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On Types of Convergence of a Sequence 
of Defective Random Elements

Abstract. We introduce concepts of vague essential convergence, vague 
convergence in probability and vague almost sure convergence of a sequence 
of defective random elements. Relations between these types of convergence 
and the classical ones are also investigated.

1. Introduction and preliminaries. Let (Q,A,P) be a generalized 
probability space, i.e. fi is the set of elementary events, A is a <r-field of 
subsets of Q and P is a measure defined on A such that P(fi) < 1- If 
P(il) = 1, then P is said to be a proper probability measure, while P with 
P(fi) < 1 is called a defective (imperfect) probability measure. Moreover, 
(S, p) stands for a metric space and B := P(S) denotes the Borel tr-field of 
subsets of S. By a random element X we mean the mapping X : il —* S such 
that X_1(P) £ A, B £ B. In the case S = R, X is called a random variable. 
By S we denote the union of the space S and some points Door • • • 
belonging to S. In S we consider a topology generated by the following 
families of neighbourhoods of points:

P(z) := {U C S : x £ U, UcS, U is open}, x £ S.
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U C S : there exist sets Aj, A2,... ,An closed in S 

and such that U = (s \ [J U {^00}}, £<x> € S \ S.

The extension S of S is similar to that in [8].
By a defective random element X we mean a mapping X : Q —> S such 

that A”-1(P) £ A, B £ B(S), and P[A-1(S')] = a < P(Q). A defective 
random variable X : Q —> R, where R = R U {-00, +00} , is characterized 
by the property P[u : |A"(tu)| < 00] = a < P(fi), or symbolically, by 
0 < P[u : |A'(u>)| = 00]. The generalized probability distribution Px of a 
random element X is defined by:

P%(P) = P[X"l(B)] = P[u>: X(u>) € B], BeB = B(§),

The set of all random elements (defective and non-defective) defined on 
(Q, A) is denoted by X and the subset of non-defective random elements by 
Xo.

The defective random variables appear in a natural way in the renewal 
theory ([4]), the theory of physical measurement ([11]), or in the theory of 
probabilistic metric spaces ([10]). Here we quote a simple example from the 
theory of games.

Example 1. Gambler’s ruin (cf. [3]). Let Xi, X2, ... be independent, 
identically distributed random variables:

P{Xjb = -l} = g, P{Xfc = 1} = p, p+9 = 1.

Write Sn = 52fc=1 -^fc , n > 1, and let, for any a,b 6 N, t be the first n such 
that Sn — —a or Sn = b. Here p is the probability of winning in a single 
game, q of losing, a is a capital of the gambler, b denotes the intentional 
winning, while t is the final moment of the game. If the capital of the 
gambler is unlimited then

«={ first n such that Sn > b, 
00 if no such n exists.

If p < q, then P{t < 00} = (p/q)b < 1. Thus t is a defective random 
variable which takes finite values with probability less than 1.

Let P = P(S) be the class of all Borel measures P defined on (S, P(S)) 
such that P(S) < 1 and Po C P is the subclass containing the proper prob­
ability measures (P 6 Po <=> = 1). Denote by Cb the set of all
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bounded continuous functions on S and by Cm the subset of Cb contain­
ing the functions with bounded support, i.e. f € Cm if 3 bounded set D(j)

/(z) = 0.
Now we need to recall the notions of weak and vague convergence of a 

sequence {P„,n > 1} of generalized probability measures.
We say that a sequence {Pn, n > 1} of measures Pn £ P weakly converges 

to a measure P £ P (Pn —>■ P, n -+ oo) if for every function f £ Cb

lim i fdPn = i fdP. 
n~t°° Js Js

A sequence {Pn,n > 1} of measures Pn £ P vaguely converges to a 
measure P £ P (Pn —>■ P, n —> oo) if for every function f € Cm

lim [ fdPn= [ fdP. 
n-*°° Js Js

It is known that, if S is a separable metric space, then the following 
statements are true.

Weak convergence of a sequence {Pn,n > 1} °f proper probability mea­
sures, is characterized by the following equivalent conditions (cf. [1], [7]):

(i) Pn P, n -> oo,
(ii) limsupn^^ P„(P) < P(P) for every closed set P,

(iii) liminfn^oo P„(G') > P(G) for every open set G,
(iv) limn^oo Pn(A) = P( A) for every set A £ P(S) such that P(0A) = 0,
(v) linin—Kxj J fdPn = L fdP for every uniformly continuous function

fecb.
For vague convergence of a sequence {Pn,n > 1} with Pn € P, n > 1, 

the following conditions are equivalent (cf. [6]):
(i) Pn P, n -> oo,
(ii) lim supn_>0o Pn(P) < P(F) and lim infn-*oo Pn(G) > P(G) for 

every bounded closed set F and every bounded open set G, respec­
tively,

(iii) limn^oo Pn(A) = P(A) for every bounded set A £ P(S) such that 
P(0A) = 0.

We say that a sequence {Xn,n > 1} of random elements An £ X weakly
converges to a random element X £ X (Xn * , n 00) if the se­
quence {Px , n > 1} of generalized probability distributions of Xn weakly 
converges to P%.
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A sequence {Xn,n > 1} of random elements Xn G X vaguely converges
to a random element X G X, (Xn X, n —* oo) if the sequence 
{PXn, n > 1} of generalized probability distributions of Xn vaguely con­
verges to Px-

By Cp we denote the family of continuity sets of a measure P, i.e. A G Qp 
if P(dA) = 0, where dA denotes the boundary of A. The family Gpx will 
be denoted shortly by Gx- The following concept of essential convergence 
in law was given in [12] (cf. [9], [2]).

A sequence {Xn, n > 1} of random elements Xn 6 Xo is said to be essen- 
Hally convergent in law to a random element A € Xo (An —► X, n —* oo) 
if for every set A G Gx

P{limsup[A„ € A]} = P{liminf[An G A]}
n—+oo n—*oo

= P[X G A] with respect to P G Po(^)-

Remark. The essential convergence in law can be considered in the set X 
of defective and non-defective random elements.

For the sake of completeness we recall the following notions.
We say that a sequence {Xn,n > 1} of random elements Xn G Xo 

converges in probability to a random element X G Xo if for any e > 0 
limn—.oo P[lj : p(X„,X) > i] = 0 (P G Po(^)) and we write Xn X, 
n —► oo.

A sequence {Xn,n > 1} of random elements Xn G Xo is said to be 
convergent almost surely to a random element X G Xo (notation: Xn —* 
X, n —> oo) if P[u : limn-.^ Xn(u>) = A(w)] = 1 (P G Po(^))-

The measure Q is said to be absolutely continuous with respect to the 
measure P (notation: Q -< P), if for every sequence {An,n > 1} of random 
events An G>1 the following condition is fulfilled:

lim P(An) = 0 => lim Q(An) = 0.
n—>oo n—*oo

The measures P and Q are equivalent (P = Q) if P -< Q and Q -< P.
The following results (cf. [5], [12]) will be useful in further considerations.

For X, Xn G Xo, n G N, P,Q G P0(ft):

(1)

(2)

Xn X <=> Vq=p Qxn —> Qx, n oo.

Xn^X <=> Vq=p Xn ED X, n —> oo.
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2. Vague essential convergence, vague convergence in probabil­
ity and vague almost sure convergence. We introduce the following 
concept of the vague essential convergence.

Definition 1. We say that a sequence {Xn,n > 1} of random elements 
Xn £ X is vaguely essentially convergent to a random element X € X 
(Xn X, n —<• oo) if for every bounded set A G Cx

P{limsup[An 6 A]} = P{liminf[X„ € A]} = P[X G 4],
n—►oo n—*oo

where P G P(Q).

Theorem 1. Let X,Xn £ X, n G N. The following conditions are equiva­
lent:

/•\ -v/- VED(l) Xn —► X, n —> oo,
(111) P{limsupn_>0O[A'n e F]} < P[X G P] for every bounded closed set 

F,
and
(112) P{liminfn_00[Xn G G]} > P[X G G] for every bounded open set G.

Proof, (») => (iii). Let F be any given bounded and closed set contained 
in S. There exists a sequence of sets P6" = {i G 5 : p(i,P) < ¿n} with 
6n —+ 0, n —* oo, such that Pin G 6%, n G N, and P = P5n. Of 
course, the sets F6n are bounded. Let e be an arbitrary positive number. 
There exists no such that for n > no we have

P[X G F6"] < P[X G P] +£.

Hence we get

P{limsup[Xn G P]} < P{limsup[X„ € Pik]}
n—.co n—>oo

= P[X G p6k] < P[X G p] + £, 

for every k > no- Since e is arbitrary, we see that

P{limsup[An € P} < Ppf € P].
n—*oo

(i) => (112). Assume that G is any given open and bounded set contained 
in S. There exists a sequence of open sets Gn, n > 1, such that Gn C G, 
Gn G ex and G = U~=i^n. Let Hn = U?=i Hence Hn € Gx, 
G = limn_>oo Pn, Hn C Hn+i and Hn is bounded for every n. Also, for any



224 M. Startek and D. Szynal

given e > 0, there exists no such that for n > no the following inequality is 
true

P[X G Hn] > P[X eG]-e.

Hence we have

P{liminf[Xn G G]} > P{liminf[Xn G Hk]} = P[X <= Jfk] > P[X G G] - £ n—>oo n—*oo

for any £ > 0 and k > no- Thus

P{Uminf[X„ G G]} > P[X G G].
n—*oo

(iii) and (ii2)=>(i). Let A be any given bounded set which is a continuity 
set of the measure P% (A G C%). For any given £ > 0 there exist a closed 
set F and an open set G such that G C A C F and

P[X £ F\ A] <£ and P[X G A \ G] < £.

Hence, for any £ > 0,

P[X G A] - £ < P[X G G] < P{liminf[X„ G G]} < P{liminf[X„ G A]} 
n—►oo n—►oo

< P{limsup[Xn G A]} < P{limsup[Xn G P]} < P[X 6 P]
n—*oo n—*oo

< p[x g A] + £.

Thus

P{liminf[Xn G A]} = P{limsup[Xn G A]} = P[X G A], 
n-°° n—»oo

which completes the proof.

Theorem 2. Let X, Xn G X , n G N. If X„ —> X , n —> oo , then 
v

Xn —> X , n —> oo .

Proof. For every bounded set A G Cx we have

P{liminf[Xn G A]} = p( |J Q [Xfe G A]} = Um, p| f| [X, G A]} 

' n=l k=n J n_>°° k>n '
< lim inf P[Xn G A] < lim sup P[Xn G A]

< U 1« e = p{ n U [xt e ad
'■ k>n J 1 n=l fc=n J

= P{limsup[Xn G A]}
n—»-oo
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and
P{liminf[Xn € >1]} = P{limsup[Xn G A]} = P[X € A]. 

n-»oo n-*oo

Hence
Urn inf P[Xn G A] = limsupP[Xn G A] = P[X 6 A], 
n~>o° n—>oo

and so, for every bounded set A G Cx- linin->oo P[X„ € A] = P[X G A].

Example 2. Vague convergence does not imply VED convergence. Assume 
that {Xn, n > 1} is a sequence of independent, identically distributed, non­
degenerate random variables. Since all Xn are identically distributed, the 
sequence {Xn,n >1} vaguely converges to a random variable X which is 
identically distributed as Xj. Let now A G 6% be a bounded set such that 
0 < P[Xj G A] = a < 1. Then

P{ liminf[Xn G A]} = lim p( A [Xk G A]) = 0 / a = P[X G A].
n—*oo J n-*oo I 1 1

Thus Xn V£P X, n —<• oo.

By the definitions of convergence ED and VED we get the following

Corollary 1. Let X, Xn G X, n G N. If Xn 
.. VED

ED X , n —> oo , then
X ,n oo .

Starting with the equivalence formulas (1) and (2) we are able to intro­
duce the concept of vague convergence in probability and vague almost sure 
convergence.

Definition 2. We say that a sequence {X„,n > 1} of random elements 
Xn G X vaguely converges in probability to a random element X G X 
(Xn —» X , n —* oo) if it vaguely converges to X with respect to every 
measure Q = P, i.e.

Xn —X <=> Vq=p Xn X, n —> oo.

Definition 3. We say that a sequence {Xn,n > 1} of random elements 
Xn G X vaguely almost surely converges to a random element X G X 
(Xn -^4’ X, n —> oo) if it vaguely essentially converges to X with respect 
to every measure Q = P, i.e.

V a.s. v VED v 
=p Xn —► X, n oo.Vq
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By the Definitions 2, 3, Theorem 2 and (1), (2) we get the following 
statements.

Corollary 2. Let X, Xn G X, n G N. Then the following implications hold:
(i) Xn 4X X => Xn-^ X, » -* oo,
(ii) XnV-^î X => Xn X, n oo,

(iii) Xn X => Xn X, n - oo,
(iv) Xn X X => Xn ™ X, n -+ oo,
(v) Xn X => Xn *4-4 X, n - oo.

We shall see that without additional assumptions, none of the above 
mentioned implications is revertible.

Example 3. Vague convergence does not imply VP convergence.
Let ii = [0,1] and let P be a measure on (ii,A) such that P({0}) = 
P({1}) = 1/2. Define the random variables X, Xn : ii —+ R, n G N, as 
follows:

w G [0,1/2], 
w g (1/2,1],

X("Hi; we [o,i/2], 
we (1/2,1],

Let A be a continuity set of measure P%. There are three possibilities:
(i) 0 i A and 1 ¿ A. Then P[Xn G A] = P[X G A] = 0, n G N.
(ii) 0 G A and 1 G A. Then P[Xn G A] = P[X G A] = 1, n G N.
(iii) Exactly one of the numbers 0, 1 belongs to A. Then P[X„ G A] = 
P[X G A] = i, n G N.

In all cases we have limn_oo P[X„ G A] = P[X G A]. Thus Xn -44 X, 
n —*• oo, with respect to the measure P.

Now let Q be a measure on (ii, A) such that Q({0}) = |, Q({1}) = f 
and let B = (|,|). Of course, Q = P and B is the continuity set of 
measure Qx- Moreover, Q[X„ G B] = j, n G N, and Q[X G B] = |.

y
This implies Xn X, n —> oo, with respect to the measure Q. Thus, by 

V PDefinition 2, Xn X, n —» oo.

Example 4. VED convergence does not imply Va.s. convergence.
Let (ii,A,P) be such that ii = [0,a], a > 0, and P be defined as follows: 
P({ra/4)) = 1/8, r = 0,1,2,3,4, and let X,Xn : ii —► [l/a,oo] = S, 
n = 1,2,..., be such that

w /tl 
w = 0,

X(u>) = -

i
w+a/4 ’

1
u>—3a/4 ’

OO,

0 < w < 3a/4, 

3a/4 < < a,
LJ = 0.
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Then [X„ G A] = [%i G A], n = 1,2,A G B. Moreover, we have 
P[X„ € A] = P[X € A], n = 1,2,..., A € B. Therefore, by the Definition 
1, we conclude that Xn V-^ X, n —► oo.

Now define the measure Q on (ii,A) as follows: Q({0}) = Q({a/2}) = 
Q({a}) = 1/8, Q({a/4}) = Q({3a/4}) = 1/4. We see that P and Q are 
concentrated on the set K = {0,a/4,a/2,3a/4,a}. Obviously that Q = P. 
Write now B = (1 /a, 2/a). Then we have

Q[Xn EB] = Q[l/u 6 B] = Q({3o/4}) = 1/4, n = 1,2,... ,

Q[X g B] = Q
1

and so, An VED

Va.i. X, n

+ a/4 = Q({a/2}) = 1/8,

X, n —> oo, with respect to the measure Q. Hence
oo.

e b

Example 5. VP convergence does not imply Va.s. convergence.
Let ii = [0,a], and let P be the Lebesgue measure on (Q,A). Define the 
following family of random elements:

^2‘ + r(w) -(3) r r + 1

k = 0,1,..., r = 0,1,... ,2fc — 1. Since for every n G N there is exactly 
one pair of numbers k,r G N such that n = 2k + r, 0 < r < 2fc, the 
sequence {Xn,n > 1} of random elements X : Q —> R is defined correctly 
by (3). Moreover, n —* oo <=> k —► oo. Define also the random element 
X : ii —+ R by X(u>) = 1. Let A be any bounded continuity set of measufe 
Px-

(i) 1 G A. Then P[Xn </A} = P[X2>+r A] < P[£fl,^a] = £, 
where n = 2k + r, n G N. Hence 

(4) lim P[X„ i A] = 0,
n-»oo

and thus

(5) Urn P[Xn G A] = P(ii) = P[X G A], 
n—+oo
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(ii) 1 £ A. We have P[Xn G A] = P[X2„+r € A] < P[fra, ,
n = 2k + r, n G N. Then

(6) lim P[X„ G A] = 0 = P[X G A], 
n—*oo

It follows from (5) and (6) that Xn X, n —► oo, with respect to the 
measure P. Now, let Q be a measure on (Q, A) such that Q — P and let 
A be a bounded continuity set of measure Qx- Then it follows from (4) for 
IGA that limn_0O Q[Xn A] = 0. Hence

(7) lim Q[Xn G A] = Q(fi) = Q[X G A], 
n—*00

However, if 1 A, then it follows from (6) that

(8) lim Q[Xn G A] = 0 = Q[X G A], 
n—*oo

IJ [Xfc G A] = il. 
fc>n

P|[**eA] = 0

Therefore, by (7) and (8), we have Xn —> X, n —> oo, with respect to the 
V Pmeasure Q. Thus Xn —> X, n —► oo.

Let A = [|, |]. Of course, A G Cpx- Moreover, for any n G N we have

P| [Xfc G A] = 0 and 
k>n

Hence

P{ liminf[Xn G A]} = lim P
k 71—>00 J n—HX>

and

P{ limsup[X„ G Al} = lim P < 
n—oo n^°°

It follows from the last equations and the definition of VED convergence 
that Xn V^D X , n —► oo, with respect to the measure P, and hence

V Q..8. -vrXn -*• X , n —► oo .

fc>n

(J [X/t G A] > = P(fi).

We will denote by B C the symmetric difference of the sets B and C.
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Lemma 1. Let X , Xn 6 X n G N. If Xn —* X , n —► oo , then 
P([Xn € A] [X G A]) —* 0, n -* oo, for every bounded set A G Cx-

Proof. Let A be any given bounded set such that P[X G dA] = 0. 
VP VIf Xn —> X , n —> oo, then Xn —»• X , n —> oo, Vq=p . Assume that 

P[X G A] > 0. Define the measure Q as follows:

Q(B) = (P(B|[XeA]) + P(£))/2.

Of course, Q = P, and so, by the assumption, Q[Xn G A] —> Q[X G A], 
n —► oo. Therefore

(p([Xn G A]|[X G A])+P[Xn G A]) (p([X G A]|[X G A])+P[X G A]).

By our assumption,

(9) P[Xn G A] - P[X EA],n^ oo,

and hence

(10) P([Xn G A] D [X G A]) - P([X G A]), n oo.

From the equality

[Xn G A]t[X G A] = ([Xn G A] \ ([Xn G A]n[X G A])) 

u([XG A]\([XnG A]O[XG A])),

n — 1,2,..., using (9) and (10) we get

P([Xn G A] [X G A]) —► 0, n -+ oo.

If P[X G A] = 0, then

P([Xn G A] -T [X G A]) = P[Xn G A] - P[X G A] = 0,

which completes the proof.
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Lemma 2. If a sequence {Xn, n > 1} of random elements Xn G X vaguely 
almost surely converges to a random element X G X, then for every bounded 
set A G Gx

. Jim Pl (J ([Xfc G A] 4- [X G A])) = 0.

n-*°° k>n

and

Proof. If Xn ^4' X, n —> oo, then Xn X, n —> oo, Vq=p- Let A 
be any given bounded P%-continuity set. For A such that Py(A) > 0 we 
define the measure Q as follows:

Q(P)=(P(P|[XgA]) + P(B))/2.

Obviously, Q = P. Thus Xn X, n -♦ oo, for the measure Q. Hence it 
follows that

Jim, (J [Xfc G A] j = Q[X G A]

Jim^j QlXjtG A])=Q[XG A].

n_>O° k>n J
Thus, by the definition of the measure Q and from

lim p( I J [Xfc G A]) = P[X G A] and
n—►cxd I

v k>n J
(11)

Jir^p/ P| [Xfc G A]) =P[XG A],

n~*°° 1 k>n '

we get

lim pj U [Xfc G A] O [X G A]} = P[X G A] 

n~*°° k>n *

= lim P 
n—>oo

fc G A] O [X G A] }•{m*

k k>n

Therefore from (11) we have

(12) Jirn pi |J [Xfc G A]O[X^ A]} = 0,

n_>°° 1 k>n 1

(13) lim P
n-+oo

{ |JPM A]n[XGA])=0.
1 k>n '
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Moreover,

u (pr* e x]-s-pr e a])
fc>n

= |J (([Xfc € 4] n [X i A]) u (£Xfc i A] n [X 6 A])) 
fc>n

= U ((** e A] n [x i a]) u (J ([xfc £ A] n [x e A]).
Jfc>n fc>n

Hence by (12) and (13)

Jim p| (J [Xfc e A] -r [X e A] j = 0
n_*°° fc>n '

for every bounded set A € Cx such that Px(A) 0.
Now assume that Px(A) = 0. Since Xn X, n —> oo, X„ X,

n —► oo, by Corollary 2 . Consequently,

lim P[Xn G A] = P[X e A].
n—»00

Hence by the equality Px(A) = 0 we get

Urn p{ (J [X/. e A] [X e A]1 = 0,
n_>°° '■ k>n '

which completes the proof.

Lemma 3. if X,X„ GX,iiGN and

lim P{[XnGA]-HXGA]} = 0
n—*oo K J

VPfor every bounded set A € Cx, then Xn —* X, n —► oo.

Proof. Assume that

lim P{[X„GA]t[XgA]} = 0
n-*oo

for every bounded set A € Cx- Then, we have

lim P{iX„ e AlnfX $ A]} = 0
n—>oo
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and
lim^P{[X 6 A]n [Xn i 4]} = 0.

Moreover,

Jim, (p[xn g a] - P[X e x]) < Jim,p{[Xn e A]n[x A]} =0

and

Jim, (p[X 6 A] - P[Xn G 4]) < Jim,p{[X 6 A]n[Xn A]) = 0. 

Thus we get

P[X e A] < lim P[Xn G A] < P[X G A], 
n—*00

for every bounded set A G Qx, which proves that Xn X, n —> oo, with 
respect to the measure P.

Now let Q be any measure such that Q = P. It follows from our assump­
tion that

Jirn,Q{[X„ G A] [X G A]} = 0.

y
By a reasoning as above we get Xn —► X, n —> oo, with respect to 

VPthe measure Q . Hence by the Definition 2 we have Xn —* X, n oo, 
which completes the proof.

Lemma 4. If X, Xn G X, n G N and

Jim, p{ U ([Xfc G A] -j- [X G A]) j = 0 
n_>°° k>n '

for every bounded set A G Cx, then X„ -^4' X, n —> oo.

Proof. Let
lim p( [I ([Xfc G A]-r [X G A])l = 0 

n_>°° k>n

for every bounded set A G Qx- Then

Jim, p{ (J ([Xfc G A] n [X A])} = 0 
n->°° k>n *
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and
Um p([%GA]n I J [Xfc £ A]) = 0.

n—*oo I
1 k>n '

Moreover,

lim M IJ € A] j - .P[JV € A]")
' *• k>n ' '

< Um P
n—»00

{ U(l*‘ € Ajn [X i AJ)j = 0

fc>n 7

and

nita (p[X£A]-p{ pl(x*e A]})
X 1 k>n '7

< lim p([x e A] n I J [xfc = o.
n—►oo I

k k>n J

Hence we get

P[X G A] < Jirr^ p{ p| [Xfc G A]j < Urn^ pi (J [X* G A] j < P[X G A], 

n~*°° ^fc>n ' n_t°° Jk>n

for every bounded set A G C%, proving Xn V-^5 X, n —> oo, with respect 
to the measure P.

From our assumption we get

U((X*G A]t[Xg A])| = 0
n_>°° k>n '

for every measure Q = P and every bounded set A G Gx- Consequently, 
X, n —> oo, with respect to the measure Q = P. Thus, by theVED

Definition 3, we get Xn '^4' X, n —» oo, which completes the proof.

Theorem 3. A sequence {Xn,n > 1} of random elements Xn G X vaguely 
converges in probability to a random element X G X if and only if for every 
bounded set A G Gx

Urn P{[Xn G A]-?[X G A]} = 0.
n—*oo

Proof. This is an immediate consequence of Lemmas 1 and 3.
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Theorem 4. A sequence {Xn, n > 1} of random elements Xn € X vaguely 
almost surely converges to a random element X € X if and only if for every 
bounded set A G

lim (J[XjtG A]-?[Xe A]) =0. 
n—*oo I

k k>n }

Proof. This is an immediate consequence of Lemmas 2 and 4.

Theorem 5. A sequence {Xn,n > 1} of random elements Xn G X vaguely 
almost surely converges to a random element X G X if and only if it is 
vaguely convergent in probability and vaguely essentially convergent to X.

Proof. If Xn X, n —>■ oo, then, ewidently, X„ V-~> X, n —* oo, by 
Corollary 2 (ii). Moreover, Xn —> X, n —> oo, by Corollary 2 (iii).

Now, assume that {X„,n > 1} vaguely converges in probability and is 
vaguely essentially convergent to X. It is sufficient to prove that Xn X, 
n —f oo, with respect to every measure Q = P. Since Xn V-^> X, n —> oo, 
with respect to the measure P, we get

p{ m u = f,{ m n i** « 4
v k>n } k>n '

for every bounded set A G 6%. Hence we have

(in**« \ (rnx‘^i)}=».

1 Xk>n Z 'k>n Z J

and so, for every measure Q = P,

U^AjW Q[XfcGA]U = 0,

n”*°° ' ^k>n ''‘ /c>n

lim q! H [Xfc G A]
n-*oo I

k k>n

} = M«{-4]
J V k>n

}•

Hence by the inequalities

Q[XfcG A]) < Q{[Xn e A]} < (J[XfcG A]j

fc>n
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we get

(14)

^4 A]} =&»<?{ (J [X, g A]}

' k>n ' k>n Jk>n

= lim Q[Xn G A].

The assumption Xn —» X, n —► oo, implies Xn —► X, n —* oo, 
with respect to every measure Q = P. Thus, for the measure Q = P, 
limn-»,» Q[Xn € A] = Q[X € A] for every bounded set A G Gx- Hence by
(14) we get

lim Q 
n—>oo

= Q[X € A],

for every measure Q = P and every bounded set A G Gx- Therefore 
X„ X, n —* oo, with respect to every measure Q = P, which completes 
the proof.

Example 6. VED convergence does not imply VP convergence. Let Q = 
[0,1] and let P be the Lebesgue measure on [0,1]. Moreover, let S' = [0,1]. 
We define the random variables X, Xn, n = 1,2,..., as follows:

1, w = 0,
Xn(u>) = w, X(W) = * tu + 1/2,

u-l/2 = u + l/2-l,
0 < u> < 1/2, 
1/2 <w < 1.

X, Xn, n G N are uniformly distributed on [0,1].
P{liminfn_>oo[Xn 6 A]} = P{limsupn_oo[X„ G A]} = /’[X 6 A] for every
A € B. Therefore, Xn V-^ X, n —> oo. Now, let Q be the measure on [0,1] 
with density /(x) = 2x. Moreover, let A = [0,1/2]. Of course, Q = P. 
lim  ̂Q([Xn G A]) = Q([Xj G A]) = Q([0,1/2]) = JQ1/2 2xdx = 1/4. 
On the other hand, Q([X” G A]) = Q([l/2,1]) = J^2 2xdx = 3/4 and so

V . VPXn X, n —► oo, with respect to the measure Q = P. Thus Xn -*► X, 
n —► oo.

Theorem 6. A sequence {Xn, n > 1} of random elements Xn G X vaguely 
converges in probability to a constant c if and only if it converges vaguely 
to c.

Proof. The necessity of the condition follows immediately from the Corol­
lary 2 (i), and so we must only prove its sufficiency. Assume therefore that
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Xn —► c, n —* oo, and let A be any bounded Pc-continuity set. It follows 
from the conditions equivalent to the vague convergence, that

(15) lim P[Xn 6 A] = P[c e A], 
n—*oo

Moreover, we have

(16) [Xn e A] 4- [c € A] = ([xn e A] n [c i A]) U ([Xn £ A] n [c e A]), 

n = 1,2,....
Suppose that c A. Then

Urn P{[Xn i A] n [c e A]} = lim P{[Xn ¿ A] 0 0} = 0,
7T OO Tl OO

and

lim,P{[A'n € A] n [c £ A]} = Jim,P{[X„ G Ajflil}

= lim P[Xn G A] = P[c G A] = 0 
n—+oo

by (15). Hence by (16) we get

lim P{[Xn 6 A]¿-[ce A]} = 0.
n—>oo

Now, let c G A. Then

lim P{[Xn € Alnfc£ A]} = lim P{[X„ € A]O0} = 0,
n—too k J n—>-oo 1 7

and, by (15),

lim P{[%„ ¿ A] O [c G A]} = lim P[X„ £ A] = lim P{íí \ ÍX„ € Al}
n—*oo K J n—»-oo n—*oo k J

= P(fi) - Urn P[Xn 6 A] = P(íí) - P(c G A] = P(Q) - P(il) = 0.
n—>oo

Thus, by (16) we have

nlim P{[X„GA]t[cGA]} = 0,

using Theorem 3 we are done.
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Theorem 7. A sequence {Xn, n > 1} of random elements Xn G X vaguely 
almost surely converges to a constant c if and only if it vaguely essentialy 
converges to c.

Proof. If Xn c, then Xn V-^S c by Corollary 2 (it).

Assume therefore that Xn c, n —> oo. Let A be any bounded Pc-
continuity set. By definition of VED convergence we have

(17) hn,p| u g mp{ ne =Plc e
n_>°° *'fc>n > n~*°° ^k>n '

Moreover, the following equation holds:

(18)

(J ([x»€4] + [c€A]) = (uix,e>ijn[ci4|)
k>n \fe>n '

u((J[X^A]n[cGA]Y

We consider two cases:
(a) c A. We have

lim pi I J [xfc £ A] n [c e A]| = fim pi IJ £ a] n 0) = 0
n—»-oo I I n—►00

vfc>n } Vk>n }

and, by (17),

hjnX (J [Xfc G A] n [c i A] | = Urn, pi (J [Xfc G A] D Q }
n_>°° ^fc>n n->°° '■fc>n -1

= Jim p| (J [Xfc G A] J = P[c G A] = 0.

Thus, by (18),

( U ([**e A]v[cG A]) I =0.
lim P

n—*00
fc>n

(b) c G A. Then

lim P <
n—>00

I J [Xfc G A] n [c A] > = lim P < I n—*00
U [X, G A] n 0 1 = 0

fc>n fc>n



238 M. Startek and D. Szynal

and

lim P «
n—*oo

H [Xkt A] n [c G A] 1 = lim PI n—*oo
k>n— /c>n—

Q \ Q [Xfc 6 A]= lim P - 
n-+oo

k>n

= P(fi) - lim P J p| [Xfe e A]

k>n

= P(Q) - P[c e A] = P(fi) - P(i!) = 0 

by (17). Hence and from (18) it follows that

lim P <
»—*OO

U ([Xfce A][ce a]) I =o,
k>n

and using Theorem 4 we are done.

Xn—>X

The diagram of the relations between various types of convergences. 
Without additional assumptions, none of the above implications is revert 
ible.
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