ANNALES

UNIVERSITATIS MARIAE CURIE-SKLODOWSKA LUBLIN-POLONIA

VOL. XLIX, 4

SECTIO A

1995

Janusz GODULA (Lublin) Viktor STARKOV (Karelia)

Applications of the Idea of Möbius Invariance to Obtain Equivalent Definitions of Bloch Function

ABSTRACT. In this paper we investigate the Bloch class \mathcal{B} of functions $(|g'(z)| = \mathcal{O}((1 - |z|^2)^{-1})$, for $z \in D$) and "the little" Bloch class \mathcal{B}_0 $(\max_{|z|=r} |g'(z)| = o((1 - |z|^2)^{-1})$, for $|z| \to 1^-)$. Applying the idea of Möbius invariance we give a few conditions equivalent to the definitions of \mathcal{B} and \mathcal{B}_0 .

1. Introduction. A function g holomorphic in the unit disc D is called a Bloch function if

$$|g'(z)| = \mathcal{O}\Big(\frac{1}{1-|z|^2}\Big),$$

for $z \in D$. The space of all Bloch functions is denoted by \mathcal{B} and

$$||g||_{\mathcal{B}} := |g(0)| + \sup_{|z|<1} (1-|z|^2)|g'(z)| < \infty.$$

Moreover, let $\mathcal{B}(0) = \{g \in \mathcal{B} : g(0) = 0\}$ and \mathcal{B}_0 be the family of functions g holomorphic in D such that

$$\max_{|z|=r} |g'(z)| = o\left(\frac{1}{1-|z|^2}\right),$$

Key words and phrases. Bloch functions, Möbius invariant family.

for $|z| \to 1^-$. Obviously $\mathcal{B}_0 \subset \mathcal{B}$. For $a \in D$ let the Möbius function $\phi_a : D \longrightarrow D$ be defined by

$$\phi_a(z) = \frac{a+z}{1+\overline{a}z}, \text{ for } z \in D.$$

If f is a function locally univalent in D then the order of f is defined as follows

ord
$$f = \sup_{a \in D} \left| \left\{ \frac{f(\phi_a(z)) - f(a)}{f'(a)(1 - |a|^2)} \right\}_2 \right|,$$

where $\{h(z)\}_2$ denotes the second Taylor coefficient of the function $h(z) = z + \dots$

The universal linearly invariant (or universal Möbius invariant) family U_{α} (see [5]) is the class of all functions $f(z) = z + \ldots$ holomorphic in D such that:

 $1^{0} f'(z) \neq 0 \text{ in } D,$ $2^{0} \text{ ord } f \leq \alpha.$

In this paper we give equivalent definitions of the Bloch classes. In Section 2 we prove necessary and sufficient conditions for a holomorphic function in D to be in \mathcal{B} . In Section 3 we deal with the class \mathcal{B}_0 .

We start with a result which gives us the relationship between the Bloch space and the universal Möbius invariant family.

Lemma 1.1. The following equality holds: $\mathcal{B}(0) = \{\log f' : f \in \bigcup_{\alpha < \infty} U_{\alpha}\}$. Moreover, if $g = \log f' \in \mathcal{B}(0)$ and ord $f = \alpha$, then $2(\alpha - 1) \leq ||g||_{\mathcal{B}} \leq 2(\alpha + 1)$.

Proof. Let $g(z) = \log f'(z)$ and $\operatorname{ord} f = \alpha$. Then $\left|\frac{f''(z)}{f'(z)}\frac{1-|z|^2}{2}\right| \leq \alpha + 1$, ([5; Lemma 1.2]). Thus $(1-|z|^2)|g'(z)| \leq 2(\alpha + 1)$, and this proves that $g \in \mathcal{B}(0)$ and $||g||_{\mathcal{B}} \leq 2(\alpha + 1)$.

Assume now that $g \in \mathcal{B}(0)$. Let

$$f(z) = \int_0^z \exp g(s) ds.$$

Note that f(0) = 0, f'(0) = 1 and consequently

$$\alpha = \operatorname{ord} f = \sup_{z \in D} \left| \frac{1 - |z|^2}{2} \frac{f''(z)}{f'(z)} - \overline{z} \right|$$
$$= \sup_{z \in D} \left| \frac{1 - |z|^2}{2} g'(z) - \overline{z} \right| \le \frac{\|g\|_{\mathcal{B}}}{2} + 1$$

This proves our Lemma.

Now, let us give a few examples extending some known results on U_{α} to the Bloch class.

Let us denote by \mathcal{I}_{α} a family of all complex-valued functions μ of bounded variation on $[0, 2\pi]$ such that:

(i)
$$\int_{0}^{2\pi} d\mu(t) = 1,$$

(ii)
$$\sup_{|z|<1} |\int_0^{2\pi} \frac{z+e^{it}}{1+\overline{z}e^{it}} d\mu(t)| \le \alpha, \text{ where } \alpha \ge 1.$$

Corollary 1.1. Let g be a function holomorphic in D. Then $g \in \mathcal{B}$ if and only if there exist $\alpha \geq 1$ and a sequence $\mu_n \in \mathcal{I}_{\alpha}$ such that

$$g(z) - g(0) = \lim_{n \to \infty} \int_0^{2\pi} (-2\log(1 - ze^{it})) d\mu_n(t)$$

where

$$\alpha = \operatorname{ord} \int_0^x \exp(g(s) - g(0)) ds$$

Proof. It was shown in [8] that $f \in U_{\alpha}$ if and only if there exists a sequence $\mu_n \in \mathcal{I}_{\alpha}$ such that

$$f'(z) = \lim_{n \to \infty} \exp\left[-2 \int_0^{2\pi} \log(1 - ze^{it}) d\mu_n(t)\right].$$

Using Lemma 1.1 we get our result. \Box

Now, let for $x \in [0, 1), q \in [-1, 1]$

$$\Xi(x,q) = \int_0^x \frac{\sqrt{1-q^2t^2}}{1-t^2} dt$$

$$= \frac{1}{2}\sqrt{1-q^2}\log\frac{\sqrt{1-q^2x^2}+x\sqrt{1-q^2}}{\sqrt{1-q^2x^2}-x\sqrt{1-q^2}} + q \arcsin x$$

$$\leq rac{1}{2}\sqrt{1-q^2}\lograc{1+x}{1-x}+rcsin x\;.$$

In [5] Ch. Pommerenke proved the following inequality for a function $f \in U_{\alpha}$:

$$\left|\operatorname{Re}\left\{e^{i\lambda}\log((1-|z|^2)f'(z))
ight\}
ight|\leq 2lpha\Xi\left(|z|,rac{\sin\lambda}{lpha}
ight).$$

Observe that the function $\alpha \Xi(|z|, \frac{\sin \lambda}{\alpha})$ is increasing with respect to α . Hence using Lemma 1.1, we obtain the following

Corollary 1.2. Let $g \in \mathcal{B}$, λ be a real number and $\alpha = \operatorname{ord} \int_0^z \exp(g(s) -q(0)) ds$. Then for $z \in D$

$$|\operatorname{Re}\{(g(z) - g(0))e^{-i\lambda}\} + \cos\lambda Log(1 - |z|^2)| \le 2\Xi(|z|, \frac{\sin\lambda}{\alpha})$$

$$\leq \sqrt{1 - rac{\sin^2\lambda}{lpha^2}\lograc{1+|z|}{1-|z|}} + 2 \arcsin|z| \; .$$

Moreover, the function g(z) - g(0) maps the disc $\{z : |z| \leq r\}$ into a domain with the boundary $2\alpha e^{i\lambda} \Xi(r, \frac{\sin \lambda}{\alpha}) - \log(1 - |z|^2)$, where $\lambda \in [0, 2\pi]$.

From Corollary 2.2 in [5] and Lemma 1.1 we obtain the following result.

Corollary 1.3. Let $g \in \mathcal{B}$, λ -a real number and $\alpha = \operatorname{ord} \int_0^z \exp(g(s) -g(0)) ds$. Then for $z_1, z_2 \in D$, we have

$$\left| \operatorname{Re} \left\{ e^{-i\lambda} \left[g(z_2) - g(z_1) + \log \frac{1 - |z_2|^2}{1 - |z_1|^2} + 2i \operatorname{arg}(1 - \overline{z_1} z_2) \right] \right\} \right|$$

$$\leq 2lpha \Xi (|rac{z_2-z_1}{1-\overline{z_1}z_2}|,rac{\sin\lambda}{lpha}) \; .$$

In [8] it was shown that for all $f \in U_{\alpha}$ the functions

$$|f'(re^{i\theta})| \frac{(1-r)^{\alpha+1}}{(1+r)^{\alpha-1}}$$
 and $\max_{|z|=r} |f'(z)| \frac{(1-|z|)^{\alpha+1}}{(1+|z|)^{\alpha-1}}$

with every $\theta \in [0, 2\pi]$, are decreasing for $r, r \in (0, 1)$ and they have limits (as $r \to 1^-$) belonging to [0, 1]. Thus, after differentiation and applying Lemma 1.1 we get the following

Corollary 1.4. Let $f \in \mathcal{B}$. Then, for every $\theta \in [0, 2\pi]$ the following functions

$$\operatorname{Re}[g(re^{i\theta}) - g(0)] + (\alpha + 1)\log(1 - r) - (\alpha - 1)\log(1 + r)$$

and

$$\max_{\theta} \operatorname{Re}[g(re^{i\theta}) - g(0)] + (\alpha + 1)\log(1 - r) - (\alpha - 1)\log(1 + r)$$

are decreasing for $r \in (0,1)$ and have limits (as $r \to 1^-$) which are less than or equal to 0. Moreover, the limits can be equal 0 for a fixed α only for the function

$$g(z) = g(0) - (\alpha + 1)\log(1 - ze^{i\theta}) + (\alpha - 1)\log(1 + ze^{i\theta}).$$

Here $\alpha = \operatorname{ord} \int_0^z \exp[g(s) - g(0)] ds$.

2. The class \mathcal{B} .

Theorem 2.1. Let g be a function holomorphic in D. Then $g \in \mathcal{B}$ if and only if there exists a positive constant C(g) such that for all $z \in D$

(2.1)
$$\sup_{a \in D} \frac{|g(\phi_a(z)) - g(a) - 2\log(1 + \overline{a}z)|}{\leq C(g)\log\frac{1+r}{1-r} - \log(1-r^2)},$$

where r = |z|. Here $C(g) = \operatorname{ord} \int_0^z \exp[g(s) - g(0)] ds$ and this constant is the best.

Proof. It is enough to prove the theorem for the class $\mathcal{B}(0)$.

1⁰. Let $g \in \mathcal{B}(0)$. By Lemma 1.1 there exists a function $f \in U_{\alpha}$ and $\alpha = \text{ord } f$ such that $g(z) = \log f'(z)$. Since the family U_{α} is Möbius invariant, we have

$$F(z) = \int_0^z \frac{f'(\phi_a(s))}{f'(a)(1+\overline{a}s)^2} ds \in U_\alpha$$

for all $a \in D$. For the function F we have ([5]) the following inequality:

$$\left|\log(F'(z)(1-|z|^2))\right| \le \alpha \log \frac{1+|z|}{1-|z|}.$$

Thus

$$\log \frac{f'(\phi_a(z))(1-|z|^2)}{f'(a)(1+\overline{a}z)^2} \le \alpha \log \frac{1+|z|}{1-|z|}$$

and consequently

$$\left|g\left(\phi_{a}(z)\right) - g(a) - 2\log(1 + \overline{a}z) + \log(1 - |z|^{2})\right| \le \alpha \log \frac{1 + |z|}{1 - |z|}.$$

2⁰. Now, let a holomorphic function g satisfy (2.1) (with g(0) = 0). If we put $f(z) = \int_0^z \exp g(s) ds$, then by (2.1) we have

$$\left|\log \frac{f'(\phi_a(z))}{f'(a)(1+\overline{a}z)^2}\right| \le C(g)\log \frac{1+r}{1-r} - \log(1-r^2),$$

for |z| = r. Thus

$$\begin{aligned} &\operatorname{Re}\{\log f'\left(\phi_{a}(z)\right) - \log f'(a) - 2\log(1 + \overline{a}z)\} \\ &\leq C(g)\log\frac{1+r}{1-r} - \log(1-r^{2}) \;. \end{aligned}$$

From the last inequality (after differenting with respect to r at the point $z = re^{i\eta} = 0$) we get

$$-C(g) \le \operatorname{Re}\{(\frac{f''(a)}{f'(a)}\frac{1-|a|^2}{2} - \overline{a})e^{i\eta}\} \le C(g)$$

and consequently

$$\left|\frac{f''(a)}{f'(a)}\frac{1-|a|^2}{2}-\overline{a}\right| \le C(g) \; .$$

Hence ord $f = \alpha$. By Lemma 1.1 we get $g(z) = \log f'(z) \in \mathcal{B}(0)$.

It is clear that the inequality in Theorem 2.1 can be written in an equivalent form

$$\sup_{a \in D} |g(\phi_a(z)) - g(a)| \le K_g \log \frac{1}{1 - |z|}$$

where the best constant $K_g = ||g(z) - g(0)||_{\mathcal{B}}$, (see [2], p.230).

For $z, a \in D$, the pseudo-hyperbolic distance d(a, z) between a and z is defined by

$$d(a,z) = |\phi_a(z)| .$$

For $a \in D$ and $r \in (0,1)$, the pseudo-hyperbolic disc D(a,r) with (pseudo-hyperbolic centre a and pseudo-hyperbolic radius r) is defined by

$$D(a,r) = \{ z \in D : d(a,r) < r \} .$$

Since ϕ_a is a fractional linear transformation, the pseudo-hyperbolic disc D(a,r) is also an Euclidean disc. Except for the special case D(a,r) = rD, the Euclidean and pseudo-hyperbolic radii and centres do not coincide. The measure of D(a,r) with respect to the normalized area $\frac{dA}{r}$ will be denoted by |D(a,r)|.

Corollary 2.1. Let 0 < r < 1. Then, for functions g holomorphic in D, the following conditions are equivalent: i) $g \in \mathcal{B}$,

ii) There exists a constant C_q such for all $a \in D$ and all $z \in D(a, r)$

$$|g(z) - g(a)| \le C_g$$

Let us observe that for $p \ge 1$,

$$\sup_{a \in D} \left[\frac{1}{|D(a,r)|} \int_{D(a,r)} |g(z) - g(a)|^p dA(z) \right]^{1/p} \\ \leq \sup_{a \in D} \left[\frac{C_g^p}{|D(a,r)|} |D(a,r)| \right]^{1/p} = C_g .$$

Thus by Theorem 1 from [2] we get $g \in \mathcal{B}$.

Our next result depends upon the following

Lemma 2.1. Let $\phi(\zeta)$ and $\zeta = \Phi(z)$ be functions holomorphic in their domains and let the function $\phi(\Phi(z))$ be defined. Moreover, let $j_1, \ldots, j_l, m_1, \ldots, m_l$ be nonnegative integers and $k = m_1 + \cdots + m_l$. Then all components of the derivative

$$\frac{d^n}{dz^n} \left[\phi^{(k)}(\Phi(z)) \left(\Phi^{(j_1)}(z) \right)^{m_1} \left(\phi^{(j_2)}(z) \right)^{m_2} \cdots \left(\Phi^{(j_l)}(z) \right)^{m_l} \right]$$

have the form (up to constants)

$$\phi^{(k+p)}(\Phi(z)) \left(\Phi^{(i_1)}(z)\right)^{n_1} \left(\Phi^{(i_2)}(z)\right)^{n_2} \cdots \left(\Phi^{(i_q)}(z)\right)^{n_q}$$

where p = 0, 1, ..., n and $n_1 + ... + n_q = k + p$.

Proof. It is enough to prove the Lemma in the case n = 1. For $n \ge 2$ the result follows by induction.

We have

$$\frac{d}{dz}[\phi^{(k)}(\Phi(z))\prod_{\alpha=1}^{l}(\Phi^{(j_{\alpha})}(z))^{m_{\alpha}}]$$

Channel

$$= \phi^{(k+1)}(\Phi(z))\Phi'(z) \prod_{\alpha=1}^{l} (\Phi^{(j_{\alpha})}(z))^{m_{\alpha}}$$

$$+\phi^{(k)}(\Phi(z))\sum_{\beta=1}^{l} \left[(\prod_{\substack{\alpha=1\\\alpha\neq\beta}}^{l} (\Phi^{(j_{\alpha})}(z))^{m_{\alpha}} m_{\beta} (\Phi^{(j_{\beta})}(z))^{m_{\beta}-1} \Phi^{(j_{\beta}+1)}(z) \right] .$$

Now, for a positive integer n, let us define $\mathcal{B}^{(n)}$ as the family of all holomorphic functions g in D such that

$$|g^{(n)}(z)| = \mathcal{O}\left(\frac{1}{(1-|z|^2)^n}\right)$$

The following result is well known ([2], [10]), but we give an alternative proof.

Theorem 2.2. $\mathcal{B}^{(n)} = \mathcal{B}$, for each positive integer n.

Proof.

1⁰. First, we show by induction that $\mathcal{B}^{(n)} \subset \mathcal{B}$. For n = 1 the theorem is true by the definition.

Now, let us assume that we have proved the inclusion for a positive integer n and we will prove it for n + 1.

Let

$$|g^{(n+1)}(z)| \le \frac{K_{n+1}(g)}{(1-|z|^2)^{n+1}},$$

for $z \in D$. Then, for $z = re^{i\phi}$

$$|g^{(n)}(z) - g^{(n)}(0)| \le \int_0^r |g^{(n+1)}(te^{i\phi})| dt \le \int_0^r \frac{K_{n+1}(g)}{(1-t^2)^{n+1}} dt$$

$$= K_{n+1}(g) \left(\int_0^r \frac{t}{(1-t^2)^{n+1}} dt + \int_0^r \frac{1-t}{(1-t^2)^{n+1}} dt \right)$$
$$\leq 2K_{n+1}(g) \frac{1}{(1-r^2)^n} .$$

Thus there exists a constant $K_n(g)$ such that

$$|g^{(n)}(z)| \le \frac{K_n(g)}{(1-|z|^2)^n}$$

in D and by assumption $g \in \mathcal{B}$.

2⁰. Let $g(z) = \sum_{n=0}^{\infty} c_n z^n \in \mathcal{B}$. It is known ([6]) that $|c_n| \leq 2 \|g\|_{\mathcal{B}}$. We will again use induction.

For n = 1 our result is true. Let us assume that for some positive n

$$(1 - |z|^2)^n |g^{(n)}(z)| \le K(g, n)$$

for $z \in D$. From the proof of Theorem 2.1 it follows that the function

$$\psi_a(z) = g(\phi_a(z)) - g(a) - 2\log(1 + \overline{a}z)$$

belongs to \mathcal{B} .

We have

$$\psi_a'(z) = g'(\phi_a(z))\phi_a'(z) - \frac{2\overline{a}}{1 + \overline{a}z}$$

and

$$|\phi_a^{(k)}(0)| = k!(1-|a|^2)$$
.

By Lemma 2.1 the following expression

$$\psi_a^{(n+1)}(z) + \left(\frac{2\overline{a}}{1+\overline{a}z}\right)^{(n)} - g^{(n+1)}(\phi_a(z))(\phi_a'(z))^{n+1}$$

 $=\psi_a^{(n+1)}(z)+2(\overline{a})^{n+1}n!(-1)^n(1+\overline{a}z)^{-n-1}-g^{(n+1)}(\phi_a(z))(\phi_a'(z))^{n+1}$ is a sum (with N(n) components) of functions of the form (up to constants)

$$g^{(1+p)}(\phi_a(z)) \prod_{\alpha=1}^q (\phi_a^{(j_\alpha)}(z))^{m_\alpha}$$
,

where $\sum_{\alpha=1}^{q} m_{\alpha} = 1 + p$ and p is an integer satisfying $0 \le p \le n-1$. By our assumption we get

$$|g^{(1+p)}(\phi_{a}(0)) \prod_{\alpha=1}^{q} (\phi_{a}^{(j_{\alpha})}(0))^{m_{\alpha}}|$$

= $|g^{(1+p)}(a)| \prod_{\alpha=1}^{q} ((j_{\alpha})!(1-|a|^{2}))^{m_{\alpha}}$
 $\leq ((n+1)!)^{n+1} |g^{(1+p)}(a)|(1-|a|^{2})^{1+p}$
 $\leq ((n+1)!)^{n+1} K_{p+1}(g) .$

Thus

$$|g^{(n+1)}(\phi_a(0))(\phi'_a(0))^{n+1}| \le |\psi_a^{(n+1)}(0)| + 2|a|^{n+1}n!$$
$$+ N(n)((n+1)!)^{n+1} \max_{p \in \{0,1,\dots,n-1\}} K_{p+1}(g)$$

which is equivalent to

$$|g^{(n+1)}(a)|(1-|a|^2)^{n+1}$$

$$\leq 2 \|g\|_{\mathcal{B}} (n+1)! + 2n! + N(n)((n+1)!)^{n+1}$$

$$\times \max_{p \in \{0,1,\ldots,n-1\}} K_{p+1}(g) := K_{n+1}(g) \; .$$

This proves that $g \in \mathcal{B}^{(n)}$. \Box

3. The class \mathcal{B}_0 . In this section we give some results concerning the class \mathcal{B}_0 .

Theorem 3.1. Let g be a function holomorphic in D. Then $g \in \mathcal{B}_0$ if and only if there exists a function e(r, |a|) defined on $[0, 1) \times [0, 1)$ such that

(i) e(0, |a|) = 0,

(ii) there exists the right hand side derivative $\partial e/\partial r(0, |a|)$ and $\partial e/\partial r(0, |a|) \rightarrow 0$, as $|a| \rightarrow 1^-$, and

(3.1)
$$|g(\phi_a(z)) - g(a)| \le e(r, |a|)$$

for all z, |z| = r < 1.

Proof.

1[°]. Assume $g \in \mathcal{B}_0$. Let us denote

$$e(|z|) = \max_{|z|=r} |g'(z)|(1-|z|) .$$

By our assumptions $e(|z|) \rightarrow 0$ as $|z| \rightarrow 1^-$. Using the Schwarz lemma we get

$$|\frac{d}{dz}[g(\phi_a(z)) - g(a)]|(1 - |z|) \le 2e(|\phi_a(z)|)$$

for all $a \in D$. Thus

$$\begin{split} |g(\phi_a(z)) - g(a)| &= \left| \int_0^z \frac{d}{ds} g(\phi_a(s)) ds \right| \\ &\leq \int_0^r \frac{2e(|\phi_a(s))|}{1 - |s|} d|s| \leq 2 \max_{|z| \leq r} e(|\phi_a(s)|) (-\log(1 - r)) \\ &= 2 \max_{|z| \leq r} e(|\phi_{|a|}(z)|) (-\log(1 - r)) \;. \end{split}$$

We denote by e(r, |a|) the last term and we put e(0, |a|) = 0. Then we have

$$\left| \frac{\partial}{\partial r} e(0,|a|) \right| = 2 \lim_{r \to 0^+} \left[\frac{-\log(1-r)}{r} \max_{|z| \le r} e(|\phi_{|a|}(z)|) \right] = 2e(|a|).$$

Moreover, $e(|a|) \to 0$ as $|a| \to 1^-$.

 2^{0} . Now let us assume that there exists a function e(r, |a|) as in the theorem. For r = 0 we have the equality in (3.1). Thus

(3.2)
$$\frac{d}{dr}_{|r=0}|g(\phi_a(z)) - g(a)| \le \frac{\partial}{\partial r}_{|r=0}e(r,|a|).$$

Since

$$\frac{d}{dr}|g(\phi_a(z)) - g(a)| = |g(\phi_a(z)) - g(a)|\frac{d}{dr}\operatorname{Re}\log(g(\phi_a(z)) - g(a)),$$

we get

$$\frac{d}{dr}\Big|_{r=a}|g(\phi_a(z)) - g(a)| = |g'(a)|(1 - |a|^2)$$

if $g'(a) \neq 0$. If g'(a) = 0, the result is true, too. Thus (1.2) is equivalent to

$$|g'(a)|(1-|a|^2) \leq \frac{\partial}{\partial r}|_{r=0} e(r,|a|) .$$

Moreover the last expression tends to 0 as $|a| \to 1$. This proves that $g \in \mathcal{B}_0$. \Box

Remark 3.1. If $g \in \mathcal{B}_0$ and $e(r) = \max_{0 \le r < 1} |g'(r)|(1-r)$, then we can choose

$$e(r, |a|) = -2\log(1-r) \sup_{|z| < r} e(|\phi_{|a|}(z)|) .$$

Em T

Corollary 3.1. Let 0 < r < 1. Then, for functions g holomorphic in D, the following conditions are equivalent:

(i) $g \in \mathcal{B}_0$,

(ii) $\max_{z \in D(a,r)} |g'(z)| (1-|z|^2) \to 0$, as $|a| \to 1^-$,

iii) $\max_{z \in D(a,r)} |g(z) - g(a)| \to 0$, as $|a| \to 1^-$.

Proof. We show forst that (i) and (ii) are equivalent.

Let $g \in \mathcal{B}_0$ and let $r_a = \max_{z \in D(a,r)} |z|$. Let us observe that $r_a \to 1^-$ as $|a| \to 1^-$. Thus

$$\max_{z \in D(a,r)} [(1-|z|^2)|g'(z)|] \le \max_{|z| \le r_a} [(1-r^2)|g'(z)|] \to 0$$

as $|a| \rightarrow 1^-$.

Now, assume that $g \notin \mathcal{B}_0$. Then there exists a sequence $z_n \in D$, $|z_n| \to 1^-$, such that

 $(1-|z_n|^2)|g'(z_n)| \to K > 0$.

However,

$$\max_{z \in D(a,r))} [(1 - |z|^2)|g'(z)|] \le (1 - |z_n|^2)|g'(z_n)|$$

and this contradicts (ii).

Now, we show that (i) and (iii) are equivalent. Let us first assume that $g \in \mathcal{B}_0$. By Theorem 3.1 there exists e(r, |a|) such that

$$\max_{z \in D(a,r)} |g(z) - g(a)| \le e(r,|a|) \to 0$$

as $|a| \rightarrow 1^-$.

Suppose (iii) holds and $e(|a|) = \max_{z \in D(a,r)} |g(z) - g(a)| \to 0$ as $|a| \to 1^-$. Then for $p, p \ge 1$:

$$\left[\frac{1}{|D(a,r)|}\int_{D(a,r)}|g(z)-g(a)|^{p}dA(z)\right]^{1/p}$$

$$\leq \left[\frac{e^{p}(|a|)}{|D(a,r)|}|D(a,r)|\right]^{1/p} = e(|a|) \to 0$$

as $|a| \to 1^-$. Thus by [2; Th.2] we get $g \in \mathcal{B}_0$. We will need the following lemmas. **Lemma 3.1.** Let g be a holomorphic function in D. Then $g \in \mathcal{B}_0$ if and only if $g(\phi_a(z) \in \mathcal{B}_0 \text{ for each } a \in D.$

Proof. Let $g \in \mathcal{B}_0$. Let us denote $G_a(z) = g(\phi_a(z))$, and

Then

$$|G'_{a}(z)|(1-|z|^{2}) = |g'(\phi_{a}(z))| \frac{1-|a|^{2}}{|1+\overline{a}z|^{2}}(1-|z|^{2})$$
$$= |g'(\phi_{a}(z))|(1-|\phi_{a}(z)|^{2}) \le \epsilon(|\phi_{a}(z)|) .$$

Thus

$$\max_{|z|=r} |G'_a(z)|(1-r^2) \le \max_{|z|=r} \epsilon(|\phi_a(z)|)$$

=
$$\max\left\{\epsilon(r) : r \in \left[\left| \frac{|a|-r}{1-|a|r} \right|, \frac{|a|+r}{1+|a|r} \right] \right\}$$

Since $\lim_{r\to 1^-} \epsilon(r) = 0$ we have proved that $G_a \in \mathcal{B}_0$. The rest of the proof is trivial. \Box

Lemma 3.2. Let $g \in \mathcal{B}_0$, $a \in D$ and $G_a(z) := g(\phi_a(z)) = \sum_{n=0}^{\infty} c_n(a) z^n$. Then for each nonnegative integer n we have

$$\max_{|a|=\rho} |c_n(a)| \to 0$$

as $\rho \rightarrow 1^-$.

Proof. We have

$$\begin{split} n|c_n(a)| &= \frac{1}{2\pi} \bigg| \int_{|z|=r} \frac{g^t(\phi_a(z)) \frac{1-|a|^2}{(1+\overline{a}z)^2}}{z^n} dz \\ &\leq \frac{\max_t |g'(\phi_a(re^{it}))|(1-|a|^2)}{r^{n-1}(1-|\overline{a}|r)^2} \,. \end{split}$$

Since $\max_t \left| \frac{re^{it} + a}{1 + \overline{a}re^{it}} \right| = \frac{r + |a|}{1 + |a|r}$, we get

$$\max_{t} |g'(\frac{re^{it} + a}{1 + \overline{a}re^{it}})| \le \max_{t} |g'(\frac{r + |a|}{1 + |a|r}e^{it})|.$$

Let $\epsilon(r)$ will be as in the proof of Lemma 3.1. Then, for fixed $r \in$ (0,1), we obtain

$$n|c_n(a)| \le \frac{\epsilon(\frac{r+|a|}{1+|a|r})}{r^{n-1}(1-r)^2} \frac{(1+r|a|)^2}{1-r^2} \le \frac{1+r}{r^{n-1}(1-r)^3} \epsilon(\frac{r+|a|}{1+|a|r}) .$$

Letting $|a| \to 1$ we get $\epsilon(\frac{r+|a|}{1+|a|r}) \to 0$ and this completes the proof of the Lemma.

Now, for a positive integer n, let us introduce the class $\mathcal{B}_0^{(n)}$ as a family of all holomorphic functions q in D such that

$$\max_{|z|=r} |g^{(n)}(z)| = o(\frac{1}{(1-|z|^2)^n})$$

as $|z| \rightarrow 1^-$. The next result, similarly as Theorem 2.2, is well known ([2], [10]), but we give an alternative proof.

Theorem 3.2. $\mathcal{B}_0^{(n)} = \mathcal{B}_0$, for each positive integer n.

Proof.

roof. 1⁰ Using induction we show that $\mathcal{B}_0^{(n)} \subset \mathcal{B}_0$. For n = 1 this is true by definition. Now, let us assume that

$$\max_{|z|=r} |g^{(n+1)}(z)| (1-|z|^2)^{n+1} \to 0$$

for $|z| \to 1^-$ which is equivalent to

$$\max_{|z|=r} |g^{(n+1)}(z)|(1-|z|)^{n+1} := \epsilon(r) \to 0$$

for $r = |z| \rightarrow 1^-$. The function $\epsilon(r)$ is continuous in [0,1). Let us choose a sequence (r_m) such that $\lim_{m\to\infty} r_m = 1, r_m \in (0,1)$. Moreover, let $r_m < r < 1$ for a fixed m and $\epsilon_m = \max_{t \in [r_m, r]} \epsilon(t)$, $z = re^{i\phi}, z_m = r_m e^{i\phi}$ for a fixed ϕ . Then

$$|g^{(n)}(z) - g^{(n)}(z_m)| \le \int_{r_m}^r |g^{(n+1)}(te^{i\phi})| dt$$

Since listeness for the

$$\leq \int_{r_m}^r \frac{\epsilon(t)}{(1-t)^{n+1}} dt \leq \epsilon_m \int_{r_m}^r \frac{dt}{(1-t)^{n+1}} \leq \frac{\epsilon_m}{n(1-r)^n} \ .$$

Thus

$$|g^{(n)}(re^{i\phi})|(1-r)^n \le |g^{(n)}(r_m e^{i\phi})|(1-r)^n + \frac{\epsilon_m}{n}$$

and

$$\max_{|z|=r} |g^{(n)}(z)|(1-r)^n \le \max_{\phi \in [0,2\pi]} |g^{(n)}(r_m e^{i\phi})|(1-r)^n + \frac{\epsilon_m}{n} .$$

Hence

$$\limsup_{r \to 1^{-}} (\max_{|z|=r} |g^{(n)}(z)|(1-r)^n) \le \frac{\epsilon_m}{n} .$$

Since $\lim_{m\to\infty} \epsilon_m = 0$, we have $g \in \mathcal{B}_0$.

 2^0 . Let $g \in B_0$. We use induction. For n = 1 the result is true. Let us assume that for some positive integer n

$$\max_{|z|=r} (1-|z|^2)^n |g^{(n)}(z)| = o(1)$$

as $|z| \to 1$. By Lemma 3.1 the function $G_a(z) = g(\phi_a(z)) \in B_0$ for each $a \in D$. Similarly, as in the proof of Theorem 2.2, let us observe that

$$G_a^{(n+1)}(0) - g^{(n+1)}(\phi_a(0))(\phi_a'(0))^{n+1}$$

is a sum of terms of the form (up to constants)

$$g^{(1+p)}(\phi_a(0)) \prod_{\alpha=1}^q (\phi_a^{(j_\alpha)}(0))^{m_\alpha}$$
,

where $\sum_{\alpha=1}^{q} m_{\alpha} = 1 + p$. By assumption we get

$$|g^{(1+p)}(\phi_a(0))| \prod_{\alpha=1}^q |g^{(j_\alpha)}(0)|^{m_\alpha} \le ((n+1)!)^{n+1} |g^{(1+p)}(a)| (1-|a|^2)^{1+p}$$
$$\le ((n+1)!)^{n+1} \epsilon_{p+1}(|a|) ,$$

where $\epsilon_{p+1}(|a|) \to 0$ for $|a| \to 1$.

Thus

$$|g^{(n+1)}(\phi_a(0))||\phi_a'(0)|^{n+1} = |g^{(n+1)}(a)|(1-|a|^2)^{n+1}$$

$$\leq |G_a^{(n+1)}(0)| + N(n)((n+1)!)^{n+1}\epsilon(|a|) ,$$

where

$$\epsilon(|a|) = \max_{p \in \{1, \dots, n\}} \epsilon_p(|a|) \to 0$$

as $|a| \rightarrow 1$. From Lemma 3.2 we have

$$\max_{|a|=\rho} |G_a^{(n+1)}(0)| \to 0$$

as $\rho \rightarrow 1$.

Thus

$$\max_{|a|=\rho} |g^{(n+1)}(a)|(1-|a|^2)^{n+1} = o(1)$$

as $\rho \rightarrow 1$. \Box

REFERENCES

- Anderson, J. M., J.Clunie and Ch.Pommerenke, On Bloch functions and normal functions, J. Reine Angew. Math. 270 (1974), 12-37.
- [2] Axler, S., The Bergman space, the Bloch space, and commutators of multiplication operators, Duke Math. J. 53,2 (1986), 315-332.
- [3] Duren, P., Theory of H^p spaces, Academic Press, New York and London, 1970.
- [4] Hayman, W. K., Lectures on functions of a complex variable, Univ. of Michigan Press, 1955.
- [5] Pommerenke, Ch., Linear-invariante Familien analytischer Funktionen, Math. Ann. 155 (1964), 108-154.
- [6] _____, On Bloch functions, J. London Math. Soc. 2 (1970), 689-695.
- Seidel, W. and J.Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, Trans. Amer. Math. Soc. 52 (1942), 128-216.
- [8] Starkov, V. V., Theorems of regularity for universal linearly-invariant families of functions, Serdika (Bulg. Math.Soc.) 11 (1985), 299-318.
- [9] _____, Equivalent definitions of universal linearly-invariant families, Materiały XI Konferencji Szkoleniowej z Teorii Zagadnień Ekstremalnych, Łódź (1990), 34-38.
- [10] Kehe Zhu, The Bergman spaces, the Bloch spaces, and Gleason's problem, Trans. Amer. Math. Soc. 309,1 (1988), 253-268.

[11] _____, Duality and Hankel operators on the Bergman spaces of bounded symmetric domains, J. Funct. Anal. 81 (1988), 260-278.

Institute of Mathematics, received February 15, 1994 Maria Curie-Skłodowska University, 20-031 Lublin, Poland; e-mail:GODULA@HEKTOR.UMCS.LUBLIN.PL

Department of Mathematics, University of Petrozavodsk, Petrozavodsk, Russia; e-mail:STARKOV@MAINPGU.KARELIA.SU