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Applications of the Idea of Mobius Invariance
to Obtain Equivalent Definitions of Bloch Function

ABSTRACT. In this paper we investigate the Bloch class B of func-
tions (|g’(z)| = O((1 - |z|?)~ 1), for z € D) and "the little” Bloch
class By (max, =, |g'(z)| = o((1 - |2]2)~1, for |z| = 17). Applying
the idea of Mobius invariance we give a few conditions equivalent to
the definitions of B and Bj.

1. Introduction. A function g holomorphic in the unit disc D is
called a Bloch function if

') = O(3=7).

for 2 € D. The space of all Bloch functions is denoted by B and

lglls := [g(0)] + sup (1 — |z|*)lg'(2)] < oo.
|z|<1

Moreover, let B(0) = {g € B : g(0) = 0} and By be the family of
functions g holomorphic in D such that

max |¢'(z)| = o( 2 ).

s - [z
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for |z] = 17. Obviously By C B.
For a € D let the Mobius function ¢, : D — D be defined by

ba(z) = for z € D.

az

a+z
1+

If f is a function locally univalent in D then the order of f is
defined as follows

ord f = sup
a€D

Uiy

where {h(z)}2 denotes the second Taylor coefficient of the function
h(z)=z+....

The universal linearly invariant (or universal Mobius invariant)
family U, (see [3]) is the class of all functions f(z) = z 4+ ... holo-
morphic in D such that:
1° f'(z) #0in D,

2% ord f < a.

In this paper we give equivalent definitions of the Bloch classes.
In Section 2 we prove necessary and sufficient conditions for a holo-
morphic function in D to be in B. In Section 3 we deal with the class
Bo.

We start with a result which gives us the relationship between the
Bloch space and the universal Mobius invariant family.

Lemma 1.1. The folowing equality holds: B(0) = {logf' : f €
Uas<oo Ua}. Moreover, if g = log f' € B(0) and ord f = a, then
26 =1) < llglls < 2(a +1).

Proof. Let g(z) = log f'(z) and ordf = a. Then %_1-;:?

a + 1, ([5; Lemma 1.2]). Thus (1 — |2|?)|¢’(2)| < 2(a + 1), and this
proves that g € B(0) and ||g]|8 < 2(a +1).
Assume now that g € B(0). Let

f(z) = Jlo exp g(s)ds.
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Note that f(0) =0, f'(0) = 1 and consequently

1= o f'(s)
ahethe" d o a7
1L, ] lals
= sup [L g o < Mol
z€D = “

This proves our Lemma. 0O

Now, let us give a few examples extending some known results on
Uq to the Bloch class. .

Let us denote by Z, a family of all complex-valued functions y of
bounded variation on [0, 27] such that:

27

(i) du(t) =1,
0

2 z+e“

i su .

() |z|<ﬁI 0 1 4 Zett

du(t)] £ @, where a > 1.

Corollary 1.1. Let g be a function holomorphic in D. Then g € B
if and only if there exist a > 1 and a sequence p, € I, such that

2r

9(z) = 9(0) = lim [ (-2log(l - ze"))dun(t),

where

a = ord /r exp(g(s) — g(0))ds .

Proof. It was shown in [8] that f € Us if and only if there exists a
sequence u, € I, such that

2w )
f'(z) = lim exp[—2 J/ log(1 — ze*)dpn(t)).
n—oo 0

Using Lemma 1.1 we get our result. O
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Now, let for z € [0,1), ¢ € [-1,1]

+ garcsinz

X :
+ arcsinz .
-

In [5] Ch. Pommerenke proved the following inequality for a function

f € U,:

sin \’

|Re {e* log((1 — |z|*)f'(2))}] £ 2= (|z|, - ) ;

Observe that the function a=(]z|, s‘—‘;’\-) is increasing with respect to
a. Hence using Lemma 1.1, we obtain the following

Corollary 1.2. Let g € B, A be a real number and a = ord [ exp(g(s)

—g(0))ds. Then for z € D

Red(9(2) ~ 9(0))e™) + cos ALog(1 — ls)| < 2=(12l, 227)

. 2
sin® A\ . 1+ |z|
< - 1

<4/1 08 7 2]

2 + 2arcsin |z| .

Moreover, the function g(z) — ¢(0) maps the disc {z : |z| < r} into
a domain with the boundary 2ae'*=(r, #82) — log(1 — |z|?), where
A € [0,27].

From Corollary 2.2 in [5] and Lemma 1.1 we obtain the following
result.
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Corollary 1.3. Let g € B, A-a real number and a = ord [ exp(g(s)
—9(0))ds. Then for zy,z3 € D, we have

Re {e—i’\

" 1— |22]? : Ly
o(22) — g(er) +log 12 + Ziare(1 — 7121 | } ‘

29 — 2z, SInA,

=712, Iy o
In [8] it was shown that for all f € U, the functions

(1 - ?.)a+l
(14r)e?

(1 - o)

! _61‘8 R ik /
|f (’ )‘ Y |_.,_.|)a—l

and foax |f'(2)]

with every 6 € [0,27], are decreasing for r, r € (0,1) and they have
limits (as r — 17) belonging to [0, 1]. Thus, after differentiation and
applying Lemma 1.1 we get the following

Corollary 1.4. Let f € B. Then, for every 6 € [0,2n] the following
functions

Re[g(re®) — g(0)] + (e + 1)log(1 —7) — (e — 1) log(1 + )

and
mgxx Re[g(rew) —g(0)] + (a + 1) log(1 — r)—(a—1)log(l +r)

are decreasing for r € (0,1) and have limits (as r — 17 ) which are
less than or equal to 0. Moreover, the limits can be equal 0 for a
fixed a only for the function

9(2) = g(0) — (a + 1) log(1 — ze'®) 4 (a = 1) log(1 + ze'%).

Here a = ord [, exp[g(s) — g(0)]ds.
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2. The class B.

Theorem 2.1. Let g be a function holomorphic in D. Then g € B

if and only if there exists a positive constant C(g) such that for all
ze€D

sup |g(#a(2)) — g(a) — 2log(1 + az)|
a€D
(2.1)

1
< C(g)log T — log(1— 1),

where r = |z|. Here C(g) = ord [ exp[g(s) — g(0)]ds and this con-
stant is the best.

Proof. It is enough to prove the theorem for the class B(0).

19, Let g € B(0). By Lemma 1.1 there exists a function f € U,
and @ = ord f such that g(z) = log f'(z). Since the family U, is
Mobius invariant, we have

£ ($a(s))
il / F(@)(1 +as)?

for all a € D. For the function F we have ([5]) the following inequal-
ity:

)dser,

1+ )z
|log(F'(2)(1 = |2[?))| < alog : -I__ :Z{
B £ (¢a(2)) (1 = |2P) L4 2
'(a(z e + |z
lﬂg f’(a)(l T 62)2 S alog ]_—_lz!
and consequently
|9 (8a(2)) — g(a) — 21og(1 + @z) + log(1 — |2|*)| < alog 1 4_— :z:

2°. Now, let a holomorphic function g satisfy (2.1) (with g(0) = 0).
If we put f(z) = fo" exp g(s)ds, then by (2.1) we have

tog 1 (84(2)
® Fla)i +azy

—log(1 — r2),

147
< Clg)log 7—
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fotulz|s=rnalDhus

[Re{log f' (¢a(2)) — log f'(a) — 2log(1 +@z)}|

+7

1
< C(g)log i

From the last inequality (after differenting with respect to r at the
point z = re'” = 0) we get

—log(1 - r?).

"(a = (12 :
%;—')“ 2'1 @)™} < C(g)

—C(g) < Re{(
and consequently

n _a2
)}T(Z.))l—gl—l—~a' < C(g) -

Hence ordf = a. By Lemma 1.1 we get g(z) = log f'(z) € B(0). O

It is clear that the inequality in Theorem 2.1 can be written in an
equivalent form

. : 1
sup |g (¢a(2)) — 9(a)| < Kglog ——,
a€D 1 |Z|

where the best constant I, = ||g(z) — g(0)|s, (see [2], p.230).
For z,a € D, the pseudo-hyperbolic distance d(a, z) between a and
z 1s defined by
d(a,z) = |$a(2)| .

For ¢ € D and r € (0,1), the pseudo-hyperbolic disc D(a,r) with
(pseudo-hyperbolic centre a and pseudo-hyperbolic radius ) is de-
fined by

D(a,r) ={z€ D:d(a,r) <} .

Since ¢, is a fractional linear transformation, the pseudo-hyperbolic
disc D(a,r) is also an Euclidean disc. Except for the special case
D(a,r) = rD, the Euclidean and pseudo-hyperbolic radii and cen-
tres do not coincide. The measure of D(a,r) with respect to the
normalized area i‘,‘—r"- will be denoted by |D(a,r)|.
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Corollary 2.1. Let 0 < r < 1. Then, for functions g holomorphic
in D, the following conditions are equivalent:

i) g € B,

i1) There exists a constant Cy such for all a € D and all z € D(a,r)

lg(z) — g(a)| < C, .

Let us observe that for p > 1,

: ( paacs)|
sup | ——— z)—g(a z
D@ Jo T ~ eI AL
C? 11/p
< [ g =]
e’ EEEIJD(G’T) |D(a’r)|j Cg :

Thus by Theorem 1 from [2] we get g € B.
Our next result depends upon the following

Lemma 2.1. Let ¢(¢) and ( = ®(z) be functions holomorphic in
their domains and let the function ¢(®(z)) be defined. Moreover, let
J1y+-+ yJ1,M1,... ,; be nonnegative integers and k = my +---+m;.
Then all components of the derivative

dif;; {é‘“(@(z)) (q,(hl(z))m‘ (¢(J'z)(z)) s U (q,(jr}(z)) m']
have the form (up to constants)
¢(k+p5(@(z)) (‘I"“”(:—:)) - (ci)(")(z)) it (q;(iq)(z)) il ’

wherep=0,1,... ,nandny +... +ng =k + p.

Proof. It is enough to prove the Lemma in the case n = 1. For

n > 2 the result follows by induction.
We have

{
2 16W@(2) [T @9 ()]
a=1
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]

= ¢t£+1) (®(z) )@( H (I,(Ja z))mc.

a=1

l l
+0(8(2) Y [(T] (@9 (2)) ™ mp(@09)(2))™ 7@+ ()
B=1 a: :
O

Now, for a positive integer n, let us define B as the family of all
holomorphic functions g in D such that

") = (=T 1[2)")'

The following result is well known ([2],[10]), but we give an alternative
proof.

Theorem 2.2. B(") = B, for each positive integer n.

Proof.

1°. First, we show by induction that B{™ C B. For n = 1 the
theorem is true by the definition.

Now, let us assume that we have proved the inclusion for a positive

integer n and we will prove it for n + 1.
Let

, Kns1(9)
| ,(n+1) ___“_
9 (2)] £ (1 — |z]2)~*? J

for 2 € D. Then, for z = re*®

n n - i Kni1(9)
l9™(2) — g™ (0)] </ 9T e Idt</ 1=yt

r t Tl
- Koo e+ || )

1

< 2Kn+1(9)m)—,; ;
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Thus there exists a constant K,(g) such that

(n} | g}
- (l IZ *)"
in D and by assumption g € B.
20, Let g(z) = Yo ycn2™ € B. It is known ([6]) that |c,| <
2|lgllg- We will again use induction.
For n = 1 our result is true. Let us assume that for some positive

n
(1= 1z*)"1g"™(2)| < K(g,n),
for z € D. From the proof of Theorem 2.1 it follows that the function

Ya(z) = g(a(2)) — g(a) — 2log(1 + @2)
belongs to B.

We have
96

Ya(2) = g'(#a(2))a(2) -

az
and

|6{9(0)] = k(1 — |af?) .

By Lemma 2.1 the following expression

¢£n+l)(z) + ( 2a

s (n+1) +1
) - )6 )

= ${"(2) +2(@) " nl(-1)"(1+82) "7 —g " (ga(2))(85 ()"
is a sum (with N(n) components) of functions of the form (up to
constants)

q
g P (ga(2)) [] (850 (2))"
a=1

where }°? _ mo =1+ p and p is an integer satisfying0 < p <n —1.
By our assumption we get

g (6a(0)) [T (8420 (0))™|

q
=g+ (a)] JT(Ga)(1 = lal?))™

< ((n+ 1)) g+ (a)|(1 - |af?)**?
<((n+ 1)) Kppi(g) -
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Thus
g™t (64 (0))(64(0)" ] < [${"+D(0)] + 2|a|*n!

nn+l -
+N(n)((n + 1)) s, Lk Kp+1(9)

which is equivalent to

g™ D (@)|(1 — Jaf?)"+!

K =K :
xpe{oylll}ﬁ)fn_l} P+l(g) ‘n+1(g)

This proves that g € B(™. O

3. The class By. In this section we give some results concerning
the class By.

Theorem 3.1. Let g be a function holomorphic in D. Then g € By
If and only if there exists a function e(r, |a|) defined on [0,1) x [0,1)
such that
(i) e(0,la]) =0,
(ii) there exists the right hand side derivative 8e/dr(0,|a]) and
0e/0r(0,|al]) = 0, as |a] = 17, and

(3.1) l9(¢a(2)) — g(a)| < e(r,lal) ,
for all z, |z =r < 1.

Proof. )
1°. Assume g € By. Let us denote

e(lz]) = Irillg)glg'(Z)l(l —12l) -

By our assumptions e(|z]) — 0 as |z| —» 17. Using the Schwarz
lemma we get

|2 [9(6a(2)) — g(@)I(1 = [2]) < 2e(1a(2)])
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for all a € D. Thus

l9(#a(2)) — g(a)| = J(¢’a(3)

< /or %GI'SLI'(IIS' < 2m2§e(l¢a(s)l)(—log(l —7))

=2 (e e(|$)a)(2))(—log(l — 1)) .

We denote by e(r, |a]) the last term and we put €(0,|a|]) = 0. Then
we have

—log(1—1) maxe(ma.(z)l) = 2¢(|al).

d
5-(0.laD| = " max

Moreover, e(|al]) — 0 as |a] — 1.
2°, Now let us assume that there exists a function e(r,|a|) as in
the theorem. For »r = 0 we have the equality in (3.1). Thus

(32) a6~ 9@l < 5 elrla)

r=0

Since

L l0(9a(2)) — 9(a)] = la(4a(2)) — g(e)]-3-Relog(g(4a(=) ~ (a)),

we get

dir l9(¢a(2)) — g(a)| = l¢'(a)|(1 — |a|*)

|r=o

if g'(a) # 0 . If g'(a) = 0, the result is true, too. Thus (1.2) is

equivalent to

&8
91~ laf) < 5 e(rlal).

Moreover the last expression tends to 0 as |a| — 1. This proves that

g€ By, O

Remark 3.1. If g € By and €(r) = maxo<r<1 |¢'(r)|(1 — 7), then we
can choose

e(r, |a|) = —2log(1 —r) sup e(|gjq|(2)]) -
|z|<r
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Corollary 3.1. Let 0 < r < 1. Then, for functions g holomorphic
in D, the following conditions are equivalent:

(i) g € By,

(i) max,ep(a,n l9'(2)I(1 = [2*) = 0, as |a| - 17,

i) max,ep(a,r)19(z) — g(a)l = 0, as |a| — 17,

Proof. We show forst that (i) and (ii) are equivalent.

Let g € By and let r, = max,ep(a,r) |2|. Let us observe that
re = 17 as |a| = 17. Thus

Jmax (1= [:7)lg' ()] € max (1= r)lg'(2)] 0,

-8

as |a| » 17,
Now, assume that g ¢ By. Then there exists a sequence z,, € D,
|zn| = 17, such that

(1= |zn*)lg'(za)l = K > 0.

However,

(1 = 121)lg'(2)]) £ (1 = |2a]*)lg"(2n
,emax [(1—[zP)lg'(2)l] < (1 = |za[O)lg’(2n)]
and this contradicts (i1).

Now, we show that (i) and (iii) are equivalent. Let us first assume
that g € By. By Theorem 3.1 there exists e(r, |a|) such that

max_|g(z) — g(a)| < e(r,|a]) — 0
z€D(a,r)
as |a| — 1.
Suppose (iii) holds and e(|a]) = max,ep(a,r) |9(2z) — g(a)] — 0 as
la| = 1~. Then for p, p > 1:

|-—| o /D _lo) - sty dAe)
el b ol = el -
< | paebiipan] = eleh —0

as |a| — 17. Thus by [2; Th.2] we get g € Bo. O
We will need the following lemmas.
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Lemma 3.1. Let g be a holomorphic function in D. Then g € By if
and only if g(¢a(2) € By for each a € D.

Proof. Let g € By. Let us denote G,(2) = g(¢4(z)), and

e(r) = max|g'()|(1 - r?).

Then t o
IGL(2)I(1 - |2*) = 'g'(¢a(z))||1 3 Iz( - |2[?)
= 19'(¢a(2))I(1 = |¢a(2)]*) < €(|da(2)]) -
Thus
max |G (2)I(1 - r) £ lmgx e(|¢a(2)])
= Imaxsy €(r r I|a| ' |a|+r']
{” e |l =ar T+ §

Since lim,_.;- ¢(r) = 0 we have proved that G, € Bo.
The rest of the proof is trivial. O

Lemma 3.2. Let g € By, a € D and Gq(z) := g(¢a(2)) =

S o ocn(a)z™. Then for each nonnegative integer n we have

max |cp(a)| — 0
la|=p
asp— 17,

Proof. We have

n|ca(a)| = L]

/ 9'(6a(2)) frrss
dz
2w |z]=r R

. max |g'(Ba(re’ NI(1 — |a]?)
= rm=1(1 — |a|r)?

Since max; | 1"_:;::‘, [l= lr-:ll:|r we get
p refifa o T+ lal g
max |¢'(—— )| < max|g'(—————¢€'")! .
ax |9 (e | S Xl (e
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Let ¢(r) will be as in the proof of Lemma 3.1. Then, for fixed r €
(0,1), we obtain

r+|a| 2
nlea(a)] < (iF7a17) (1 +rlal) ¥ 1+r T+ |al |

e L e A

r+la|
1+|alr

Letting |a| — 1 we get ¢(
the Lemma. O

) — 0 and this completes the proof of

Now, for a positive integer n, let us introduce the class B(()n) as a
family of all holomorphic functions ¢ in D such that

rane | o (il 2 (reas ke &
1:{=r|g ( )l ((1 _|z|2)n)

as |z| — 1~. The next result , similarly as Theorem 2.2, is well known
([2],[10]), but we give an alternative proof.

Theorem 3.2. Bé") = By, for each positive integer n.

Proof.

1° Using induction we show that Bé") C Bo. For n =1 this is true
by definition. Now, let us assume that

max g™ D()|(1 - |27)"1 =0,

lz|=r
for |z| - 1~ which is equivalent to

max [¢"*V(2)|(1 = |2])""" i=¢(r) = 0

Jzl=r

for r = |z| = 1=. The function ¢(r) is continuous in [0,1). Let
Us choose a sequence (r,) such that limpy—~eo™m = 1, r,m € (0,1).
MOreover, let r, < r < 1 for a fixed m and €, = maXg[r,, - (1),
2=re'%, 2, = rme'® for a fixed ¢. Then

9™(2) = g™ < [ 1™ (tei%)dt

T'm
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< ¥ E(t €m
T / (1 g e"‘/ (l—t)"+1 = nfled)

Thus _ . 7
lg"™ (re'?)l(1 — 1) < g™ (rme?)|(1 = )" + 7'"

and

(n) (n) i¢ n, €m
max 2)(1 —r)" < max Tme 1- + — .
|z|=r|9 (2)I( )" (02 ]|9 ( I( r) =

Hence L
llmsup(max g™ )1 -r)") < =
n

r—1-

Since limy o0 €m = 0, we have g € By.
20 Let g € By. We use induction. For n = 1 the result is true.
Let us assume that for some positive integer n

ma(l |21%)"19" (2)] = o(1)

as |z| — 1. By Lemma 3.1 the function G4(z) = ¢(¢.(z)) € By for
each a € D. Similarly, as in the proof of Theorem 2.2, let us observe
that

GEHD(0) — g H(4a(0))(44(0))™

is a sum of terms of the form (up to constants)

6426 (0) TT 400"

where Zi:l mq = 1 4 p. By assumption we get

q
9" (6a(O)] [T 19901 < ((n+1))™*1g P @)](1 = Jaf?)' +7

a=1

< ((n+ 1)) epra(lal)

where €,41(]a]) — 0 for |a| — 1.
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Thus
9" D(84(0))]1¢}, (0)**! = [g" D (a)|(1 — |al?)"*!

<IGTHDO)] + N(n)((n + 1)) e(lal)

where

e(lal)

as |a| — 1. From Lemma 3.2 we have

= max ¢€,(la])—0
p€{l,....n) »(lal)

max [G{"+D(0)] — 0

la|=p
as p — 1.
Thus
mgﬁlg‘"“’(a)l(l — la*)"*! = o(1)
asp—1. 0O
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