ANNALES
UNIVERSITATIS MARIAE CURIE -SKLODOWSKA
LUBLIN-POLONIA

VOL. L, 22 SECTIO A 1996

MARIUSZ STARTEK (Rzeszéw)
DOMINIK SZYNAL (Lublin)

On Types of Convergence of a Sequence
of Defective Random Elements

ABSTRACT. We introduce concepts of vague essential convergence, vague
convergence in probability and vague almost sure convergence of a sequence
of defective random elements. Relations between these types of convergence
and the classical ones are also investigated.

1. Introduction and preliminaries. Let (2, A, P) be a generalized
probability space, i.e. Q is the set of elementary events, A is a o-field of
subsets of Q and P is a measure defined on A such that P(Q) < 1. If
P(Q) = 1, then P is said to be a proper probability measure, while P with
P(Q) < 1 is called a defective (imperfect) probability measure. Moreover,
(S, p) stands for a metric space and B := B(S) denotes the Borel o-field of
subsets of §. By a random element X we mean the mapping X : @ — § such
that X ~1(B) € A, B € B. In the case § = R, X is called a random variable.
By § we denote the union of the space S and some points Zog, Yoo, ... NOt
belonging to §. In § we consider a topology generated by the following
families of neighbourhoods of points:

Bz):={UcS:z2€U, UCS. Uisopen}, z€S.
1991 Mathematics Subject Classification. 60B10, 28A33.
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Blzs) 1= {U C S : there exist sets A;, Ay,..., A, closed in S
and such that U = (S\ U A.) U {:too}},:too €S\S.
(13 |

The extension S of S is similar to that in [8).

By a defective random element X we mean a mapping X : @ — S such
that X~1(B) € A, B € B(S), and P[X"}(S)] = a < P(R). A defective

random variable X : @ — R, where R = RU {-00, 400}, is characterized
by the property Plw : |X(w)| < o] = a < P(Q), or symbolically, by
0 < Plw : |X(w)| = 00]. The generalized probability distribution Px of a
random element X is defined by:

Px(B) = P[X"!(B)) = Plw: X(w) € B}, B¢€B-=B(S).

The set of all random elements (defective and non-defective) defined on
(€2,.A) is denoted by X and the subset of non-defective random elements by
Xo.

The defective random variables appear in a natural way in the renewal
theory ([4]), the theory of physical measurement ([11]), or in the theory of
probabilistic metric spaces ([10]). Here we quote a simple example from the
theory of games.

Example 1. Gambler’s ruin (cf. (3]). Let X;, X2, ... be independent,
identically distributed random variables:

P{ X =15d b =iy taP{Xn= L3500 2 B =

Write S, = 2',::1 Xk, n 2 1, and let, for any a,b € N, ¢ be the first n such
that S, = —a or S, = b. Here p is the probability of winning in a single
game, q of losing, a is a capital of the gambler, b denotes the intentional
winning, while t is the final moment of the game. If the capital of the
gambler is unlimited then

. { first n such that S, > b,

oo if no such n exists.

If p < g, then P{t < oo} = (p/q)® < 1. Thus t is a defective random
variable which takes finite values with probability less than 1.

Let P = P(S) be the class of all Borel measures P defined on (S, B(S))
such that P(S) < 1 and Py C P is the subclass containing the proper prob-
ability measures (P € P, <= P(S) = 1). Denote by C; the set of all
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bounded continuous functions on S and by Cps the subset of C, contain-
ing the functions with bounded support, i.e. f € Car if 3 pounded set D(y)
Vegn(s) f(z) = 0.

Now we need to recall the notions of weak and vague convergence of a
sequence {P,,n > 1} of generalized probability measures.

We say that a sequence {P,,n > 1} of measures P, € P weakly converges

to a measure P € P (P, 2, P, n — o) if for every function f € Cy
lim [ fdP, = / fdP.
n—oo Jg Js

A sequence {P,,n > 1} of measures P, € P vaguely converges to a
measure P € P (P, 5.4 P, n — 00) if for every function f € Cp

lim / fdP, = / fdP.
22W's s

It is known that, if S is a separable metric space, then the following
statements are true.
Weak convergence of a sequence {P,,n > 1} of proper probability mea-
sures, is characterized by the following equivalent conditions (cf. [1], [7]):
(i) Pn—>=P,n— oo,
(ii) limsup,_ ., P.(F) < P(F) for every closed set F,
(iii) liminf,_ o P,(G) > P(G) for every open set G,
(iv) lim,_ o P.(A) = P(A) forevery set A € B(S) such that P(9A) = 0,

(v) limpeo [ fdP, = / fdP for every uniformly continuous function
- -

¥ evggiraio ]

For vague convergence of a sequence {Py,n > 1} with P, € P, n 2> 1,
the following conditions are equivalent (cf. [6]):
(i) Pﬂ _v_" P, n — OO,
(ii) limsup,_ . P.(F) < P(F) and liminfs.c P.(G) > P(G) for
every bounded closed set F' and every bounded open set G, respec-

tively,
(iii) limp—oeo Pn(A) = P(A) for every bounded set A € B(S) such that
P(0A) = 0.

We say that a sequence {X,,n > 1} of random elements X, € X weakly

D o .
converges to a random element X € X (X, — X, n — o00) if the se-
quence {Px,, n > 1} of generalized probability distributions of X, weakly
converges to Py.
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A sequence {X,,n > 1} of random elements X, € X vaguely converges
to a random element X € X, (X, & X, n — oo0) if the sequence
{Px,, n > 1} of generalized probability distributions of X, vaguely con-
verges to Py.

By Cp we denote the family of continuity sets of a measure P,i.e. A€ Cp
if P(QA) = 0, where A denotes the boundary of A. The family Cp, will
be denoted shortly by Cx. The following concept of essential convergence
in law was given in [12] (cf. [9], [2]).

A sequence {X,,n > 1} of random elements X, € X, is said to be essen-
tially convergent in law to a random element X € X, (X, =2 X,n — o0)
if for every set A € Cx

P{limsup[X, € A]} = P{li'{n ior(ljf[X,, € A]}

n-— oo

= P[X € A] with respect to P € Py(R).

Remark. The essential convergence in law can be considered in the set X
of defective and non-defective random elements.

For the sake of completeness we recall the following notions.

We say that a sequence {X,,n > 1} of random elements X, € X
converges in probability to a random element X € X, if for any £ > 0
limp oo Plw : 0(Xn,X) > €] = 0 (P € Py(2)) and we write X, =20 o
n — 0o.

A sequence {X,,n > 1} of random elements X, € X, is said to be
convergent almost surely to a random element X € X, (notation: X, =%
X,n— 00)if Plw:lim,_e Xn(w)=X(w)] =1 (P € Po(R)).

The measure @ is said to be absolutely continuous with respect to the
measure P (notation: Q < P), if for every sequence {A,,n > 1} of random
events A, € A the following condition is fulfilled:

lim P(A;)=0= lim Q(A,)=0.

n—oo

The measures P and @ are equivalent (P =Q)if P <Q and Q < P.

The following results (cf. [5], [12]) will be useful in further considerations.
For X, X, € Xo,n € N, P,Q € Py(Q):

(1) an—vX — VQ;PQx-iQx,n—OOO.

(2) Xn 25 X < Yozp Xn 22 X, n — co.
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2. Vague essential convergence, vague convergence in probabil-
ity and vague almost sure convergence. We introduce the following
concept of the vague essential convergence.

Definition 1. We say that a sequence {X,,n > 1} of random elements

X, € X is vaguely essentially convergent to a random element X € X

(Xn e 4 X, n — o) if for every bounded set A € Cx

P{limsup[X, € A]} = P{liminf[X, € 4]} = P[X € 4],
where P € P(Q).

Theorem 1. Let X, X, € X, n € N. The following conditions are equiva-
lent:
(1) X,,V—{J—PX, n — 0o,
(iiy) P{limsup,_ . [X, € F)} < P[X € F) for every bounded closed set
F,
and
(iiz) P{liminf,_..[X, € G]} > P[X € G] for every bounded open set G.

Proof. (i) = (ii;). Let F be any given bounded and closed set contained
in S. There exists a sequence of sets F’» = {z € §: o(z,F) < §,} with
6, — 0, n = oo, such that F®» € Cx,n € N,and F = Mo, Fé~. Of
course, the sets F%~ are bounded. Let ¢ be an arbitrary positive number.
There exists ng such that for n > ng we have

P[X € F5*) < P[X € F] +¢.
Hence we get

P{lim sup[X, € F]} < P{limsup[X, € F%)}
n—oo

n—oo

=P[X € F*|< P[X € F] +¢,
for every k > ng. Since ¢ is arbitrary, we see that

P{limsup[X, € F} < P[X € F].

n— oo

(i) = (ii). Assume that G is any given open and bounded set contained
in S. There exists a sequence of open sets G, n > 1, such that G, C G,
Gn € Cx and G = U=, Gn. Let H, = U_,Gi. Hence H, € Cx,
G = lim,—o, Hn, Hy C Hny1 and Hy is bounded for every n. Also, for any
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given € > 0, there exists ny such that for n > ng the following inequality is
true

P[X € H,] > P[X € G] —¢.
Hence we have
P{liminf[X, € G]} > P{liminf(X, € Hi]} = P[X € Hy] > P[X € G] -¢
for any € > 0 and k > ng. Thus
P{l&nligéf[Xn € G} > P[X € G].

(ii1) and (iiz)=>(i). Let A be any given bounded set which is a continuity
set of the measure Py (A € Cx). For any given ¢ > 0 there exist a closed
set F' and an open set G such that G C A C F and

P[X € F\A]<¢ and P[X € A\G]<e.
Hence, for any € > 0,
P[X € A]-e < P[X €G] < P{linrr_l'ioxéf[Xn €G]} < P{liﬂioxlf[Xn € A}
< P{limsup[X, € A]} < P{limsup[X, € F]} < P[X € F]
< PIX € Al+e i
Thus
P{liminf[X, € ]} = P{limsup[X, € 4]} = P[X € 4],

which completes the proof.

Theorem 2. Let X, X, e X, ne N.If X, ‘EPX, n — 00, then

b e O ETET
Proof. For every bounded set A € Cx we have

P{liminf[X, € 4]} = P{ G ﬁ[xk & A]} = lim P{ [, te A]}
=k

‘' n=1k=n >n -
< liminf P[X, € A] < limsup P[X, € 4]
- o 0o
< tim P{ |Jxe e a1} =P{ N U e
e k>n ) n=1k=n )

I

P{limsup[X, € A]}

n—00
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and
P{liminf[X, € A]} = P{limsup[X, € A]} = P[X € A].

Hence
liminf P[X, € A] = limsup P[X, € A] = P[X € A},
n—oo

n— 00

and so, for every bounded set 4 € Cx: lim, . P[X, € A] = P[X € 4].

Example 2. Vague convergence does not imply VED convergence. Assume
that {X,,n > 1} is a sequence of independent, identically distributed, non-
degenerate random variables. Since all X,, are identically distributed, the
sequence {X,,n > 1} vaguely converges to a random variable X which is
identically distributed as X;. Let now A € Cx be a bounded set such that
0 < P[X, € A] =a < 1. Then

P{ lif_‘.io’éf[x" (= A]} = "li_.mooP{ n[xk € A]} =0#a=P[X € A].
“k2n

Thus X, V~E«>DX, n — oo.

By the definitions of convergence ED and VED we get the following

Corollary 1. Let X, X, € X, n € N. If X, ED X, n — oo, then

X,,@X,n-u-oo.

Starting with the equivalence formulas (1) and (2) we are able to intro-
duce the concept of vague convergence in probability and vague almost sure
convergence.

Definition 2. We say that a sequence {X,,n > 1} of random elements
X, € X vaguely converges in probability to a random element X € X

(Xn Y X , n — 00 ) if it vaguely converges to X with respect to every
measure ) = P, i.e.

X,.—‘iﬂX == Vq,_—_ani-X,n—voo.

Definition 3. We say that a sequence {X,,n > 1} of random elements

Xn € X vaguely almost surely converges to a random element X € X

(Xn Yol x , n — 00) if it vaguely essentially converges to X with respect

to every measure () = P, i.e.

Xn VL"X — VQEPX,,@X, n — o0.
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By the Definitions 2, 3, Theorem 2 and (1), (2) we get the following
statements.

Corollary 2. Let X, X, € X, n € N. Then the following implications hold:
() XnZhX=X,-5 X, n- o0,

(i) Xo 23X = X, 22 X, n— o0,

(i) Xn 223X = X, 25X, n— oo,

iv n—X=>X,— X, n— oo,

i X, 2o X =2 X, Y5 x

v n— X=X, — X, n—> oo.
() X ﬂ.X XVCS.X

We shall see that without additional assumptions, none of the above
mentioned implications is revertible.

Example 3. Vague convergence does not imply VP convergence.
Let = [0,1] and let P be a measure on (Q2,.A) such that P({0}) =

P({1}) = 1/2. Define the random variables X, X, : @ — R, n € N, as
follows:

1, we(1/2,1], 0, we(1/2,1].

Let A be a continuity set of measure Py. There are three possibilities:
(i) 0¢ Aand 1 ¢ A. Then P[X, € A]=P[X € A]=0,n€ N.
(ii) 0€ A and 1 € A. Then P[X, € A]=P[X € A]=1,n€N.
(iii) Exactly one of the numbers 0, 1 belongs to A. Then P[X, € A] =
P[XeAl=},n€eN.

In all cases we have lim,_.o, P[X, € A] = P[X € A]. Thus X, ¥y Xt
n — 0o, wWith respect to the measure P.

Now let Q be a measure on (,.A) such that Q({0}) = }, Q({1}) = 3
and let B = (%,%) Of course, @ = P and B is the continuity set of
measure Qx. Moreover, Q[X, € B = 3, n € N,and Q[X € B] = 1.

This implies X, A X, n — oo, with respect to the measure . Thus, by
Definition 2, X,, 4 X, n — 0.

Example 4. VED convergence does not imply Va.s. convergence.
Let (2, A, P) be such that @ = [0,a], a > 0, and P be defined as follows:
P({ra/4}) = 1/8, r = 0,1,2,3,4, and let X, X, : Q@ — [1/a,00] = S,
n=1,2,..., be such that
‘ﬁ—' , 0<w<3a/4,
1w, w#A4 l w+: !

Xn(w) = { o e Xw)= <| ey 3a/40< w < a,
| 00, w=0.
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Then [X, € A] = [X, € A], n = 1,2,..., A € B. Moreover, we have
P[X, € A= P[X € A],n=1,2,..., A € B. Therefore, by the Definition
1, we conclude that X, VED X, n — oo.

Now define the measure @ on (2, A) as follows: Q({0}) = Q({e/2}) =
Q({a}) = 1/8, Q({a/4}) = Q({3a/4}) = 1/4. We see that P and Q are
concentrated on the set K = {0,a/4,a/2,3a/4,a}. Obviously that Q@ = P.
Write now B = (1/a,2/a). Then we have

Q[Xn € B] = Q[1/w € B] = Q({3a/4}) = 1/4, n=1,2,...,

F Yy .
QX € B1= Q|77 € B| = attarzn = 18,
. VED .
and so, X, = X, n — oo, with respect to the measure . Hence

Va.s.
X, %" X,n— oo.

Example 5. VP convergence does not imply Va.s. convergence.
Let 2 = [0,a], and let P be the Lebesgue measure on (£,.4). Define the
following family of random elements:

r r41
2, wE l§0,2—kﬂ],

(3) Xoryp(w) = Yy
1, wel0,a]\ [-2_::“’ -%—la] .

k=0,1,....,7 = 0,1,...,2¥ — 1. Since for every n € N there is exactly
one pair of numbers k,7 € N such that n = 2F + 7, 0 < 7 < 2k the
sequence {X,,n > 1} of random elements X : @ — R is defined correctly
by (3). Moreover, n — o0 <= k — o0o. Define also the random element
X :Q - Rby X(w)=1. Let A be any bounded continuity set of measute
Px.

(i) 1 € A. Then P[X, ¢ A] = P[Xpsy, ¢ A] < P[5a,Fla] = 5,
where n = 2*¥ + r, n € N. Hence

(4) lin;o P[X, ¢ A] =0,
and thus

(5) lim P[X, € A] = P() = P[X € A].
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(ii) 1 ¢ A. We have P[X, € A] = P[X3:,, € A] < P[i}a,fﬁla] =,
n=2%+7,n€N. Then

(6) lim P[X, € A]=0= PIX € 4].

It follows from (5) and (6) that X, et X, n — oo, with respect to the
measure P. Now, let Q be a measure on (f,.4) such that Q = P and let
A be a bounded continuity set of measure @ x. Then it follows from (4) for
1 € A that lim,_ . Q[ X, ¢ A] = 0. Hence

@ Jim QX € 4] = Q(2) = QIX € 4]
However, if 1 ¢ A, then it follows from (6) that

(8) Jim Q[Xn € 41=0=QIX € 4.

Therefore, by (7) and (8), we have X, XX, n = oo, with respect to the
measure . Thus X, AL X,n — oo.
Let A = [% . %] Of course, A € Cp, . Moreover, for any n € N we have

N(XceAl=0 and [JXee€Al=0

k>n k>n
Hence . .
P{liminf(X, € A]} = lim P ' )Xk € 4] ' =
and

P{ li:ﬂj:)p[X,. € Al} = lim P X e A]l = P(Q).
| k2n J
[t follows from the last equations and the definition of VED convergence

v ;
that X, o , . — 00, with respect to the measure P, and hence

Va.s.
Xn % X,n—>o00.

We will denote by B + C the symmetric difference of the sets B and C.
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Lemma 1. Let X, X, €X neN. If X, 25 X, n— 0o, then
P([X, € A]+[X € A]) = 0, n — oo, for every bounded set A € Cx.

Proof. Let A be any given bounded set such that P[X € 94] = 0.
If X, L X,n — oo, then X, My X,n — oo, Vozp. Assume that

P[X € A] > 0. Define the measure Q as follows:
Q(B) = (P(BI[X € A])+ P(B))/2.

Of course, Q = P, and so, by the assumption, Q[X, € A] — Q[X € 4],
n — 00. Therefore

(P([Xn € AlllX € AD+PX, € 4]) — (P(IX € AlllX € AD+PIX € A]).

By our assumption,

9) P[X, € A]— P[X € A, n — o0,
and hence
(10) P([X. € AlNn[X € A]) = P([X € A]), n — oo.

From the equality
[Xn € A]+ [X € A = ([Xa € 4]\ (IXn € A]0[X € 4]))
U (IX € A1\ (X € AN [X € 4])),
n=1,2,..., using (9) and (10) we get
P([X, € A]+[X € A]) - 0, n — 0.
If PX € A] =0, then
P([Xn € A = [X € A]) = P[X, € A] — P[X € A] =0,

which completes the proof.
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Lemma 2. If a sequence {X,,n > 1} of random elements X, € X vaguely
almost surely converges to a random element X € X, then for every bounded
set A € Cx

lim. P{ U(Xce Al +(X e A])} = 0.

k>n ’

Proof. If X, "3 X, n — oo, then X, “=¥ X, n — 0o, Yo=p. Let A

be any given bounded Px-continuity set. For A such that Px(A) > 0 we
define the measure @ as follows:

Q(B) = (P(B|[X € 4)) + P(B)) /2.

Obviously, @ = P. Thus X, bl s X, n — oo, for the measure (). Hence it

follows that
lim Q{ U[x,c € A]} = Q[X € A]

n=—s00 kZu
and
nli_{t;gQ{ [Xx € A]} = Q[X € Al.
k>n

Thus, by the definition of the measure ) and from

lim_ P{ |J (X € A]} = P[X € A] and

(11) k>n
lim P< (1) [Xk € A]} = P[X € A],
n—oo lan J

we get

lim_ P{ kLZJn[Xk € AlN[X € A]}

P[X € A]

lim P{ Xk e An[X € A]}.

M k2n
Therefore from (11) we have
(12) lim P U[XkeA]n[quA]} =0,
n— oo Lan
(13) }%P{UUQ¢MnMeM}=&

k2n
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Moreover,

U ([Xe € A] = [X € 4])
k2n

= U (e € 101X ¢ A1) U (X0 ¢ Al [X € 4))

k2n

= U ((Xee Aln[x ¢ A)u | (X ¢ AIN[X € A)).

k2>n k2n

Hence by (12) and (13)

'}mep{ gn[xk €Al+[Xe€ A]} =0

for every bounded set A € Cx such that Px(A) # 0.

Now assume that Px(A) = 0. Since X, i X, n — oo, X ey X,
n — 00, by Corollary 2 . Consequently,

lim P[X, € A]= P[X € A].
n—o00

Hence by the equality Px(A) = 0 we get

lim P{ U[xkeA]ﬂXeA]}:o,

n—o0 k>n J
which completes the proof.
Lemma 3. If X,X, € X,n€ N and

lim P{[Xn € 4] +[X € A]} =0
for every bounded set A € Cx, then X, 25 X, n — oo.

Proof. Assume that
lim P{[X. € A]+[X€A]}=0
n— 00

for every bounded set A € Cx. Then, we have

lim P{[X. € AIN[X ¢ 4]} =0
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and
nli_n;)P{[X € A]n[X. ¢ Al} =0.

Moreover,

ne—sox

lim (P[X, € A]- P[X € 4]) < nli_rr;)P{[Xn € AlN[X ¢ A]} =0
and

lim (P[X € 4] - P[X, € 4]) < lim P{[X € A]n (X, ¢ 4]} =0,

n=—o0 \

Thus we get

P[X € A] < lim P[X, € A] < P[X € 4],

for every bounded set A € Cx, which proves that X, 4 X, n — oo, with
respect to the measure P.

Now let () be any measure such that () = P. It follows from our assump-
tion that

lim Q{[X. € A]+[X € 4]} =0.

. v .
By a reasoning as above we get X, — X, n — oo, with respect to

the measure @ . Hence by the Definition 2 we have X, Y X, n— oo,
which completes the proof.

Lemma 4. If X, X, € X,n € N and

lim P{ UXke A+ [Xx € A])} =0

n—oo
*k2n
/4
for every bounded set A € Cx, then X, e X,n— o0.

Proof. Let
lim P{ |J((Xk e A]+[X € A])} =0

n—oo
k2n

for every bounded set A € Cx. Then

n—oo
~ kzn ,

lim P{ |J((Xx € A]n[X ¢ A])} =0
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. lim_ P{[X e Aln | J[Xx ¢ A]} =0.
k>n ’
Moreover,
lim_ (P{ UXee A]} - P[X ¢ A])
Vs, P
< jim P{ Yxee ainix ¢ ap) =0
3
and
lim_ (P[X € A] - P{ M (Xke€ A]})
k>n
< nan;oP{[X € Aln | J[ X« ¢ A]} = 0.

k>n

Hence we get

P[X € A]snllmooP{ N[Xk € A]} < lim. P{ Uxe € A]} < P[X € A],
k>n k>n

for every bounded set A € Cx, proving X, = X, n — oo, with respect
to the measure P.
From our assumption we get

nli_moo{ UXee Al +[X € A])} =0
k2n
for every measure Q = P and every bounded set A € Cx. Consequently,
VED

X, — X, n — oo, with respect to the measure Q = P. Thus, by the
Definition 3, we get X, Yoo X, n — oo, which completes the proof.

Theorem 3. A sequence {X,,n > 1} of random elements X, € X vaguely
converges in probability to a random element X € X if and only if for every
bounded set A € Cx

Jim_ P{[X. € Al +[X € A]} =0.

Proof. This is an immediate consequence of Lemmas 1 and 3.
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Theorem 4. A sequence {X,,n > 1} of random elements X,, € X vaguely
almost surely converges to a random element X € X if and only if for every
bounded set A € Cy

lim Pl U[xkeA]+[XeA]}=o.

n—oo
k>n 4

Proof. This is an immediate consequence of Lemmas 2 and 4.

Theorem 5. A sequence {X,,n > 1} of random elements X,, € X vaguely
almost surely converges to a random element X € X if and only if it is
vaguely convergent in probability and vaguely essentially convergent to X.
Proof. If X, A X, n — oo, then, ewidently, X, b Ld X, n — oo, by
Corollary 2 (ii). Moreover, X, YE X, n — oo, by Corollary 2 (iii).

Now, assume that {X,,n > 1} vaguely converges in probability and is
vaguely essentially convergent to X . It is sufficient to prove that X, ye2 X,

3 . v
n — oo, with respect to every measure ) = P. Since X, = X, n - oo,
with respect to the measure P, we get

P{ lim | J[Xk€ A]} = P{ lim ()X« € A]},
n—oo K>n ) n—oo My
for every bounded set A € Cx. Hence we have
lim P{( U € 41)\ ( ﬂ[xkeAl)} =0,
e U\ e / k>n

and so, for every measure Q = P,

"]LII;OQ{(U[XkEA])\_(ﬂ[XkEA])}=0,

“k>n k>n 4
or
lim Q{ U[XkGA]}= lim Q{n[kaA]}.
n—oo | s n—oo b

Hence by the inequalities

Q{ N[Xk € A]} <Q{[Xn € 4]} < Q{ Ulxee A]}

k>n k>n
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we get

- iim o{

(X € A]} = nq_n;OQ{ JXe e A]}

“k2n
= lim Q[X, € A].
1 =00

k>n

The assumption X, e s X, n — o0, implies X, == X,n - oo,
with respect to every measure Q P. Thus, for the measure Q@ =

lim,—o Q[X, € A] = Q[X € A] for every bounded set A € Cx. Hence by
(14) we get

im of NPwealf = im o Utxie al} = aix e 4,
k2>n k>n
for every measure Q = P and every bounded set A € Cx. Therefore

Xz L X, n — oo, with respect to every measure () = P, which completes

the proof.

Example 8. VED convergence does not imply VP convergence. Let Q =
[0,1] and let P be the Lebesgue measure on [0, 1]. Moreover, let S = [0, 1].
We define the random variables X, X,, n = 1,2,..., as follows:

i 1 w =0,
Xp(w)=w, Xw)=4¢ w+1/2 0<w<1/2,
| w-1/2=w+1/2-1, 1/2<w< 1.
X, Xn, n € N are uniformly distributed on [0, 1].
P{liminf,_.o[Xy, € A]} = P{limsup,_, . [X. € A]} = P[X € A] for every

A € B. Therefore, X, =% X, n — oo. Now, let Q be the measure on [0, 1]
with density f(z) = 2z. Moreover, let A = [0,1/2]. Of course, Q = P.

lima oo Q([Xn € A]) = Q([X; € A]) = Q([0,1/2)) = [;* 22dz = 1/4.
On the other hand, Q([X € A]) = Q([1/2,1]) = f1/2 2:cdz = 3/4 and s0

Xn A X, n — oo, with respect to the measure Q = P. Thus Xn X,
n — 0o.

Theorem 8. A sequence {X,,n > 1} of random elements X, € X vaguely
converges in probability to a constant c if and only if it converges vaguely
to c.

Proof. The necessity of the condition follows immediately from the Corol-
lary 2 (i), and so we must only prove its sufficiency. Assume therefore that
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Xn alis ¢, n — 0o, and let A be any bounded P.-continuity set. It follows
from the conditions equivalent to the vague convergence, that

(15) nli_‘moo P[X, € A] = P[c € A].
Moreover, we have
(16) [Xn € A]+[c€ A] = ([Xn € A]N[c ¢ A]) U ([Xn ¢ A]N[c € A]),

m=.152 .
Suppose that ¢ ¢ A. Then

,.h_."éo P{[Xn ¢ AlN[ce A]} = "h'_rrgo P{[X,1 ¢ A]ﬂ@} =0,
and

,.lf.“;,P{[X" € Aln[c¢ A]} = nli_g;)P{[Xn € AjnQ}
= nllngoP[Xn € A]=Plce A]=0

by (15). Hence by (16) we get
nleooP{[Xn € Al +[ce A} =0.
Now, let ¢ € A. Then
Lim_ P{[Xn€ Aln[c¢ A]} = Jim P{[X. € A]n0} =0,
and, by (15),

lim P{[X, ¢ A]n[c€ A]} = lim P[X, ¢ 4] = lim P{Q\[X, € 4]}
= P(Q) - lim P[X, € 4] = P(Q) - Plc € 4] = P(2) - P(2) =0.

Thus, by (16) we have
lim P{[Xn € A]+[ceA]} =0,

using Theorem 3 we are done.
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Theorem 7. A sequence {X,,n > 1} of random elements X, € X vaguely
almost surely converges to a constant c if and only if it vaguely essentialy
converges to c.

Proof. If X, — c, then X, ED . by Corollary 2 (iz).

Assume therefore that X, vEp ¢, n — oo. Let A be any bounded P,-

continuity set. By definition of VED convergence we have

(17) hm P{U[lke 1]} = hm P{n[kkEA]} Plc € A].
k>n k>n

Moreover, the following equation holds:

U ([Xk € Al +[c€ A4]) = (U[XkeA]n[ch])

k2>n k>n

U(U[Xk¢A]n[c€A]).

k2n

(18)

We consider two cases:
(a) c¢ A. We have

lim P{L [Xk¢A]n[c€A]}= Tim_ {

k>n

IXk¢A]ﬂ(0}=0

| J
L
k2n
and, by (17),

lim P{U[XkeA]n[c¢A]}— lim P{U[XkeA]nQ}

n—+00
k>n k>n

) nli_mmP{ Xk e A]} = Plce A] =

k>n

Thus, by (18),

n—oo

lim P{U [XkEA]+[c€A])} =

(b) c€ A. Then

{ \
lim P U[XkEA]ﬁ[C¢ A]} =nlLII;°P<| U[XkGA]00;=

n—oco
k>n | k2n
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and

lim P{L ngéA]n[ceA]l =nlLr1;°P«l U[_.\',,¢A]}
k> ) y

k>n

(
=nle°°P'=Q\ ﬂ[XkeA]]l- = P() - lim Piﬂ[XkGA]}

; k>n k>n
P(Q)— Pl[ce A]= P(Q) - P(R)=0
by (17). Hence and from (18) it follows that

im P§ |J ([Xx € Al +[c € A))

n—00
k>n

| SR
I

and using Theorem 4 we are done.

The diagram of the relations between various types of convergences.
Without additional assumptions, none of the above implications is revert-
ible.
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