(z)\right) \prod_{\alpha=1}^{q}\left(\phi_{a}^{\left(j_{\alpha}\right)}(z)\right)^{m_{\alpha}}
$$

where $\sum_{\alpha=1}^{q} m_{\alpha}=1+p$ and p is an integer satisfying $0 \leq p \leq n-1$. By our assumption we get

$$
\begin{aligned}
& \left|g^{(1+p)}\left(\phi_{a}(0)\right) \prod_{\alpha=1}^{q}\left(\phi_{a}^{\left(j_{\alpha}\right)}(0)\right)^{m_{\alpha}}\right| \\
= & \left|g^{(1+p)}(a)\right| \prod_{\alpha=1}^{q}\left(\left(j_{\alpha}\right)!\left(1-|a|^{2}\right)\right)^{m_{\alpha}} \\
\leq & ((n+1)!)^{n+1}\left|g^{(1+p)}(a)\right|\left(1-|a|^{2}\right)^{1+p} \\
\leq & ((n+1)!)^{n+1} K_{p+1}(g)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left|g^{(n+1)}\left(\phi_{a}(0)\right)\left(\phi_{a}^{\prime}(0)\right)^{n+1}\right| \leq\left|\psi_{a}^{(n+1)}(0)\right|+2|a|^{n+1} n! \\
& +N(n)((n+1)!)^{n+1} \max _{p \in\{0,1, \ldots, n-1\}} K_{p+1}(g)
\end{aligned}
$$

which is equivalent to

$$
\begin{gathered}
\left|g^{(n+1)}(a)\right|\left(1-|a|^{2}\right)^{n+1} \\
\leq 2\|g\|_{\mathcal{B}}(n+1)!+2 n!+N(n)((n+1)!)^{n+1} \\
\times \max _{p \in\{0,1, \ldots, n-1\}} K_{p+1}(g):=K_{n+1}(g) .
\end{gathered}
$$

This proves that $g \in \mathcal{B}^{(n)}$.
3. The class \mathcal{B}_{0}. In this section we give some results concerning the class \mathcal{B}_{0}.

Theorem 3.1. Let g be a function holomorphic in D. Then $g \in \mathcal{B}_{0}$ if and only if there exists a function $e(r,|a|)$ defined on $[0,1) \times[0,1)$ such that
(i) $e(0,|a|)=0$,
(ii) there exists the right hand side derivative $\partial e / \partial r(0,|a|)$ and $\partial e / \partial r(0,|a|) \rightarrow 0$, as $|a| \rightarrow 1^{-}$, and

$$
\begin{equation*}
\left|g\left(\phi_{a}(z)\right)-g(a)\right| \leq e(r,|a|), \tag{3.1}
\end{equation*}
$$

for all $z,|z|=r<1$.

Proof.

1^{0}. Assume $g \stackrel{\circ}{\in} \mathcal{B}_{0}$. Let us denote

$$
e(|z|)=\max _{|z|=r}\left|g^{\prime}(z)\right|(1-|z|) .
$$

By our assumptions $e(|z|) \rightarrow 0$ as $|z| \rightarrow 1^{-}$. Using the Schwarz lemma we get

$$
\left|\frac{d}{d z}\left[g\left(\phi_{a}(z)\right)-g(a)\right]\right|(1-|z|) \leq 2 e\left(\left|\phi_{a}(z)\right|\right)
$$

for all $a \in D$. Thus

$$
\begin{gathered}
\left|g\left(\phi_{a}(z)\right)-g(a)\right|=\left|\int_{0}^{z} \frac{d}{d s} g\left(\phi_{a}(s)\right) d s\right| \\
\leq \int_{0}^{r} \frac{2 e\left(\mid \phi_{a}(s)\right) \mid}{1-|s|} d|s| \leq 2 \max _{|z| \leq r} e\left(\left|\phi_{a}(s)\right|\right)(-\log (1-r)) \\
=2 \max _{|z| \leq r} e\left(\left|\phi_{|a|}(z)\right|\right)(-\log (1-r))
\end{gathered}
$$

We denote by $e(r,|a|)$ the last term and we put $e(0,|a|)=0$. Then we have

$$
\left|\frac{\partial}{\partial r} e(0,|a|)\right|=2 \lim _{r \rightarrow 0^{+}}\left[\frac{-\log (1-r)}{r} \max _{|z| \leq r} e\left(\left|\phi_{|a|}(z)\right|\right)\right]=2 e(|a|) .
$$

Moreover, $e(|a|) \rightarrow 0$ as $|a| \rightarrow 1^{-}$.
2^{0}. Now let us assume that there exists a function $e(r,|a|)$ as in the theorem. For $r=0$ we have the equality in (3.1). Thus

$$
\begin{equation*}
\left.\frac{d}{d r}\right|_{r=0}\left|g\left(\phi_{a}(z)\right)-g(a)\right| \leq\left.\frac{\partial}{\partial r}\right|_{r=0} e(r,|a|) \tag{3.2}
\end{equation*}
$$

Since

$$
\frac{d}{d r}\left|g\left(\phi_{a}(z)\right)-g(a)\right|=\left|g\left(\phi_{a}(z)\right)-g(a)\right| \frac{d}{d r} \operatorname{Re} \log \left(g\left(\phi_{a}(z)\right)-g(a)\right)
$$

we get

$$
\left.\frac{d}{d r}\right|_{r=0}\left|g\left(\phi_{a}(z)\right)-g(a)\right|=\left|g^{\prime}(a)\right|\left(1-|a|^{2}\right)
$$

if $g^{\prime}(a) \neq 0$. If $g^{\prime}(a)=0$, the result is true, too. Thus (1.2) is equivalent to

$$
\left|g^{\prime}(a)\right|\left(1-|a|^{2}\right) \leq \frac{\partial}{\partial r_{\left.\right|_{r=0}}} e(r,|a|)
$$

Moreover the last expression tends to 0 as $|a| \rightarrow 1$. This proves that $g \in \mathcal{B}_{0}$.

Remark 3.1. If $g \in \mathcal{B}_{0}$ and $e(r)=\max _{0 \leq r<1}\left|g^{\prime}(r)\right|(1-r)$, then we can choose

$$
e(r,|a|)=-2 \log (1-r) \sup _{|z|<r} e\left(\left|\phi_{|a|}(z)\right|\right) .
$$

Corollary 3.1. Let $0<r<1$. Then, for functions g holomorphic in D, the following conditions are equivalent:
(i) $g \in \mathcal{B}_{0}$,
(ii) $\max _{z \in D(a, r)}\left|g^{\prime}(z)\right|\left(1-|z|^{2}\right) \rightarrow 0$, as $|a| \rightarrow 1^{-}$,
iii) $\max _{z \in D(a, r)}|g(z)-g(a)| \rightarrow 0$, as $|a| \rightarrow 1^{-}$.

Proof. We show forst that (i) and (ii) are equivalent.
Let $g \in \mathcal{B}_{0}$ and let $r_{a}=\max _{z \in D(a, r)}|z|$. Let us observe that $r_{a} \rightarrow 1^{-}$as $|a| \rightarrow 1^{-}$. Thus

$$
\max _{z \in D(a, r)}\left[\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right|\right] \leq \max _{|z| \leq r_{\mathrm{a}}}\left[\left(1-r^{2}\right)\left|g^{\prime}(z)\right|\right] \rightarrow 0,
$$

as $|a| \rightarrow 1^{-}$.
Now, assume that $g \notin \mathcal{B}_{0}$. Then there exists a sequence $z_{n} \in D$, $\left|z_{n}\right| \rightarrow 1^{-}$, such that

$$
\left(1-\left|z_{n}\right|^{2}\right)\left|g^{\prime}\left(z_{n}\right)\right| \rightarrow K>0 .
$$

However,

$$
\max _{z \in D(a, r))}\left[\left(1-|z|^{2}\right)\left|g^{\prime}(z)\right|\right] \leq\left(1-\left|z_{n}\right|^{2}\right)\left|g^{\prime}\left(z_{n}\right)\right|
$$

and this contradicts (ii).
Now, we show that (i) and (iii) are equivalent. Let us first assume that $g \in \mathcal{B}_{0}$. By Theorem 3.1 there exists $e(r,|a|)$ such that

$$
\max _{z \in D(a, r)}|g(z)-g(a)| \leq e(r,|a|) \rightarrow 0
$$

as $|\boldsymbol{a}| \rightarrow 1^{-}$.
Suppose (iii) holds and $e(|a|)=\max _{z \in D(a, r)}|g(z)-g(a)| \rightarrow 0$ as $|a| \rightarrow 1^{-}$. Then for $p, p \geq 1$:

$$
\begin{aligned}
& {\left[\frac{1}{|D(a, r)|} \int_{D(a, r)}|g(z)-g(a)|^{p} d A(z)\right]^{1 / p}} \\
& \quad \leq\left[\frac{e^{p}(|a|)}{|D(a, r)|}|D(a, r)|\right]^{1 / p}=e(|a|) \rightarrow 0
\end{aligned}
$$

as $|a| \rightarrow 1^{-}$. Thus by [2; Th.2] we get $g \in \mathcal{B}_{0}$.
We will need the following lemmas.

Lemma 3.1. Let g be a holomorphic function in D. Then $g \in \mathcal{B}_{0}$ if and only if $g\left(\phi_{a}(z) \in \mathcal{B}_{0}\right.$ for each $a \in D$.

Proof. Let $g \in \mathcal{B}_{0}$. Let us denote $G_{a}(z)=g\left(\phi_{a}(z)\right)$, and

$$
\epsilon(r)=\max _{|z|=r}\left|g^{\prime}(z)\right|\left(1-r^{2}\right)
$$

Then

$$
\begin{aligned}
& \left|G_{a}^{\prime}(z)\right|\left(1-|z|^{2}\right)=\left|g^{\prime}\left(\phi_{a}(z)\right)\right| \frac{1-|a|^{2}}{|1+\bar{a} z|^{2}}\left(1-|z|^{2}\right) \\
& \quad=\left|g^{\prime}\left(\phi_{a}(z)\right)\right|\left(1-\left|\phi_{a}(z)\right|^{2}\right) \leq \epsilon\left(\left|\phi_{a}(z)\right|\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \max _{|z|=r}\left|G_{a}^{\prime}(z)\right|\left(1-r^{2}\right) \leq \max _{|z|=r} \epsilon\left(\left|\phi_{a}(z)\right|\right) \\
= & \max \left\{\epsilon(r): r \in\left[\left|\frac{|a|-r}{1-|a| r}\right|, \frac{|a|+r}{1+|a| r}\right]\right\} .
\end{aligned}
$$

Since $\lim _{r \rightarrow 1^{-}} \epsilon(r)=0$ we have proved that $G_{a} \in \mathcal{B}_{0}$.
The rest of the proof is trivial.
Lemma 3.2. Let $g \in \mathcal{B}_{0}, a \in D$ and $G_{a}(z):=g\left(\phi_{a}(z)\right)=$ $\sum_{n=0}^{\infty} c_{n}(a) z^{n}$. Then for each nonnegative integer n we have

$$
\max _{|a|=\rho}\left|c_{n}(a)\right| \rightarrow 0
$$

as $\rho \rightarrow 1^{-}$.

Proof. We have

$$
\begin{aligned}
n\left|c_{n}(a)\right| & =\frac{1}{2 \pi}\left|\int_{|z|=r} \frac{g^{t}\left(\phi_{a}(z)\right) \frac{1-|a|^{2}}{(1+\bar{a} z)^{2}}}{z^{n}} d z\right| \\
& \leq \frac{\max _{t}\left|g^{\prime}\left(\phi_{a}\left(r e^{i t}\right)\right)\right|\left(1-|a|^{2}\right)}{r^{n-1}(1-|\bar{a}| r)^{2}} .
\end{aligned}
$$

Since $\max _{t}\left|\frac{r e^{i t}+a}{1+\bar{a} r e^{i t}}\right|=\frac{r+|a|}{1+|a| r}$, we get

$$
\max _{t}\left|g^{\prime}\left(\frac{r e^{i t}+a}{1+\bar{a} r e^{i t}}\right)\right| \leq \max _{t}\left|g^{\prime}\left(\frac{r+|a|}{1+|a| r} e^{i t}\right)\right|
$$

Let $\epsilon(r)$ will be as in the proof of Lemma 3.1. Then, for fixed $r \in$ $(0,1)$, we obtain

$$
n\left|c_{n}(a)\right| \leq \frac{\epsilon\left(\frac{r+|a|}{1+|a| r}\right)}{r^{n-1}(1-r)^{2}} \frac{(1+r|a|)^{2}}{1-r^{2}} \leq \frac{1+r}{r^{n-1}(1-r)^{3}} \epsilon\left(\frac{r+|a|}{1+|a| r}\right) .
$$

Letting $|a| \rightarrow 1$ we get $\epsilon\left(\frac{r+|a|}{1+|a| r}\right) \rightarrow 0$ and this completes the proof of the Lemma.

Now, for a positive integer n, let us introduce the class $\mathcal{B}_{0}^{(n)}$ as a family of all holomorphic functions g in D such that

$$
\max _{|z|=r}\left|g^{(n)}(z)\right|=o\left(\frac{1}{\left(1-|z|^{2}\right)^{n}}\right)
$$

as $|z| \rightarrow 1^{-}$. The next result, similarly as Theorem 2.2 , is well known ([2],[10]), but we give an alternative proof.

Theorem 3.2. $\mathcal{B}_{0}^{(n)}=\mathcal{B}_{0}$, for each positive integer n.

Proof.

1^{0} Using induction we show that $\mathcal{B}_{0}^{(n)} \subset \mathcal{B}_{0}$. For $n=1$ this is true by definition. Now, let us assume that

$$
\max _{|z|=r}\left|g^{(n+1)}(z)\right|\left(1-|z|^{2}\right)^{n+1} \rightarrow 0
$$

for $|z| \rightarrow 1^{-}$which is equivalent to

$$
\max _{|z|=r}\left|g^{(n+1)}(z)\right|(1-|z|)^{n+1}:=\epsilon(r) \rightarrow 0
$$

for $r=|z| \rightarrow 1^{-}$. The function $\epsilon(r)$ is continuous in $[0,1)$. Let us choose a sequence $\left(r_{m}\right)$ such that $\lim _{m \rightarrow \infty} r_{m}=1, r_{m} \in(0,1)$. Moreover, let $r_{m}<r<1$ for a fixed m and $\epsilon_{m}=\max _{t \in\left[r_{m}, r\right]} \epsilon(t)$, $z=r e^{i \phi}, z_{m}=r_{m} e^{i \phi}$ for a fixed ϕ. Then

$$
\left|g^{(n)}(z)-g^{(n)}\left(z_{m}\right)\right| \leq \int_{r_{m}}^{r}\left|g^{(n+1)}\left(t e^{i \phi}\right)\right| d t
$$

$$
\leq \int_{r_{m}}^{r} \frac{\epsilon(t)}{(1-t)^{n+1}} d t \leq \epsilon_{m} \int_{r_{m}}^{r} \frac{d t}{(1-t)^{n+1}} \leq \frac{\epsilon_{m}}{n(1-r)^{n}}
$$

Thus

$$
\left|g^{(n)}\left(r e^{i \phi}\right)\right|(1-r)^{n} \leq\left|g^{(n)}\left(r_{m} e^{i \phi}\right)\right|(1-r)^{n}+\frac{\epsilon_{m}}{n}
$$

and

$$
\max _{|z|=r}\left|g^{(n)}(z)\right|(1-r)^{n} \leq \max _{\phi \in[0,2 \pi]}\left|g^{(n)}\left(r_{m} e^{i \phi}\right)\right|(1-r)^{n}+\frac{\epsilon_{m}}{n}
$$

Hence

$$
\limsup _{r \rightarrow 1^{-}}\left(\max _{|z|=r}\left|g^{(n)}(z)\right|(1-r)^{n}\right) \leq \frac{\epsilon_{m}}{n}
$$

Since $\lim _{m \rightarrow \infty} \epsilon_{m}=0$, we have $g \in \mathcal{B}_{0}$.
2^{0}. Let $g \in B_{0}$. We use induction. For $n=1$ the result is true. Let us assume that for some positive integer n

$$
\max _{|z|=r}\left(1-|z|^{2}\right)^{n}\left|g^{(n)}(z)\right|=o(1)
$$

as $|z| \rightarrow 1$. By Lemma 3.1 the function $G_{a}(z)=g\left(\phi_{a}(z)\right) \in B_{0}$ for each $a \in D$. Similarly, as in the proof of Theorem 2.2, let us observe that

$$
G_{a}^{(n+1)}(0)-g^{(n+1)}\left(\phi_{a}(0)\right)\left(\phi_{a}^{\prime}(0)\right)^{n+1}
$$

is a sum of terms of the form (up to constants)

$$
g^{(1+p)}\left(\phi_{a}(0)\right) \prod_{\alpha=1}^{q}\left(\phi_{a}^{\left(j_{\alpha}\right)}(0)\right)^{m_{\alpha}}
$$

where $\sum_{\alpha=1}^{q} m_{\alpha}=1+p$. By assumption we get

$$
\begin{gathered}
\left|g^{(1+p)}\left(\phi_{a}(0)\right)\right| \prod_{\alpha=1}^{q}\left|g^{\left(j_{\alpha}\right)}(0)\right|^{m_{\alpha}} \leq((n+1)!)^{n+1}\left|g^{(1+p)}(a)\right|\left(1-|a|^{2}\right)^{1+p} \\
\leq((n+1)!)^{n+1} \epsilon_{p+1}(|a|)
\end{gathered}
$$

where $\epsilon_{p+1}(|a|) \rightarrow 0$ for $|a| \rightarrow 1$.

Thus

$$
\begin{aligned}
& \left|g^{(n+1)}\left(\phi_{a}(0)\right)\right|\left|\phi_{a}^{\prime}(0)\right|^{n+1}=\left|g^{(n+1)}(a)\right|\left(1-|a|^{2}\right)^{n+1} \\
& \quad \leq\left|G_{a}^{(n+1)}(0)\right|+N(n)((n+1)!)^{n+1} \epsilon(|a|)
\end{aligned}
$$

where

$$
\epsilon(|a|)=\max _{p \in\{1, \ldots, n\}} \epsilon_{p}(|a|) \rightarrow 0
$$

as $|a| \rightarrow 1$. From Lemma 3.2 we have

$$
\max _{|a|=\rho}\left|G_{a}^{(n+1)}(0)\right| \rightarrow 0
$$

as $\rho \rightarrow 1$.
Thus

$$
\max _{|a|=\rho}\left|g^{(n+1)}(a)\right|\left(1-|a|^{2}\right)^{n+1}=o(1)
$$

as $\rho \rightarrow 1$.

References

[1] Anderson, J. M., J.Clunie and Ch.Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
[2] Axler, S., The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53,2 (1986), 315-332.
[3] Duren, P., Theory of H^{p} spaces, Academic Press, New York and London, 1970.
[4] Hayman, W. K., Lectures on functions of a complex variable, Univ. of Michigan Press, 1955.
[5] Pommerenke, Ch., Linear-invariante Familien analytischer Funktionen, Math. Ann. 155 (1964), 108-154.
[6] , On Bloch functions, J. London Math. Soc. 2 (1970), 689-695.
[7] Seidel, W. and J.Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, Trans. Amer. Math. Soc. 52 (1942), 128-216.
[8] Starkov, V. V., Theorems of regularity for universal linearly-invariant families of functions, Serdika (Bulg. Math.Soc.) 11 (1985), 299-318.
[9] , Equivalent definitions of universal linearly-invariant families, Materiały XI Konferencji Szkoleniowej z Teorii Zagadnień Ekstremalnych, Lódź (1990), 34-38.
[10] Kehe Zhu, The Bergman spaces, the Bloch spaces, and Gleason's problem, Trans. Amer. Math. Soc. 309,1 (1988), 253-268.
[11] , Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278.

Institute of Mathematics, received February 15, 1994 Maria Curie-Skłodowska University, 20-031 Lublin, Poland;
e-mail:GODULA@HEKTOR.UMCS.LUBLIN.PL

Department of Mathematics,
University of Petrozavodsk, Petrozavodsk, Russia; e-mail:STARKOV@MAINPGU.KARELIA.SU

