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On Types of Convergence of a Sequence 
of Defective Random Elements

Abstract. We introduce concepts of vague essential convergence, vague 
convergence in probability and vague almost sure convergence of a sequence 
of defective random elements. Relations between these types of convergence 
and the classical ones are also investigated.

1. Introduction and preliminaries. Let (Q,A,P) be a generalized 
probability space, i.e. fi is the set of elementary events, A is a <r-field of 
subsets of Q and P is a measure defined on A such that P(fi) < 1- If 
P(il) = 1, then P is said to be a proper probability measure, while P with 
P(fi) < 1 is called a defective (imperfect) probability measure. Moreover, 
(S, p) stands for a metric space and B := P(S) denotes the Borel tr-field of 
subsets of S. By a random element X we mean the mapping X : il —* S such 
that X_1(P) £ A, B £ B. In the case S = R, X is called a random variable. 
By S we denote the union of the space S and some points Door • • • 
belonging to S. In S we consider a topology generated by the following 
families of neighbourhoods of points:

P(z) := {U C S : x £ U, UcS, U is open}, x £ S.
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U C S : there exist sets Aj, A2,... ,An closed in S 

and such that U = (s \ [J U {^00}}, £<x> € S \ S.

The extension S of S is similar to that in [8].
By a defective random element X we mean a mapping X : Q —> S such 

that A”-1(P) £ A, B £ B(S), and P[A-1(S')] = a < P(Q). A defective 
random variable X : Q —> R, where R = R U {-00, +00} , is characterized 
by the property P[u : |A"(tu)| < 00] = a < P(fi), or symbolically, by 
0 < P[u : |A'(u>)| = 00]. The generalized probability distribution Px of a 
random element X is defined by:

P%(P) = P[X"l(B)] = P[u>: X(u>) € B], BeB = B(§),

The set of all random elements (defective and non-defective) defined on 
(Q, A) is denoted by X and the subset of non-defective random elements by 
Xo.

The defective random variables appear in a natural way in the renewal 
theory ([4]), the theory of physical measurement ([11]), or in the theory of 
probabilistic metric spaces ([10]). Here we quote a simple example from the 
theory of games.

Example 1. Gambler’s ruin (cf. [3]). Let Xi, X2, ... be independent, 
identically distributed random variables:

P{Xjb = -l} = g, P{Xfc = 1} = p, p+9 = 1.

Write Sn = 52fc=1 -^fc , n > 1, and let, for any a,b 6 N, t be the first n such 
that Sn — —a or Sn = b. Here p is the probability of winning in a single 
game, q of losing, a is a capital of the gambler, b denotes the intentional 
winning, while t is the final moment of the game. If the capital of the 
gambler is unlimited then

«={ first n such that Sn > b, 
00 if no such n exists.

If p < q, then P{t < 00} = (p/q)b < 1. Thus t is a defective random 
variable which takes finite values with probability less than 1.

Let P = P(S) be the class of all Borel measures P defined on (S, P(S)) 
such that P(S) < 1 and Po C P is the subclass containing the proper prob
ability measures (P 6 Po <=> = 1). Denote by Cb the set of all
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bounded continuous functions on S and by Cm the subset of Cb contain
ing the functions with bounded support, i.e. f € Cm if 3 bounded set D(j)

/(z) = 0.
Now we need to recall the notions of weak and vague convergence of a 

sequence {P„,n > 1} of generalized probability measures.
We say that a sequence {Pn, n > 1} of measures Pn £ P weakly converges 

to a measure P £ P (Pn —>■ P, n -+ oo) if for every function f £ Cb

lim i fdPn = i fdP. 
n~t°° Js Js

A sequence {Pn,n > 1} of measures Pn £ P vaguely converges to a 
measure P £ P (Pn —>■ P, n —> oo) if for every function f € Cm

lim [ fdPn= [ fdP. 
n-*°° Js Js

It is known that, if S is a separable metric space, then the following 
statements are true.

Weak convergence of a sequence {Pn,n > 1} °f proper probability mea
sures, is characterized by the following equivalent conditions (cf. [1], [7]):

(i) Pn P, n -> oo,
(ii) limsupn^^ P„(P) < P(P) for every closed set P,

(iii) liminfn^oo P„(G') > P(G) for every open set G,
(iv) limn^oo Pn(A) = P( A) for every set A £ P(S) such that P(0A) = 0,
(v) linin—Kxj J fdPn = L fdP for every uniformly continuous function

fecb.
For vague convergence of a sequence {Pn,n > 1} with Pn € P, n > 1, 

the following conditions are equivalent (cf. [6]):
(i) Pn P, n -> oo,
(ii) lim supn_>0o Pn(P) < P(F) and lim infn-*oo Pn(G) > P(G) for 

every bounded closed set F and every bounded open set G, respec
tively,

(iii) limn^oo Pn(A) = P(A) for every bounded set A £ P(S) such that 
P(0A) = 0.

We say that a sequence {Xn,n > 1} of random elements An £ X weakly
converges to a random element X £ X (Xn * , n 00) if the se
quence {Px , n > 1} of generalized probability distributions of Xn weakly 
converges to P%.
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A sequence {Xn,n > 1} of random elements Xn G X vaguely converges
to a random element X G X, (Xn X, n —* oo) if the sequence 
{PXn, n > 1} of generalized probability distributions of Xn vaguely con
verges to Px-

By Cp we denote the family of continuity sets of a measure P, i.e. A G Qp 
if P(dA) = 0, where dA denotes the boundary of A. The family Gpx will 
be denoted shortly by Gx- The following concept of essential convergence 
in law was given in [12] (cf. [9], [2]).

A sequence {Xn, n > 1} of random elements Xn 6 Xo is said to be essen- 
Hally convergent in law to a random element A € Xo (An —► X, n —* oo) 
if for every set A G Gx

P{limsup[A„ € A]} = P{liminf[An G A]}
n—+oo n—*oo

= P[X G A] with respect to P G Po(^)-

Remark. The essential convergence in law can be considered in the set X 
of defective and non-defective random elements.

For the sake of completeness we recall the following notions.
We say that a sequence {Xn,n > 1} of random elements Xn G Xo 

converges in probability to a random element X G Xo if for any e > 0 
limn—.oo P[lj : p(X„,X) > i] = 0 (P G Po(^)) and we write Xn X, 
n —► oo.

A sequence {Xn,n > 1} of random elements Xn G Xo is said to be 
convergent almost surely to a random element X G Xo (notation: Xn —* 
X, n —> oo) if P[u : limn-.^ Xn(u>) = A(w)] = 1 (P G Po(^))-

The measure Q is said to be absolutely continuous with respect to the 
measure P (notation: Q -< P), if for every sequence {An,n > 1} of random 
events An G>1 the following condition is fulfilled:

lim P(An) = 0 => lim Q(An) = 0.
n—>oo n—*oo

The measures P and Q are equivalent (P = Q) if P -< Q and Q -< P.
The following results (cf. [5], [12]) will be useful in further considerations.

For X, Xn G Xo, n G N, P,Q G P0(ft):

(1)

(2)

Xn X <=> Vq=p Qxn —> Qx, n oo.

Xn^X <=> Vq=p Xn ED X, n —> oo.
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2. Vague essential convergence, vague convergence in probabil
ity and vague almost sure convergence. We introduce the following 
concept of the vague essential convergence.

Definition 1. We say that a sequence {Xn,n > 1} of random elements 
Xn £ X is vaguely essentially convergent to a random element X € X 
(Xn X, n —<• oo) if for every bounded set A G Cx

P{limsup[An 6 A]} = P{liminf[X„ € A]} = P[X G 4],
n—►oo n—*oo

where P G P(Q).

Theorem 1. Let X,Xn £ X, n G N. The following conditions are equiva
lent:

/•\ -v/- VED(l) Xn —► X, n —> oo,
(111) P{limsupn_>0O[A'n e F]} < P[X G P] for every bounded closed set 

F,
and
(112) P{liminfn_00[Xn G G]} > P[X G G] for every bounded open set G.

Proof, (») => (iii). Let F be any given bounded and closed set contained 
in S. There exists a sequence of sets P6" = {i G 5 : p(i,P) < ¿n} with 
6n —+ 0, n —* oo, such that Pin G 6%, n G N, and P = P5n. Of 
course, the sets F6n are bounded. Let e be an arbitrary positive number. 
There exists no such that for n > no we have

P[X G F6"] < P[X G P] +£.

Hence we get

P{limsup[Xn G P]} < P{limsup[X„ € Pik]}
n—.co n—>oo

= P[X G p6k] < P[X G p] + £, 

for every k > no- Since e is arbitrary, we see that

P{limsup[An € P} < Ppf € P].
n—*oo

(i) => (112). Assume that G is any given open and bounded set contained 
in S. There exists a sequence of open sets Gn, n > 1, such that Gn C G, 
Gn G ex and G = U~=i^n. Let Hn = U?=i Hence Hn € Gx, 
G = limn_>oo Pn, Hn C Hn+i and Hn is bounded for every n. Also, for any
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given e > 0, there exists no such that for n > no the following inequality is 
true

P[X G Hn] > P[X eG]-e.

Hence we have

P{liminf[Xn G G]} > P{liminf[Xn G Hk]} = P[X <= Jfk] > P[X G G] - £ n—>oo n—*oo

for any £ > 0 and k > no- Thus

P{Uminf[X„ G G]} > P[X G G].
n—*oo

(iii) and (ii2)=>(i). Let A be any given bounded set which is a continuity 
set of the measure P% (A G C%). For any given £ > 0 there exist a closed 
set F and an open set G such that G C A C F and

P[X £ F\ A] <£ and P[X G A \ G] < £.

Hence, for any £ > 0,

P[X G A] - £ < P[X G G] < P{liminf[X„ G G]} < P{liminf[X„ G A]} 
n—►oo n—►oo

< P{limsup[Xn G A]} < P{limsup[Xn G P]} < P[X 6 P]
n—*oo n—*oo

< p[x g A] + £.

Thus

P{liminf[Xn G A]} = P{limsup[Xn G A]} = P[X G A], 
n-°° n—»oo

which completes the proof.

Theorem 2. Let X, Xn G X , n G N. If X„ —> X , n —> oo , then 
v

Xn —> X , n —> oo .

Proof. For every bounded set A G Cx we have

P{liminf[Xn G A]} = p( |J Q [Xfe G A]} = Um, p| f| [X, G A]} 

' n=l k=n J n_>°° k>n '
< lim inf P[Xn G A] < lim sup P[Xn G A]

< U 1« e = p{ n U [xt e ad
'■ k>n J 1 n=l fc=n J

= P{limsup[Xn G A]}
n—»-oo
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and
P{liminf[Xn € >1]} = P{limsup[Xn G A]} = P[X € A]. 

n-»oo n-*oo

Hence
Urn inf P[Xn G A] = limsupP[Xn G A] = P[X 6 A], 
n~>o° n—>oo

and so, for every bounded set A G Cx- linin->oo P[X„ € A] = P[X G A].

Example 2. Vague convergence does not imply VED convergence. Assume 
that {Xn, n > 1} is a sequence of independent, identically distributed, non
degenerate random variables. Since all Xn are identically distributed, the 
sequence {Xn,n >1} vaguely converges to a random variable X which is 
identically distributed as Xj. Let now A G 6% be a bounded set such that 
0 < P[Xj G A] = a < 1. Then

P{ liminf[Xn G A]} = lim p( A [Xk G A]) = 0 / a = P[X G A].
n—*oo J n-*oo I 1 1

Thus Xn V£P X, n —<• oo.

By the definitions of convergence ED and VED we get the following

Corollary 1. Let X, Xn G X, n G N. If Xn 
.. VED

ED X , n —> oo , then
X ,n oo .

Starting with the equivalence formulas (1) and (2) we are able to intro
duce the concept of vague convergence in probability and vague almost sure 
convergence.

Definition 2. We say that a sequence {X„,n > 1} of random elements 
Xn G X vaguely converges in probability to a random element X G X 
(Xn —» X , n —* oo) if it vaguely converges to X with respect to every 
measure Q = P, i.e.

Xn —X <=> Vq=p Xn X, n —> oo.

Definition 3. We say that a sequence {Xn,n > 1} of random elements 
Xn G X vaguely almost surely converges to a random element X G X 
(Xn -^4’ X, n —> oo) if it vaguely essentially converges to X with respect 
to every measure Q = P, i.e.

V a.s. v VED v 
=p Xn —► X, n oo.Vq
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By the Definitions 2, 3, Theorem 2 and (1), (2) we get the following 
statements.

Corollary 2. Let X, Xn G X, n G N. Then the following implications hold:
(i) Xn 4X X => Xn-^ X, » -* oo,
(ii) XnV-^î X => Xn X, n oo,

(iii) Xn X => Xn X, n - oo,
(iv) Xn X X => Xn ™ X, n -+ oo,
(v) Xn X => Xn *4-4 X, n - oo.

We shall see that without additional assumptions, none of the above 
mentioned implications is revertible.

Example 3. Vague convergence does not imply VP convergence.
Let ii = [0,1] and let P be a measure on (ii,A) such that P({0}) = 
P({1}) = 1/2. Define the random variables X, Xn : ii —+ R, n G N, as 
follows:

w G [0,1/2], 
w g (1/2,1],

X("Hi; we [o,i/2], 
we (1/2,1],

Let A be a continuity set of measure P%. There are three possibilities:
(i) 0 i A and 1 ¿ A. Then P[Xn G A] = P[X G A] = 0, n G N.
(ii) 0 G A and 1 G A. Then P[Xn G A] = P[X G A] = 1, n G N.
(iii) Exactly one of the numbers 0, 1 belongs to A. Then P[X„ G A] = 
P[X G A] = i, n G N.

In all cases we have limn_oo P[X„ G A] = P[X G A]. Thus Xn -44 X, 
n —*• oo, with respect to the measure P.

Now let Q be a measure on (ii, A) such that Q({0}) = |, Q({1}) = f 
and let B = (|,|). Of course, Q = P and B is the continuity set of 
measure Qx- Moreover, Q[X„ G B] = j, n G N, and Q[X G B] = |.

y
This implies Xn X, n —> oo, with respect to the measure Q. Thus, by 

V PDefinition 2, Xn X, n —» oo.

Example 4. VED convergence does not imply Va.s. convergence.
Let (ii,A,P) be such that ii = [0,a], a > 0, and P be defined as follows: 
P({ra/4)) = 1/8, r = 0,1,2,3,4, and let X,Xn : ii —► [l/a,oo] = S, 
n = 1,2,..., be such that

w /tl 
w = 0,

X(u>) = -

i
w+a/4 ’

1
u>—3a/4 ’

OO,

0 < w < 3a/4, 

3a/4 < < a,
LJ = 0.
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Then [X„ G A] = [%i G A], n = 1,2,A G B. Moreover, we have 
P[X„ € A] = P[X € A], n = 1,2,..., A € B. Therefore, by the Definition 
1, we conclude that Xn V-^ X, n —► oo.

Now define the measure Q on (ii,A) as follows: Q({0}) = Q({a/2}) = 
Q({a}) = 1/8, Q({a/4}) = Q({3a/4}) = 1/4. We see that P and Q are 
concentrated on the set K = {0,a/4,a/2,3a/4,a}. Obviously that Q = P. 
Write now B = (1 /a, 2/a). Then we have

Q[Xn EB] = Q[l/u 6 B] = Q({3o/4}) = 1/4, n = 1,2,... ,

Q[X g B] = Q
1

and so, An VED

Va.i. X, n

+ a/4 = Q({a/2}) = 1/8,

X, n —> oo, with respect to the measure Q. Hence
oo.

e b

Example 5. VP convergence does not imply Va.s. convergence.
Let ii = [0,a], and let P be the Lebesgue measure on (Q,A). Define the 
following family of random elements:

^2‘ + r(w) -(3) r r + 1

k = 0,1,..., r = 0,1,... ,2fc — 1. Since for every n G N there is exactly 
one pair of numbers k,r G N such that n = 2k + r, 0 < r < 2fc, the 
sequence {Xn,n > 1} of random elements X : Q —> R is defined correctly 
by (3). Moreover, n —* oo <=> k —► oo. Define also the random element 
X : ii —+ R by X(u>) = 1. Let A be any bounded continuity set of measufe 
Px-

(i) 1 G A. Then P[Xn </A} = P[X2>+r A] < P[£fl,^a] = £, 
where n = 2k + r, n G N. Hence 

(4) lim P[X„ i A] = 0,
n-»oo

and thus

(5) Urn P[Xn G A] = P(ii) = P[X G A], 
n—+oo
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(ii) 1 £ A. We have P[Xn G A] = P[X2„+r € A] < P[fra, ,
n = 2k + r, n G N. Then

(6) lim P[X„ G A] = 0 = P[X G A], 
n—*oo

It follows from (5) and (6) that Xn X, n —► oo, with respect to the 
measure P. Now, let Q be a measure on (Q, A) such that Q — P and let 
A be a bounded continuity set of measure Qx- Then it follows from (4) for 
IGA that limn_0O Q[Xn A] = 0. Hence

(7) lim Q[Xn G A] = Q(fi) = Q[X G A], 
n—*00

However, if 1 A, then it follows from (6) that

(8) lim Q[Xn G A] = 0 = Q[X G A], 
n—*oo

IJ [Xfc G A] = il. 
fc>n

P|[**eA] = 0

Therefore, by (7) and (8), we have Xn —> X, n —> oo, with respect to the 
V Pmeasure Q. Thus Xn —> X, n —► oo.

Let A = [|, |]. Of course, A G Cpx- Moreover, for any n G N we have

P| [Xfc G A] = 0 and 
k>n

Hence

P{ liminf[Xn G A]} = lim P
k 71—>00 J n—HX>

and

P{ limsup[X„ G Al} = lim P < 
n—oo n^°°

It follows from the last equations and the definition of VED convergence 
that Xn V^D X , n —► oo, with respect to the measure P, and hence

V Q..8. -vrXn -*• X , n —► oo .

fc>n

(J [X/t G A] > = P(fi).

We will denote by B C the symmetric difference of the sets B and C.
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Lemma 1. Let X , Xn 6 X n G N. If Xn —* X , n —► oo , then 
P([Xn € A] [X G A]) —* 0, n -* oo, for every bounded set A G Cx-

Proof. Let A be any given bounded set such that P[X G dA] = 0. 
VP VIf Xn —> X , n —> oo, then Xn —»• X , n —> oo, Vq=p . Assume that 

P[X G A] > 0. Define the measure Q as follows:

Q(B) = (P(B|[XeA]) + P(£))/2.

Of course, Q = P, and so, by the assumption, Q[Xn G A] —> Q[X G A], 
n —► oo. Therefore

(p([Xn G A]|[X G A])+P[Xn G A]) (p([X G A]|[X G A])+P[X G A]).

By our assumption,

(9) P[Xn G A] - P[X EA],n^ oo,

and hence

(10) P([Xn G A] D [X G A]) - P([X G A]), n oo.

From the equality

[Xn G A]t[X G A] = ([Xn G A] \ ([Xn G A]n[X G A])) 

u([XG A]\([XnG A]O[XG A])),

n — 1,2,..., using (9) and (10) we get

P([Xn G A] [X G A]) —► 0, n -+ oo.

If P[X G A] = 0, then

P([Xn G A] -T [X G A]) = P[Xn G A] - P[X G A] = 0,

which completes the proof.
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Lemma 2. If a sequence {Xn, n > 1} of random elements Xn G X vaguely 
almost surely converges to a random element X G X, then for every bounded 
set A G Gx

. Jim Pl (J ([Xfc G A] 4- [X G A])) = 0.

n-*°° k>n

and

Proof. If Xn ^4' X, n —> oo, then Xn X, n —> oo, Vq=p- Let A 
be any given bounded P%-continuity set. For A such that Py(A) > 0 we 
define the measure Q as follows:

Q(P)=(P(P|[XgA]) + P(B))/2.

Obviously, Q = P. Thus Xn X, n -♦ oo, for the measure Q. Hence it 
follows that

Jim, (J [Xfc G A] j = Q[X G A]

Jim^j QlXjtG A])=Q[XG A].

n_>O° k>n J
Thus, by the definition of the measure Q and from

lim p( I J [Xfc G A]) = P[X G A] and
n—►cxd I

v k>n J
(11)

Jir^p/ P| [Xfc G A]) =P[XG A],

n~*°° 1 k>n '

we get

lim pj U [Xfc G A] O [X G A]} = P[X G A] 

n~*°° k>n *

= lim P 
n—>oo

fc G A] O [X G A] }•{m*

k k>n

Therefore from (11) we have

(12) Jirn pi |J [Xfc G A]O[X^ A]} = 0,

n_>°° 1 k>n 1

(13) lim P
n-+oo

{ |JPM A]n[XGA])=0.
1 k>n '
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Moreover,

u (pr* e x]-s-pr e a])
fc>n

= |J (([Xfc € 4] n [X i A]) u (£Xfc i A] n [X 6 A])) 
fc>n

= U ((** e A] n [x i a]) u (J ([xfc £ A] n [x e A]).
Jfc>n fc>n

Hence by (12) and (13)

Jim p| (J [Xfc e A] -r [X e A] j = 0
n_*°° fc>n '

for every bounded set A € Cx such that Px(A) 0.
Now assume that Px(A) = 0. Since Xn X, n —> oo, X„ X,

n —► oo, by Corollary 2 . Consequently,

lim P[Xn G A] = P[X e A].
n—»00

Hence by the equality Px(A) = 0 we get

Urn p{ (J [X/. e A] [X e A]1 = 0,
n_>°° '■ k>n '

which completes the proof.

Lemma 3. if X,X„ GX,iiGN and

lim P{[XnGA]-HXGA]} = 0
n—*oo K J

VPfor every bounded set A € Cx, then Xn —* X, n —► oo.

Proof. Assume that

lim P{[X„GA]t[XgA]} = 0
n-*oo

for every bounded set A € Cx- Then, we have

lim P{iX„ e AlnfX $ A]} = 0
n—>oo
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and
lim^P{[X 6 A]n [Xn i 4]} = 0.

Moreover,

Jim, (p[xn g a] - P[X e x]) < Jim,p{[Xn e A]n[x A]} =0

and

Jim, (p[X 6 A] - P[Xn G 4]) < Jim,p{[X 6 A]n[Xn A]) = 0. 

Thus we get

P[X e A] < lim P[Xn G A] < P[X G A], 
n—*00

for every bounded set A G Qx, which proves that Xn X, n —> oo, with 
respect to the measure P.

Now let Q be any measure such that Q = P. It follows from our assump
tion that

Jirn,Q{[X„ G A] [X G A]} = 0.

y
By a reasoning as above we get Xn —► X, n —> oo, with respect to 

VPthe measure Q . Hence by the Definition 2 we have Xn —* X, n oo, 
which completes the proof.

Lemma 4. If X, Xn G X, n G N and

Jim, p{ U ([Xfc G A] -j- [X G A]) j = 0 
n_>°° k>n '

for every bounded set A G Cx, then X„ -^4' X, n —> oo.

Proof. Let
lim p( [I ([Xfc G A]-r [X G A])l = 0 

n_>°° k>n

for every bounded set A G Qx- Then

Jim, p{ (J ([Xfc G A] n [X A])} = 0 
n->°° k>n *
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and
Um p([%GA]n I J [Xfc £ A]) = 0.

n—*oo I
1 k>n '

Moreover,

lim M IJ € A] j - .P[JV € A]")
' *• k>n ' '

< Um P
n—»00

{ U(l*‘ € Ajn [X i AJ)j = 0

fc>n 7

and

nita (p[X£A]-p{ pl(x*e A]})
X 1 k>n '7

< lim p([x e A] n I J [xfc = o.
n—►oo I

k k>n J

Hence we get

P[X G A] < Jirr^ p{ p| [Xfc G A]j < Urn^ pi (J [X* G A] j < P[X G A], 

n~*°° ^fc>n ' n_t°° Jk>n

for every bounded set A G C%, proving Xn V-^5 X, n —> oo, with respect 
to the measure P.

From our assumption we get

U((X*G A]t[Xg A])| = 0
n_>°° k>n '

for every measure Q = P and every bounded set A G Gx- Consequently, 
X, n —> oo, with respect to the measure Q = P. Thus, by theVED

Definition 3, we get Xn '^4' X, n —» oo, which completes the proof.

Theorem 3. A sequence {Xn,n > 1} of random elements Xn G X vaguely 
converges in probability to a random element X G X if and only if for every 
bounded set A G Gx

Urn P{[Xn G A]-?[X G A]} = 0.
n—*oo

Proof. This is an immediate consequence of Lemmas 1 and 3.
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Theorem 4. A sequence {Xn, n > 1} of random elements Xn € X vaguely 
almost surely converges to a random element X € X if and only if for every 
bounded set A G

lim (J[XjtG A]-?[Xe A]) =0. 
n—*oo I

k k>n }

Proof. This is an immediate consequence of Lemmas 2 and 4.

Theorem 5. A sequence {Xn,n > 1} of random elements Xn G X vaguely 
almost surely converges to a random element X G X if and only if it is 
vaguely convergent in probability and vaguely essentially convergent to X.

Proof. If Xn X, n —>■ oo, then, ewidently, X„ V-~> X, n —* oo, by 
Corollary 2 (ii). Moreover, Xn —> X, n —> oo, by Corollary 2 (iii).

Now, assume that {X„,n > 1} vaguely converges in probability and is 
vaguely essentially convergent to X. It is sufficient to prove that Xn X, 
n —f oo, with respect to every measure Q = P. Since Xn V-^> X, n —> oo, 
with respect to the measure P, we get

p{ m u = f,{ m n i** « 4
v k>n } k>n '

for every bounded set A G 6%. Hence we have

(in**« \ (rnx‘^i)}=».

1 Xk>n Z 'k>n Z J

and so, for every measure Q = P,

U^AjW Q[XfcGA]U = 0,

n”*°° ' ^k>n ''‘ /c>n

lim q! H [Xfc G A]
n-*oo I

k k>n

} = M«{-4]
J V k>n

}•

Hence by the inequalities

Q[XfcG A]) < Q{[Xn e A]} < (J[XfcG A]j

fc>n
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we get

(14)

^4 A]} =&»<?{ (J [X, g A]}

' k>n ' k>n Jk>n

= lim Q[Xn G A].

The assumption Xn —» X, n —► oo, implies Xn —► X, n —* oo, 
with respect to every measure Q = P. Thus, for the measure Q = P, 
limn-»,» Q[Xn € A] = Q[X € A] for every bounded set A G Gx- Hence by
(14) we get

lim Q 
n—>oo

= Q[X € A],

for every measure Q = P and every bounded set A G Gx- Therefore 
X„ X, n —* oo, with respect to every measure Q = P, which completes 
the proof.

Example 6. VED convergence does not imply VP convergence. Let Q = 
[0,1] and let P be the Lebesgue measure on [0,1]. Moreover, let S' = [0,1]. 
We define the random variables X, Xn, n = 1,2,..., as follows:

1, w = 0,
Xn(u>) = w, X(W) = * tu + 1/2,

u-l/2 = u + l/2-l,
0 < u> < 1/2, 
1/2 <w < 1.

X, Xn, n G N are uniformly distributed on [0,1].
P{liminfn_>oo[Xn 6 A]} = P{limsupn_oo[X„ G A]} = /’[X 6 A] for every
A € B. Therefore, Xn V-^ X, n —> oo. Now, let Q be the measure on [0,1] 
with density /(x) = 2x. Moreover, let A = [0,1/2]. Of course, Q = P. 
lim  ̂Q([Xn G A]) = Q([Xj G A]) = Q([0,1/2]) = JQ1/2 2xdx = 1/4. 
On the other hand, Q([X” G A]) = Q([l/2,1]) = J^2 2xdx = 3/4 and so

V . VPXn X, n —► oo, with respect to the measure Q = P. Thus Xn -*► X, 
n —► oo.

Theorem 6. A sequence {Xn, n > 1} of random elements Xn G X vaguely 
converges in probability to a constant c if and only if it converges vaguely 
to c.

Proof. The necessity of the condition follows immediately from the Corol
lary 2 (i), and so we must only prove its sufficiency. Assume therefore that
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Xn —► c, n —* oo, and let A be any bounded Pc-continuity set. It follows 
from the conditions equivalent to the vague convergence, that

(15) lim P[Xn 6 A] = P[c e A], 
n—*oo

Moreover, we have

(16) [Xn e A] 4- [c € A] = ([xn e A] n [c i A]) U ([Xn £ A] n [c e A]), 

n = 1,2,....
Suppose that c A. Then

Urn P{[Xn i A] n [c e A]} = lim P{[Xn ¿ A] 0 0} = 0,
7T OO Tl OO

and

lim,P{[A'n € A] n [c £ A]} = Jim,P{[X„ G Ajflil}

= lim P[Xn G A] = P[c G A] = 0 
n—+oo

by (15). Hence by (16) we get

lim P{[Xn 6 A]¿-[ce A]} = 0.
n—>oo

Now, let c G A. Then

lim P{[Xn € Alnfc£ A]} = lim P{[X„ € A]O0} = 0,
n—too k J n—>-oo 1 7

and, by (15),

lim P{[%„ ¿ A] O [c G A]} = lim P[X„ £ A] = lim P{íí \ ÍX„ € Al}
n—*oo K J n—»-oo n—*oo k J

= P(fi) - Urn P[Xn 6 A] = P(íí) - P(c G A] = P(Q) - P(il) = 0.
n—>oo

Thus, by (16) we have

nlim P{[X„GA]t[cGA]} = 0,

using Theorem 3 we are done.
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Theorem 7. A sequence {Xn, n > 1} of random elements Xn G X vaguely 
almost surely converges to a constant c if and only if it vaguely essentialy 
converges to c.

Proof. If Xn c, then Xn V-^S c by Corollary 2 (it).

Assume therefore that Xn c, n —> oo. Let A be any bounded Pc-
continuity set. By definition of VED convergence we have

(17) hn,p| u g mp{ ne =Plc e
n_>°° *'fc>n > n~*°° ^k>n '

Moreover, the following equation holds:

(18)

(J ([x»€4] + [c€A]) = (uix,e>ijn[ci4|)
k>n \fe>n '

u((J[X^A]n[cGA]Y

We consider two cases:
(a) c A. We have

lim pi I J [xfc £ A] n [c e A]| = fim pi IJ £ a] n 0) = 0
n—»-oo I I n—►00

vfc>n } Vk>n }

and, by (17),

hjnX (J [Xfc G A] n [c i A] | = Urn, pi (J [Xfc G A] D Q }
n_>°° ^fc>n n->°° '■fc>n -1

= Jim p| (J [Xfc G A] J = P[c G A] = 0.

Thus, by (18),

( U ([**e A]v[cG A]) I =0.
lim P

n—*00
fc>n

(b) c G A. Then

lim P <
n—>00

I J [Xfc G A] n [c A] > = lim P < I n—*00
U [X, G A] n 0 1 = 0

fc>n fc>n
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and

lim P «
n—*oo

H [Xkt A] n [c G A] 1 = lim PI n—*oo
k>n— /c>n—

Q \ Q [Xfc 6 A]= lim P - 
n-+oo

k>n

= P(fi) - lim P J p| [Xfe e A]

k>n

= P(Q) - P[c e A] = P(fi) - P(i!) = 0 

by (17). Hence and from (18) it follows that

lim P <
»—*OO

U ([Xfce A][ce a]) I =o,
k>n

and using Theorem 4 we are done.

Xn—>X

The diagram of the relations between various types of convergences. 
Without additional assumptions, none of the above implications is revert 
ible.
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