ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L, 22

SECTIO A

1996

MARIUSZ STARTEK (Rzeszów) DOMINIK SZYNAL (Lublin)

On Types of Convergence of a Sequence of Defective Random Elements

ABSTRACT. We introduce concepts of vague essential convergence, vague convergence in probability and vague almost sure convergence of a sequence of defective random elements. Relations between these types of convergence and the classical ones are also investigated.

1. Introduction and preliminaries. Let (Ω, \mathcal{A}, P) be a generalized probability space, i.e. Ω is the set of elementary events, \mathcal{A} is a σ -field of subsets of Ω and P is a measure defined on \mathcal{A} such that $P(\Omega) \leq 1$. If $P(\Omega) = 1$, then P is said to be a proper probability measure, while P with $P(\Omega) < 1$ is called a defective (imperfect) probability measure. Moreover, (S, ϱ) stands for a metric space and $\mathcal{B} := \mathcal{B}(S)$ denotes the Borel σ -field of subsets of S. By a random element X we mean the mapping $X : \Omega \to S$ such that $X^{-1}(B) \in \mathcal{A}, B \in \mathcal{B}$. In the case $S = \mathbb{R}, X$ is called a random variable. By \overline{S} we denote the union of the space S and some points $x_{\infty}, y_{\infty}, \ldots$ not belonging to S. In \overline{S} we consider a topology generated by the following families of neighbourhoods of points:

$$\mathcal{B}(x) := \{ U \subset \overline{S} : x \in U, \ U \subset S, \ U \text{ is open} \}, \ x \in S.$$

¹⁹⁹¹ Mathematics Subject Classification. 60B10, 28A33.

Key words and phrases. weak convergence, vague convergence, essential convergence in law, convergence in probability, almost sure convergence.

 $\mathcal{B}(x_{\infty}) := \left\{ U \subset \overline{S} : \text{ there exist sets } A_1, A_2, \dots, A_n \text{ closed in } S \right\}$

and such that
$$U = \left(S \setminus \bigcup_{i=1}^{n} A_i\right) \cup \{x_{\infty}\}$$
, $x_{\infty} \in \overline{S} \setminus S$.

The extension \overline{S} of S is similar to that in [8].

By a defective random element X we mean a mapping $X : \Omega \to \overline{S}$ such that $X^{-1}(B) \in \mathcal{A}, B \in \mathcal{B}(\overline{S})$, and $P[X^{-1}(S)] = a < P(\Omega)$. A defective random variable $X : \Omega \to \overline{\mathbb{R}}$, where $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$, is characterized by the property $P[\omega : |X(\omega)| < \infty] = a < P(\Omega)$, or symbolically, by $0 < P[\omega : |X(\omega)| = \infty]$. The generalized probability distribution P_X of a random element X is defined by:

$$P_X(B) = P[X^{-1}(B)] = P[\omega : X(\omega) \in B], \quad B \in \overline{\mathcal{B}} = \mathcal{B}(\overline{S}).$$

The set of all random elements (defective and non-defective) defined on (Ω, \mathcal{A}) is denoted by \mathfrak{X} and the subset of non-defective random elements by \mathfrak{X}_0 .

The defective random variables appear in a natural way in the renewal theory ([4]), the theory of physical measurement ([11]), or in the theory of probabilistic metric spaces ([10]). Here we quote a simple example from the theory of games.

Example 1. Gambler's ruin (cf. [3]). Let X_1, X_2, \ldots be independent, identically distributed random variables:

$$P\{X_k = -1\} = q$$
, $P\{X_k = 1\} = p$, $p + q = 1$

Write $S_n = \sum_{k=1}^n X_k$, $n \ge 1$, and let, for any $a, b \in \mathbb{N}$, t be the first n such that $S_n = -a$ or $S_n = b$. Here p is the probability of winning in a single game, q of losing, a is a capital of the gambler, b denotes the intentional winning, while t is the final moment of the game. If the capital of the gambler is unlimited then

$$t = \begin{cases} \text{first } n \text{ such that } S_n \ge b, \\ \infty & \text{if no such } n \text{ exists.} \end{cases}$$

If p < q, then $P\{t < \infty\} = (p/q)^b < 1$. Thus t is a defective random variable which takes finite values with probability less than 1.

Let $\mathcal{P} = \mathcal{P}(S)$ be the class of all Borel measures P defined on $(S, \mathcal{B}(S))$ such that $P(S) \leq 1$ and $\mathcal{P}_0 \subset \mathcal{P}$ is the subclass containing the proper probability measures $(P \in \mathcal{P}_0 \iff P(S) = 1)$. Denote by \mathcal{C}_b the set of all bounded continuous functions on S and by C_M the subset of C_b containing the functions with bounded support, i.e. $f \in C_M$ if $\exists_{\text{bounded set } D(f)} \forall_{x \notin D(f)} f(x) = 0$.

Now we need to recall the notions of weak and vague convergence of a sequence $\{P_n, n \ge 1\}$ of generalized probability measures.

We say that a sequence $\{P_n, n \ge 1\}$ of measures $P_n \in \mathcal{P}$ weakly converges to a measure $P \in \mathcal{P}$ $(P_n \xrightarrow{D} P, n \to \infty)$ if for every function $f \in \mathcal{C}_b$

$$\lim_{n \to \infty} \int_{S} f dP_n = \int_{S} f dP.$$

A sequence $\{P_n, n \ge 1\}$ of measures $P_n \in \mathcal{P}$ vaguely converges to a measure $P \in \mathcal{P}$ $(P_n \xrightarrow{V} P, n \to \infty)$ if for every function $f \in \mathcal{C}_M$

$$\lim_{n \to \infty} \int_{S} f dP_n = \int_{S} f dP.$$

It is known that, if S is a separable metric space, then the following statements are true.

Weak convergence of a sequence $\{P_n, n \ge 1\}$ of proper probability measures, is characterized by the following equivalent conditions (cf. [1], [7]):

- (i) $P_n \xrightarrow{D} P, n \to \infty,$
- (ii) $\limsup_{n\to\infty} P_n(F) \leq P(F)$ for every closed set F,
- (iii) $\liminf_{n\to\infty} P_n(G) \ge P(G)$ for every open set G,

(iv)
$$\lim_{n\to\infty} P_n(A) = P(A)$$
 for every set $A \in \mathcal{B}(S)$ such that $P(\partial A) = 0$,

(v) $\lim_{n\to\infty} \int_{S} f dP_n = \int_{S} f dP$ for every uniformly continuous function $f \in C_b$.

For vague convergence of a sequence $\{P_n, n \ge 1\}$ with $P_n \in \mathcal{P}, n \ge 1$, the following conditions are equivalent (cf. [6]):

- (i) $P_n \xrightarrow{V} P, n \to \infty,$
- (ii) $\limsup_{n\to\infty} P_n(F) \le P(F)$ and $\liminf_{n\to\infty} P_n(G) \ge P(G)$ for every bounded closed set F and every bounded open set G, respectively,
- (iii) $\lim_{n\to\infty} P_n(A) = P(A)$ for every bounded set $A \in \mathcal{B}(S)$ such that $P(\partial A) = 0$.

We say that a sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ weakly converges to a random element $X \in \mathfrak{X}$ $(X_n \xrightarrow{D} X, n \to \infty)$ if the sequence $\{P_{X_n}, n \ge 1\}$ of generalized probability distributions of X_n weakly converges to P_X .

A sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely converges to a random element $X \in \mathfrak{X}$, $(X_n \xrightarrow{V} X, n \to \infty)$ if the sequence $\{P_{X_n}, n \ge 1\}$ of generalized probability distributions of X_n vaguely converges to P_X .

By \mathcal{C}_P we denote the family of continuity sets of a measure P, i.e. $A \in \mathcal{C}_P$ if $P(\partial A) = 0$, where ∂A denotes the boundary of A. The family \mathcal{C}_{P_X} will be denoted shortly by \mathcal{C}_X . The following concept of essential convergence in law was given in [12] (cf. [9], [2]).

A sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}_0$ is said to be essentially convergent in law to a random element $X \in \mathfrak{X}_0$ $(X_n \xrightarrow{ED} X, n \to \infty)$ if for every set $A \in \mathfrak{C}_X$

$$P\{\limsup_{n \to \infty} [X_n \in A]\} = P\{\liminf_{n \to \infty} [X_n \in A]\}$$
$$= P[X \in A] \text{ with respect to } P \in \mathcal{P}_0(\Omega).$$

Remark. The essential convergence in law can be considered in the set \mathfrak{X} of defective and non-defective random elements.

For the sake of completeness we recall the following notions.

We say that a sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}_0$ converges in probability to a random element $X \in \mathfrak{X}_0$ if for any $\varepsilon > 0$ $\lim_{n\to\infty} P[\omega : \varrho(X_n, X) > \varepsilon] = 0 \ (P \in \mathcal{P}_0(\Omega))$ and we write $X_n \xrightarrow{P} X$, $n \to \infty$.

A sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}_0$ is said to be convergent almost surely to a random element $X \in \mathfrak{X}_0$ (notation: $X_n \xrightarrow{a.s.} X, n \to \infty$) if $P[\omega : \lim_{n \to \infty} X_n(\omega) = X(\omega)] = 1$ $(P \in \mathcal{P}_0(\Omega))$.

The measure Q is said to be *absolutely continuous* with respect to the measure P (notation: $Q \prec P$), if for every sequence $\{A_n, n \ge 1\}$ of random events $A_n \in \mathcal{A}$ the following condition is fulfilled:

$$\lim_{n\to\infty} P(A_n) = 0 \Rightarrow \lim_{n\to\infty} Q(A_n) = 0.$$

The measures P and Q are equivalent $(P \equiv Q)$ if $P \prec Q$ and $Q \prec P$.

The following results (cf. [5], [12]) will be useful in further considerations. For $X, X_n \in \mathfrak{X}_0, n \in \mathbb{N}, P, Q \in \mathcal{P}_0(\Omega)$:

- (1) $X_n \xrightarrow{P} X \iff \forall_{Q \equiv P} Q_{X_n} \xrightarrow{D} Q_X, n \to \infty.$
- (2) $X_n \xrightarrow{a.s.} X \iff \forall_{Q \equiv P} X_n \xrightarrow{ED} X, n \to \infty.$

2. Vague essential convergence, vague convergence in probability and vague almost sure convergence. We introduce the following concept of the vague essential convergence.

Definition 1. We say that a sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ is vaguely essentially convergent to a random element $X \in \mathfrak{X}$ $(X_n \xrightarrow{V \ge D} X, n \to \infty)$ if for every bounded set $A \in \mathcal{C}_X$

$$P\{\limsup\{X_n \in A\}\} = P\{\liminf\{X_n \in A\}\} = P[X \in A],$$

where $P \in \mathcal{P}(\Omega)$.

Theorem 1. Let $X, X_n \in \mathfrak{X}, n \in \mathbb{N}$. The following conditions are equivalent:

- (i) $X_n \xrightarrow{VED} X, n \to \infty,$
- (ii₁) $P\{\limsup_{n\to\infty} [X_n \in F]\} \leq P[X \in F]$ for every bounded closed set F,
- and

(ii₂) $P\{\liminf_{n\to\infty} [X_n \in G]\} \ge P[X \in G]$ for every bounded open set G.

Proof. $(i) \Rightarrow (ii_1)$. Let F be any given bounded and closed set contained in S. There exists a sequence of sets $F^{\delta_n} = \{x \in S : \rho(x,F) < \delta_n\}$ with $\delta_n \to 0, n \to \infty$, such that $F^{\delta_n} \in \mathcal{C}_X, n \in \mathbb{N}$, and $F = \bigcap_{n=1}^{\infty} F^{\delta_n}$. Of course, the sets F^{δ_n} are bounded. Let ε be an arbitrary positive number. There exists n_0 such that for $n \ge n_0$ we have

$$P[X \in F^{\delta_n}] < P[X \in F] + \varepsilon.$$

Hence we get

$$P\{\limsup_{n \to \infty} [X_n \in F]\} \le P\{\limsup_{n \to \infty} [X_n \in F^{\delta_k}]\}$$
$$= P[X \in F^{\delta_k}] < P[X \in F] + \varepsilon$$

for every $k \ge n_0$. Since ε is arbitrary, we see that

$$P\{\limsup \{X_n \in F\} \le P[X \in F].$$

 $(i) \Rightarrow (ii_2)$. Assume that G is any given open and bounded set contained in S. There exists a sequence of open sets G_n , $n \ge 1$, such that $G_n \subset G$, $G_n \in \mathcal{C}_X$ and $G = \bigcup_{n=1}^{\infty} G_n$. Let $H_n = \bigcup_{i=1}^n G_i$. Hence $H_n \in \mathcal{C}_X$, $G = \lim_{n \to \infty} H_n$, $H_n \subset H_{n+1}$ and H_n is bounded for every n. Also, for any given $\varepsilon > 0$, there exists n_0 such that for $n \ge n_0$ the following inequality is true

 $P[X \in H_n] > P[X \in G] - \varepsilon.$

Hence we have

 $P\{\liminf_{n\to\infty} [X_n \in G]\} \ge P\{\liminf_{n\to\infty} [X_n \in H_k]\} = P[X \in H_k] > P[X \in G] - \varepsilon$

for any $\varepsilon > 0$ and $k \ge n_0$. Thus

$$P\{\liminf_{n \to \infty} [X_n \in G]\} \ge P[X \in G].$$

 (ii_1) and $(ii_2) \Rightarrow (i)$. Let A be any given bounded set which is a continuity set of the measure P_X $(A \in \mathcal{C}_X)$. For any given $\varepsilon > 0$ there exist a closed set F and an open set G such that $G \subset A \subset F$ and

 $P[X \in F \setminus A] \leq \varepsilon$ and $P[X \in A \setminus G] \leq \varepsilon$.

Hence, for any $\varepsilon > 0$,

$$P[X \in A] - \varepsilon \le P[X \in G] \le P\{\liminf_{n \to \infty} [X_n \in G]\} \le P\{\liminf_{n \to \infty} [X_n \in A]\}$$
$$\le P\{\limsup_{n \to \infty} [X_n \in A]\} \le P\{\limsup_{n \to \infty} [X_n \in F]\} \le P[X \in F]$$
$$\le P[X \in A] + \varepsilon.$$

Thus

$$P\{\liminf[X_n \in A]\} = P\{\limsup[X_n \in A]\} = P[X \in A],$$

which completes the proof.

Theorem 2. Let $X, X_n \in \mathfrak{X}$, $n \in \mathbb{N}$. If $X_n \xrightarrow{V \in D} X$, $n \to \infty$, then $X_n \xrightarrow{V} X$, $n \to \infty$.

Proof. For every bounded set $A \in \mathcal{C}_X$ we have

$$P\{\liminf_{n \to \infty} [X_n \in A]\} = P\left\{\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} [X_k \in A]\right\} = \lim_{n \to \infty} P\left\{\bigcap_{k \ge n} [X_k \in A]\right\}$$
$$\leq \liminf_{n \to \infty} P[X_n \in A] \leq \limsup_{n \to \infty} P[X_n \in A]$$
$$\leq \lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A]\right\} = P\left\{\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} [X_k \in A]\right\}$$
$$= P\{\limsup_{n \to \infty} [X_n \in A]\}$$

and

$$P\{\liminf_{n \to \infty} [X_n \in A]\} = P\{\limsup_{n \to \infty} [X_n \in A]\} = P[X \in A]$$

Hence

$$\liminf_{n \to \infty} P[X_n \in A] = \limsup_{n \to \infty} P[X_n \in A] = P[X \in A],$$

and so, for every bounded set $A \in \mathcal{C}_X$: $\lim_{n \to \infty} P[X_n \in A] = P[X \in A]$.

Example 2. Vague convergence does not imply VED convergence. Assume that $\{X_n, n \ge 1\}$ is a sequence of independent, identically distributed, nondegenerate random variables. Since all X_n are identically distributed, the sequence $\{X_n, n \ge 1\}$ vaguely converges to a random variable X which is identically distributed as X_1 . Let now $A \in \mathcal{C}_X$ be a bounded set such that $0 < P[X_1 \in A] = a < 1$. Then

$$P\left\{\liminf_{n\to\infty} [X_n \in A]\right\} = \lim_{n\to\infty} P\left\{\bigcap_{k>n} [X_k \in A]\right\} = 0 \neq a = P[X \in A].$$

Thus $X_n \stackrel{VED}{\nrightarrow} X, n \to \infty$.

11.

By the definitions of convergence ED and VED we get the following

Corollary 1. Let $X, X_n \in \mathfrak{X}, n \in \mathbb{N}$. If $X_n \xrightarrow{ED} X, n \to \infty$, then $X_n \xrightarrow{VED} X, n \to \infty$.

Starting with the equivalence formulas (1) and (2) we are able to introduce the concept of vague convergence in probability and vague almost sure convergence.

Definition 2. We say that a sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely converges in probability to a random element $X \in \mathfrak{X}$ $(X_n \xrightarrow{VP} X, n \to \infty)$ if it vaguely converges to X with respect to every measure $Q \equiv P$, i.e.

$$X_n \xrightarrow{VP} X \iff \forall_{Q\equiv P} X_n \xrightarrow{V} X, \ n \to \infty.$$

Definition 3. We say that a sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely almost surely converges to a random element $X \in \mathfrak{X}$ $(X_n \xrightarrow{Va.s.} X, n \to \infty)$ if it vaguely essentially converges to X with respect to every measure $Q \equiv P$, i.e.

$$X_n \xrightarrow{Va.s.} X \iff \forall_{Q \equiv P} X_n \xrightarrow{V \in D} X, \ n \to \infty.$$

By the Definitions 2, 3, Theorem 2 and (1), (2) we get the following statements.

Corollary 2. Let $X, X_n \in \mathfrak{X}, n \in \mathbb{N}$. Then the following implications hold:

To be bedruced erry's sol on bou

(1)
$$X_n \longrightarrow X \Rightarrow X_n \longrightarrow X, n \to \infty,$$

(ii) $X_n \xrightarrow{Va.s.} X \Rightarrow X_n \xrightarrow{VED} X, n \to \infty$
(iii) $X_n \xrightarrow{Va.s.} X \Rightarrow X_n \xrightarrow{VP} X, n \to \infty,$
(iv) $X_n \xrightarrow{P} X \Rightarrow X_n \xrightarrow{VP} X, n \to \infty,$

(v) $X_n \xrightarrow{a.s.} X \Rightarrow X_n \xrightarrow{Va.s.} X, n \to \infty.$

We shall see that without additional assumptions, none of the above mentioned implications is revertible.

Example 3. Vague convergence does not imply VP convergence. Let $\Omega = [0,1]$ and let P be a measure on (Ω, \mathcal{A}) such that $P(\{0\}) = P(\{1\}) = 1/2$. Define the random variables $X, X_n : \Omega \to \mathbb{R}, n \in \mathbb{N}$, as follows:

$$X_n(\omega) = \begin{cases} 0, & \omega \in [0, 1/2], \\ 1, & \omega \in (1/2, 1], \end{cases} \quad X(\omega) = \begin{cases} 1, & \omega \in [0, 1/2], \\ 0, & \omega \in (1/2, 1]. \end{cases}$$

Let A be a continuity set of measure P_X . There are three possibilities: (i) $0 \notin A$ and $1 \notin A$. Then $P[X_n \in A] = P[X \in A] = 0, n \in \mathbb{N}$. (ii) $0 \in A$ and $1 \in A$. Then $P[X_n \in A] = P[X \in A] = 1, n \in \mathbb{N}$. (iii) Exactly one of the numbers 0, 1 belongs to A. Then $P[X_n \in A] = P[X \in A] = \frac{1}{2}, n \in \mathbb{N}$.

In all cases we have $\lim_{n\to\infty} P[X_n \in A] = P[X \in A]$. Thus $X_n \xrightarrow{V} X$, $n \to \infty$, with respect to the measure P.

Now let Q be a measure on (Ω, \mathcal{A}) such that $Q(\{0\}) = \frac{1}{4}$, $Q(\{1\}) = \frac{3}{4}$ and let $B = (\frac{1}{2}, \frac{3}{2})$. Of course, $Q \equiv P$ and B is the continuity set of measure Q_X . Moreover, $Q[X_n \in B] = \frac{3}{4}$, $n \in \mathbb{N}$, and $Q[X \in B] = \frac{1}{4}$. This implies $X_n \xrightarrow{V} X$, $n \to \infty$, with respect to the measure Q. Thus, by Definition 2, $X_n \xrightarrow{VP} X$, $n \to \infty$.

Example 4. VED convergence does not imply Va.s. convergence. Let (Ω, \mathcal{A}, P) be such that $\Omega = [0, a], a > 0$, and P be defined as follows: $P(\{ra/4\}) = 1/8, r = 0, 1, 2, 3, 4, \text{ and let } X, X_n : \Omega \to [1/a, \infty] = S,$ $n = 1, 2, \ldots$, be such that

$$X_n(\omega) = \begin{cases} 1/\omega, & \omega \neq 0 \\ \infty, & \omega = 0, \end{cases} \quad X(\omega) = \begin{cases} \frac{1}{\omega + a/4}, & 0 < \omega \le 3a/4, \\ \frac{1}{\omega - 3a/4}, & 3a/4 < \omega \le a, \\ \infty, & \omega = 0. \end{cases}$$

Then $[X_n \in A] = [X_1 \in A], n = 1, 2, ..., A \in \mathcal{B}$. Moreover, we have $P[X_n \in A] = P[X \in A], n = 1, 2, ..., A \in \mathcal{B}$. Therefore, by the Definition 1, we conclude that $X_n \xrightarrow{V \in D} X, n \to \infty$.

Now define the measure Q on (Ω, \mathcal{A}) as follows: $Q(\{0\}) = Q(\{a/2\}) = Q(\{a\}) = 1/8$, $Q(\{a/4\}) = Q(\{3a/4\}) = 1/4$. We see that P and Q are concentrated on the set $K = \{0, a/4, a/2, 3a/4, a\}$. Obviously that $Q \equiv P$. Write now B = (1/a, 2/a). Then we have

$$Q[X_n \in B] = Q[1/\omega \in B] = Q(\{3a/4\}) = 1/4, \ n = 1, 2, \dots,$$

$$Q[X \in B] = Q\left[\frac{1}{\omega + a/4} \in B\right] = Q(\{a/2\}) = 1/8,$$

and so, $X_n \stackrel{V \in D}{\twoheadrightarrow} X$, $n \to \infty$, with respect to the measure Q. Hence $X_n \stackrel{Va.s.}{\twoheadrightarrow} X$, $n \to \infty$.

Example 5. VP convergence does not imply Va.s. convergence. Let $\Omega = [0, a]$, and let P be the Lebesgue measure on (Ω, \mathcal{A}) . Define the following family of random elements:

(3)
$$X_{2^{k}+r}(\omega) = \begin{cases} 2, & \omega \in \left[\frac{r}{2^{k}}a, \frac{r+1}{2^{k}}a\right], \\ 1, & \omega \in [0,a] \setminus \left[\frac{r}{2^{k}}a, \frac{r+1}{2^{k}}a\right], \end{cases}$$

 $k = 0, 1, \ldots, r = 0, 1, \ldots, 2^k - 1$. Since for every $n \in \mathbb{N}$ there is exactly one pair of numbers $k, r \in \mathbb{N}$ such that $n = 2^k + r, 0 \leq r < 2^k$, the sequence $\{X_n, n \geq 1\}$ of random elements $X : \Omega \to \mathbb{R}$ is defined correctly by (3). Moreover, $n \to \infty \iff k \to \infty$. Define also the random element $X : \Omega \to \mathbb{R}$ by $X(\omega) \equiv 1$. Let A be any bounded continuity set of measure P_X .

(i) $1 \in A$. Then $P[X_n \notin A] = P[X_{2^k+r} \notin A] \le P\left[\frac{r}{2^k}a, \frac{r+1}{2^k}a\right] = \frac{a}{2^k}$, where $n = 2^k + r, n \in \mathbb{N}$. Hence

(4)
$$\lim_{n\to\infty} P[X_n \notin A] = 0,$$

and thus

(5)
$$\lim_{n \to \infty} P[X_n \in A] = P(\Omega) = P[X \in A].$$

(ii) $1 \notin A$. We have $P[X_n \in A] = P[X_{2^k+r} \in A] \le P\left[\frac{r}{2^k}a, \frac{r+1}{2^k}a\right] = \frac{a}{2^k}$, $n = 2^k + r, n \in \mathbb{N}$. Then

(6)
$$\lim_{n \to \infty} P[X_n \in A] = 0 = P[X \in A].$$

It follows from (5) and (6) that $X_n \xrightarrow{V} X$, $n \to \infty$, with respect to the measure P. Now, let Q be a measure on (Ω, \mathcal{A}) such that $Q \equiv P$ and let \mathcal{A} be a bounded continuity set of measure Q_X . Then it follows from (4) for $1 \in \mathcal{A}$ that $\lim_{n\to\infty} Q[X_n \notin A] = 0$. Hence

(7)
$$\lim_{n \to \infty} Q[X_n \in A] = Q(\Omega) = Q[X \in A].$$

However, if $1 \notin A$, then it follows from (6) that

(8)
$$\lim_{n \to \infty} Q[X_n \in A] = 0 = Q[X \in A]$$

Therefore, by (7) and (8), we have $X_n \xrightarrow{V} X$, $n \to \infty$, with respect to the measure Q. Thus $X_n \xrightarrow{VP} X$, $n \to \infty$.

Let $A = \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}$. Of course, $A \in \mathcal{C}_{P_X}$. Moreover, for any $n \in \mathbb{N}$ we have

$$\bigcap_{k\geq n} [X_k \in A] = \emptyset \quad \text{and} \quad \bigcup_{k\geq n} [X_k \in A] = \Omega.$$

Hence

$$P\left\{\liminf_{n \to \infty} [X_n \in A]\right\} = \lim_{n \to \infty} P\left\{\bigcap_{k \ge n} [X_k \in A]\right\} = 0$$

and

$$P\left\{\limsup_{n \to \infty} [X_n \in A]\right\} = \lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A]\right\} = P(\Omega).$$

It follows from the last equations and the definition of VED convergence that $X_n \stackrel{V \in D}{\Rightarrow} X$, $n \to \infty$, with respect to the measure P, and hence $X_n \stackrel{Va.s.}{\Rightarrow} X$, $n \to \infty$.

We will denote by $B \div C$ the symmetric difference of the sets B and C.

Lemma 1. Let $X, X_n \in \mathfrak{X} \ n \in \mathbb{N}$. If $X_n \xrightarrow{VP} X, n \to \infty$, then $P([X_n \in A] \div [X \in A]) \to 0, n \to \infty$, for every bounded set $A \in \mathfrak{C}_X$.

Proof. Let A be any given bounded set such that $P[X \in \partial A] = 0$. If $X_n \xrightarrow{VP} X$, $n \to \infty$, then $X_n \xrightarrow{V} X$, $n \to \infty$, $\forall_{Q \equiv P}$. Assume that $P[X \in A] > 0$. Define the measure Q as follows:

$$Q(B) = (P(B|[X \in A]) + P(B))/2$$

Of course, $Q \equiv P$, and so, by the assumption, $Q[X_n \in A] \rightarrow Q[X \in A]$, $n \rightarrow \infty$. Therefore

$$\left(P([X_n \in A] | [X \in A]) + P[X_n \in A]\right) \xrightarrow[n \to \infty]{} \left(P([X \in A] | [X \in A]) + P[X \in A]\right).$$

By our assumption,

(9)
$$P[X_n \in A] \to P[X \in A], \ n \to \infty$$

and hence

Benn

(10)
$$P([X_n \in A] \cap [X \in A]) \to P([X \in A]), \ n \to \infty$$

From the equality

$$[X_n \in A] \div [X \in A] = \left([X_n \in A] \setminus ([X_n \in A] \cap [X \in A]) \right)$$
$$\cup \left([X \in A] \setminus ([X_n \in A] \cap [X \in A]) \right),$$

 $n = 1, 2, \dots$, using (9) and (10) we get

$$P([X_n \in A] \div [X \in A]) \to 0, \ n \to \infty.$$

If $P[X \in A] = 0$, then

$$P([X_n \in A] \div [X \in A]) = P[X_n \in A] \to P[X \in A] = 0,$$

which completes the proof.

Lemma 2. If a sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely almost surely converges to a random element $X \in \mathfrak{X}$, then for every bounded set $A \in \mathfrak{C}_X$

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} ([X_k \in A] \div [X \in A]) \right\} = 0.$$

Proof. If $X_n \xrightarrow{Va.s.} X$, $n \to \infty$, then $X_n \xrightarrow{VED} X$, $n \to \infty$, $\forall_{Q\equiv P}$. Let A be any given bounded P_X -continuity set. For A such that $P_X(A) > 0$ we define the measure Q as follows:

$$Q(B) = \left(P(B|[X \in A]) + P(B) \right) / 2.$$

Obviously, $Q \equiv P$. Thus $X_n \xrightarrow{VED} X$, $n \to \infty$, for the measure Q. Hence it follows that

$$\lim_{n \to \infty} Q\left\{\bigcup_{k \ge n} [X_k \in A]\right\} = Q[X \in A]$$

and

$$\lim_{n \to \infty} Q \left\{ \bigcap_{k \ge n} [X_k \in A] \right\} = Q[X \in A].$$

Thus, by the definition of the measure Q and from

(11)
$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \in A] \right\} = P[X \in A] \text{ and}$$
$$\lim_{n \to \infty} P\left\{ \bigcap_{k \ge n} [X_k \in A] \right\} = P[X \in A],$$

we get

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \in A] \cap [X \in A] \right\} = P[X \in A]$$
$$= \lim_{n \to \infty} P\left\{ \bigcap_{k \ge n} [X_k \in A] \cap [X \in A] \right\}.$$

Therefore from (11) we have

(12)
$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \in A] \cap [X \notin A] \right\} = 0,$$

(13)
$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \notin A] \cap [X \in A] \right\} = 0.$$

Moreover,

$$\bigcup_{k \ge n} \left([X_k \in A] \div [X \in A] \right)$$
$$= \bigcup_{k \ge n} \left(\left([X_k \in A] \cap [X \notin A] \right) \cup \left([X_k \notin A] \cap [X \in A] \right) \right)$$
$$= \bigcup_{k \ge n} \left([X_k \in A] \cap [X \notin A] \right) \cup \bigcup_{k \ge n} \left([X_k \notin A] \cap [X \in A] \right).$$

Hence by (12) and (13)

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \in A] \div [X \in A] \right\} = 0$$

for every bounded set $A \in \mathcal{C}_X$ such that $P_X(A) \neq 0$.

Now assume that $P_X(A) = 0$. Since $X_n \xrightarrow{Va.s.} X$, $n \to \infty$, $X_n \xrightarrow{V} X$, $n \to \infty$, by Corollary 2. Consequently,

$$\lim_{n \to \infty} P[X_n \in A] = P[X \in A]$$

Hence by the equality $P_X(A) = 0$ we get

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \in A] \div [X \in A] \right\} = 0,$$

which completes the proof.

Lemma 3. If $X, X_n \in \mathfrak{X}$, $n \in \mathbb{N}$ and

$$\lim_{n \to \infty} P\{[X_n \in A] \div [X \in A]\} = 0$$

for every bounded set $A \in \mathcal{C}_X$, then $X_n \xrightarrow{VP} X$, $n \to \infty$.

Proof. Assume that

$$\lim_{n \to \infty} P\{[X_n \in A] \div [X \in A]\} = 0$$

for every bounded set $A \in \mathcal{C}_X$. Then, we have

$$\lim_{n \to \infty} P\{[X_n \in A] \cap [X \notin A]\} = 0$$

and

$$\lim P\{[X \in A] \cap [X_n \notin A]\} = 0.$$

Moreover,

$$\lim_{n \to \infty} \left(P[X_n \in A] - P[X \in A] \right) \le \lim_{n \to \infty} P\left\{ [X_n \in A] \cap [X \notin A] \right\} = 0$$

and

$$\lim_{n \to \infty} \left(P[X \in A] - P[X_n \in A] \right) \le \lim_{n \to \infty} P\left\{ [X \in A] \cap [X_n \notin A] \right\} = 0.$$

Thus we get

$$P[X \in A] \le \lim_{n \to \infty} P[X_n \in A] \le P[X \in A],$$

for every bounded set $A \in \mathcal{C}_X$, which proves that $X_n \xrightarrow{V} X, n \to \infty$, with respect to the measure P.

Now let Q be any measure such that $Q \equiv P$. It follows from our assumption that

$$\lim Q\left\{ [X_n \in A] \div [X \in A] \right\} = 0.$$

By a reasoning as above we get $X_n \xrightarrow{V} X$, $n \to \infty$, with respect to the measure Q. Hence by the Definition 2 we have $X_n \xrightarrow{VP} X$, $n \to \infty$, which completes the proof.

Lemma 4. If $X, X_n \in \mathfrak{X}$, $n \in \mathbb{N}$ and

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} ([X_k \in A] \div [X \in A]) \right\} = 0$$

for every bounded set $A \in \mathfrak{C}_X$, then $X_n \stackrel{Va.s.}{\longrightarrow} X, n \to \infty$.

Proof. Let

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} ([X_k \in A] \div [X \in A]) \right\} = 0$$

for every bounded set $A \in \mathcal{C}_X$. Then

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} ([X_k \in A] \cap [X \notin A]) \right\} = 0$$

 $\lim_{n \to \infty} P\left\{ [X \in A] \cap \bigcup_{k \ge n} [X_k \notin A] \right\} = 0.$

Moreover,

and

$$\lim_{n \to \infty} \left(P \left\{ \bigcup_{k \ge n} [X_k \in A] \right\} - P[X \in A] \right)$$
$$\leq \lim_{n \to \infty} P \left\{ \bigcup_{k \ge n} ([X_k \in A] \cap [X \notin A]) \right\} = 0$$

and

$$\lim_{n \to \infty} \left(P[X \in A] - P\left\{ \bigcap_{k \ge n} [X_k \in A] \right\} \right)$$
$$\leq \lim_{n \to \infty} P\left\{ [X \in A] \cap \bigcup_{k \ge n} [X_k \notin A] \right\} = 0.$$

Hence we get

$$P[X \in A] \le \lim_{n \to \infty} P\left\{\bigcap_{k \ge n} [X_k \in A]\right\} \le \lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A]\right\} \le P[X \in A],$$

for every bounded set $A \in \mathcal{C}_X$, proving $X_n \xrightarrow{VED} X$, $n \to \infty$, with respect to the measure P.

From our assumption we get

$$\lim_{k \to \infty} Q \left\{ \bigcup_{k \ge n} ([X_k \in A] \div [X \in A]) \right\} = 0$$

for every measure $Q \equiv P$ and every bounded set $A \in \mathcal{C}_X$. Consequently, $X_n \xrightarrow{VED} X, n \to \infty$, with respect to the measure $Q \equiv P$. Thus, by the Definition 3, we get $X_n \xrightarrow{Va.s.} X, n \to \infty$, which completes the proof.

Theorem 3. A sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely converges in probability to a random element $X \in \mathfrak{X}$ if and only if for every bounded set $A \in \mathfrak{C}_X$

$$\lim_{n \to \infty} P\{[X_n \in A] \div [X \in A]\} = 0.$$

Proof. This is an immediate consequence of Lemmas 1 and 3.

Theorem 4. A sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely almost surely converges to a random element $X \in \mathfrak{X}$ if and only if for every bounded set $A \in \mathfrak{C}_X$

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \in A] \div [X \in A] \right\} = 0.$$

Proof. This is an immediate consequence of Lemmas 2 and 4.

Theorem 5. A sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely almost surely converges to a random element $X \in \mathfrak{X}$ if and only if it is vaguely convergent in probability and vaguely essentially convergent to X.

Proof. If $X_n \xrightarrow{Va.s.} X$, $n \to \infty$, then, ewidently, $X_n \xrightarrow{VED} X$, $n \to \infty$, by Corollary 2 (ii). Moreover, $X_n \xrightarrow{VP} X$, $n \to \infty$, by Corollary 2 (iii).

Now, assume that $\{X_n, n \ge 1\}$ vaguely converges in probability and is vaguely essentially convergent to X. It is sufficient to prove that $X_n \xrightarrow{V \ge D} X$, $n \to \infty$, with respect to every measure $Q \equiv P$. Since $X_n \xrightarrow{V \ge D} X$, $n \to \infty$, with respect to the measure P, we get

$$P\left\{\lim_{n\to\infty}\bigcup_{k\geq n} [X_k\in A]\right\} = P\left\{\lim_{n\to\infty}\bigcap_{k\geq n} [X_k\in A]\right\},\$$

for every bounded set $A \in \mathcal{C}_X$. Hence we have

$$\lim_{n \to \infty} P\left\{ \left(\bigcup_{k \ge n} [X_k \in A] \right) \setminus \left(\bigcap_{k \ge n} [X_k \in A] \right) \right\} = 0,$$

and so, for every measure $Q \equiv P$,

$$\lim_{n\to\infty} Q\left\{\left(\bigcup_{k\geq n} [X_k\in A]\right)\setminus \left(\bigcap_{k\geq n} [X_k\in A]\right)\right\}=0,$$

or

$$\lim_{n \to \infty} Q\left\{ \bigcup_{k \ge n} [X_k \in A] \right\} = \lim_{n \to \infty} Q\left\{ \bigcap_{k \ge n} [X_k \in A] \right\}.$$

Hence by the inequalities

$$Q\left\{\bigcap_{k\geq n} [X_k \in A]\right\} \le Q\{[X_n \in A]\} \le Q\left\{\bigcup_{k\geq n} [X_k \in A]\right\}$$

56 J. F. T. T.

we get

(14)
$$\lim_{n \to \infty} Q\left\{\bigcap_{k \ge n} [X_k \in A]\right\} = \lim_{n \to \infty} Q\left\{\bigcup_{k \ge n} [X_k \in A]\right\}$$
$$= \lim_{n \to \infty} Q[X_n \in A].$$

The assumption $X_n \xrightarrow{VP} X$, $n \to \infty$, implies $X_n \xrightarrow{V} X$, $n \to \infty$, with respect to every measure $Q \equiv P$. Thus, for the measure $Q \equiv P$, $\lim_{n\to\infty} Q[X_n \in A] = Q[X \in A]$ for every bounded set $A \in \mathcal{C}_X$. Hence by (14) we get

$$\lim_{n \to \infty} Q\left\{\bigcap_{k \ge n} [X_k \in A]\right\} = \lim_{n \to \infty} Q\left\{\bigcup_{k \ge n} [X_k \in A]\right\} = Q[X \in A],$$

for every measure $Q \equiv P$ and every bounded set $A \in \mathcal{C}_X$. Therefore $X_n \xrightarrow{V \in D} X, n \to \infty$, with respect to every measure $Q \equiv P$, which completes the proof.

Example 6. VED convergence does not imply VP convergence. Let $\Omega = [0,1]$ and let P be the Lebesgue measure on [0,1]. Moreover, let S = [0,1]. We define the random variables $X, X_n, n = 1, 2, ...,$ as follows:

$$X_n(\omega) = \omega, \quad X(\omega) = \begin{cases} 1, & \omega = 0, \\ \omega + 1/2, & 0 < \omega < 1/2, \\ \omega - 1/2 = \omega + 1/2 - 1, & 1/2 \le \omega \le 1. \end{cases}$$

 $X, X_n, n \in \mathbb{N}$ are uniformly distributed on [0, 1]. $P\{\liminf_{n\to\infty}[X_n \in A]\} = P\{\limsup_{n\to\infty}[X_n \in A]\} = P[X \in A]$ for every $A \in \mathcal{B}$. Therefore, $X_n \xrightarrow{V \in D} X, n \to \infty$. Now, let Q be the measure on [0, 1]with density f(x) = 2x. Moreover, let A = [0, 1/2]. Of course, $Q \equiv P$. $\lim_{n\to\infty} Q([X_n \in A]) = Q([X_1 \in A]) = Q([0, 1/2]) = \int_0^{1/2} 2x dx = 1/4$. On the other hand, $Q([X \in A]) = Q([1/2, 1]) = \int_{1/2}^1 2x dx = 3/4$ and so $X_n \xrightarrow{V} X, n \to \infty$, with respect to the measure $Q \equiv P$. Thus $X_n \xrightarrow{VP} X, n \to \infty$.

Theorem 6. A sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely converges in probability to a constant c if and only if it converges vaguely to c.

Proof. The necessity of the condition follows immediately from the Corollary 2(i), and so we must only prove its sufficiency. Assume therefore that

 $X_n \xrightarrow{V} c, n \to \infty$, and let A be any bounded P_c -continuity set. It follows from the conditions equivalent to the vague convergence, that

(15)
$$\lim_{n \to \infty} P[X_n \in A] = P[c \in A].$$

Moreover, we have

$$(16) \quad [X_n \in A] \div [c \in A] = ([X_n \in A] \cap [c \notin A]) \cup ([X_n \notin A] \cap [c \in A]),$$

 $n=1,2,\ldots$

Suppose that $c \notin A$. Then

$$\lim_{n \to \infty} P\{[X_n \notin A] \cap [c \in A]\} = \lim_{n \to \infty} P\{[X_n \notin A] \cap \emptyset\} = 0,$$

and

$$\lim_{n \to \infty} P\{[X_n \in A] \cap [c \notin A]\} = \lim_{n \to \infty} P\{[X_n \in A] \cap \Omega\}$$
$$= \lim_{n \to \infty} P[X_n \in A] = P[c \in A] = 0$$

by (15). Hence by (16) we get

$$\lim_{n \to \infty} P\{[X_n \in A] \div [c \in A]\} = 0.$$

Now, let $c \in A$. Then

$$\lim_{n \to \infty} P\{[X_n \in A] \cap [c \notin A]\} = \lim_{n \to \infty} P\{[X_n \in A] \cap \emptyset\} = 0,$$

and, by (15),

 $\lim_{n \to \infty} P\{[X_n \notin A] \cap [c \in A]\} = \lim_{n \to \infty} P[X_n \notin A] = \lim_{n \to \infty} P\{\Omega \setminus [X_n \in A]\}$ $= P(\Omega) - \lim_{n \to \infty} P[X_n \in A] = P(\Omega) - P[c \in A] = P(\Omega) - P(\Omega) = 0.$

Thus, by (16) we have

$$\lim P\{[X_n \in A] \div [c \in A]\} = 0$$

using Theorem 3 we are done.

Theorem 7. A sequence $\{X_n, n \ge 1\}$ of random elements $X_n \in \mathfrak{X}$ vaguely almost surely converges to a constant c if and only if it vaguely essentialy converges to c.

Proof. If $X_n \xrightarrow{Va.s.} c$, then $X_n \xrightarrow{VED} c$ by Corollary 2 (*ii*).

Assume therefore that $X_n \xrightarrow{VED} c, n \to \infty$. Let A be any bounded P_c continuity set. By definition of VED convergence we have

(17)
$$\lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A]\right\} = \lim_{n \to \infty} P\left\{\bigcap_{k \ge n} [X_k \in A]\right\} = P[c \in A].$$

Moreover, the following equation holds:

(18)
$$\bigcup_{k \ge n} \left([X_k \in A] \div [c \in A] \right) = \left(\bigcup_{k \ge n} [X_k \in A] \cap [c \notin A] \right) \\ \cup \left(\bigcup_{k \ge n} [X_k \notin A] \cap [c \in A] \right).$$

We consider two cases:

(a) $c \notin A$. We have

$$\lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \notin A] \cap [c \in A]\right\} = \lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \notin A] \cap \emptyset\right\} = 0$$

and, by (17),

$$\lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A] \cap [c \notin A]\right\} = \lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A] \cap \Omega\right\}$$
$$= \lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A]\right\} = P[c \in A] = 0.$$

Thus, by (18),

$$\lim_{n \to \infty} P\left\{\bigcup_{k \ge n} \left([X_k \in A] \div [c \in A] \right) \right\} = 0.$$

(b) $c \in A$. Then

$$\lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A] \cap [c \notin A]\right\} = \lim_{n \to \infty} P\left\{\bigcup_{k \ge n} [X_k \in A] \cap \emptyset\right\} = 0$$

and

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \notin A] \cap [c \in A] \right\} = \lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} [X_k \notin A] \right\}$$
$$= \lim_{n \to \infty} P\left\{ \Omega \setminus \bigcap_{k \ge n} [X_k \in A] \right\} = P(\Omega) - \lim_{n \to \infty} P\left\{ \bigcap_{k \ge n} [X_k \in A] \right\}$$
$$= P(\Omega) - P[c \in A] = P(\Omega) - P(\Omega) = 0$$

by (17). Hence and from (18) it follows that

$$\lim_{n \to \infty} P\left\{ \bigcup_{k \ge n} \left([X_k \in A] \div [c \in A] \right) \right\} = 0,$$

and using Theorem 4 we are done.

The diagram of the relations between various types of convergences. Without additional assumptions, none of the above implications is revertible.

REFERENCES

- Billingsley, P., Convergence of probability measures, John Wiley and Sons Ltd., New York 1968.
- [2] Bozorgnia, A., M. Rao Bhaskara, A note on some characterizations of various types of convergence, Bull. Inst. Math. Acad. Sinica 14 (3) (1986), 289-298.
- [3] Chow, Y. S., H. Robbins, D. Siegmund, The theory of optimal stopping, Houghton Mifflin Company, Boston 1971.
- Feller, W., An introduction to probability theory and its applications Vol. II, John Wiley and Sons Ltd., New York 1966.
- [5] Fernandez, P., A note on convergence in probability, Bol. Soc. Brasil. Mat. 3 (1972), 13-16.
- [6] Kestan, J., K. Matthes, J. Mecke, Infinitely divisible point processes, John Wiley and Sons Ltd., New York 1978.
- [7] Parthasarathy, K. R., Probability measures on metric spaces Academic Press, New York 1967.
- [8] Partyka, D., Normal extensions, Rev. Roumaine Math. Pures Appl. 32 (4) (1987), 369-373.
- [9] Partyka, D., D. Szynal, On some properties of the essential convergence in law and their applications, Bull. Polish. Acad. Sci., Ser. Sci. Math. 32 (1985), 211-217.
- [10] Schweizer, B., A. Sklar, Probabilistic metric spaces, Elsevier-North-Holland, New York 1983.
- [11] Sempi, C., The entropies with error, Rend. Math. 9 (6) (1976), 1-15.
- [12] Szynal, D., W. Zięba, On some type of convergence in law, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astr. Phys. 22 (1974), 1143-1149.

received March 12, 1996

Katedra Matematyki Politechnika Rzeszowska ul. W. Pola 2 35–959 Rzeszów, Poland

Instytut Matematyki UMCS Plac Marii Curie–Skłodowskiej 1 20–031 Lublin, Poland