ANNALES UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L, 21

SECTIO A

1996

TADEUSZ SĘKOWSKI and ADAM STACHURA (Lublin)

Holomorphic Non–Equivalence of Balls in Banach Spaces l_p and L_2 from the Geometrical Point of View

ABSTRACT. Let B_p (p > 1) denotes the open unit ball in Banach space of all sequences of complex numbers with the usual l_p -norm. We prove that B_2 and B_p $(p \neq 2)$ are not holomorphically equivalent, and the same for B_2 and $B_2 \times B_2$.

1. Introduction. The Riemann Mapping Theorem states that two open, simply connected and bounded subsets of the complex plane \mathbb{C} are holomorphically equivalent. In other complex Banach spaces the situation is more complicated. Methods applied in the study of holomorphic equivalence, or non-equivalence of domains usually depend on rather sophisticated tools (see e.g. [6]).

K. Goebel and S. Reich proved in [2] that the unit ball in complex Hilbert space can be seen as a "nice" metric space (so called ρ -uniformly convex space) and holomorphic feature and metric properties are strictly connected.

Using the idea of Goebel and Reich together with the classical theory of Schwarz-Pick systems of pseudometrics ([1], [5]) one can present an elementary proof of holomorphic non-equivalence of unit balls in even spaces. "Elementary" means here: based on concept of isometry between two metric spaces.

Key words and phrases. Holomorphic mapping, hyperbolic metric, biholomorphic equivalence.

Let $D \subset X$, $E \subset Y$ be nonempty, open and bounded subsets of complex normed linear spaces X, Y and let c_D, c_E be Carathéodory metrics in D and E, respectively, cf. [1], [5]. It is known that every holomorphic mapping $f: D \to E$ is nonexpansive in the sense that

(1)
$$c_E(f(x), f(y)) \le c_D(x, y)$$

for any $x \in D$, $y \in E$. This implies

(2)
$$c_E(f(x), f(y)) = c_D(x, y)$$

for every biholomorphic mapping $f: D \to E$ and any points $x \in D$, $y \in E$. Consequently, if D and E are holomorphically equivalent then the corresponding metric spaces (D, c_D) and (E, c_E) are isometric.

Now let l^p $(1 be the space of all sequences <math>x = (x_n)$ of complex numbers with the norm

$$||x||_{p} = \left(\sum_{n=1}^{\infty} |x_{n}|^{p}\right)^{1/p}$$

and let B_p be the open unit ball in this space (in case p = 2 we will simply write B instead of B_2). Take $p \neq 2$. We show that B and B_p are not holomorphically equivalent, and the same is true for B and $B \times B$.

2. Auxiliary lemmas. Let ρ be the Caratheodory metric in B, cf. [2], [3]. Recall that the metric space (B, ρ) is unbounded and complete, and $\rho(0, x) = \tanh^{-1} ||x||$ for every $x \in B$. Any two points $x, y \in B$ may be joined by the unique geodesic segment (isometric to the interval $[0, \rho(x, y)]$). Consequently, for any points $x, y \in B$ there exists the unique metric midpoint $u \in B$ such that

$$\rho(x, u) = \rho(y, u) = \rho(x, y)/2$$

We will denote this point by $u = \frac{1}{2} (x \oplus y)$.

We need the following result from [2] (also see [3]), which, after a little reformulation, can be stated in the following form.

Lemma 1. Let $a \in B, r > 0, 0 \le \varepsilon \le 2$. Let $x, y \in B$ be such that $\rho(a, x) \le r, \rho(a, y) \le r$ and $\rho(x, y) \ge \varepsilon r$. Then

(3)
$$\rho\left(a,\frac{1}{2}\left(x\oplus y\right)\right) \leq \tanh^{-1}\sqrt{\frac{\tanh^{2}r - \tanh^{2}\left(\varepsilon r/2\right)}{1 - \tanh^{2}\left(\varepsilon r/2\right)}}$$

Let us denote by ω the Poincaré-Bergman metric in the unit disc $\Delta \subset \mathbb{C}$ (which is equal to the Carathéodory metric in Δ , see [1]). Now we can prove the following two lemmas.

Lemma 2. Take $1 and let d denote the Caratheodory metric in <math>B_p$. Let t > 0 be such that

$$x = (t, t, 0, 0, ...) \in B_p$$
 and $y = (t, -t, 0, 0, ...) \in B_p$.

Then

(4)
$$d(x,y) \le 2 \tanh^{-1} \left(\frac{t}{(1-t^p)^{1/p}} \right)$$

Proof. We define holomorphic function $\varphi: \Delta \to B_p$ by the formula

$$\varphi(z) = \left(t, z(1-t^p)^{1/p}, 0, 0, ...\right)$$

If $x' = t/(1-t^p)^{1/p}$, $y' = (-t)/(1-t^p)^{1/p}$ then we have $\varphi(x') = x$, $\varphi(y') = y$ and

$$\omega(x',y') = 2 \tanh^{-1} \left(\frac{t}{(1-t^p)^{1/p}} \right) \,.$$

Because of (1) the lemma is proved.

Lemma 3. Take p > 2 and let d denote the Caratheodory metric in B_p . Let t > 0 be such a number that

$$x = (t, 0, 0, 0, ...) \in B_p$$
 and $y = (0, t, 0, 0, ...) \in B_p$.

Then we have

(5)
$$d(x,y) \le 2 \tanh^{-1} \left(\frac{t}{2r_0}\right)$$

where r_0 is the unique solution of the equation

(6)
$$\left|\frac{t}{2}+r\right|^{p}+\left|\frac{t}{2}-r\right|^{p}=1, r\geq 0.$$

Proof. Let us define holomorphic function $\psi: \Delta \to B_p$ by the formula

$$\psi(z) = \left(\frac{t}{2} + r_0 z, \frac{t}{2} - r_0 z, 0, 0, ...\right)$$

Let us put $x' = t/(2r_0)$, $y' = (-t)/(2r_0)$. We have now $\psi(x') = x$, $\psi(y') = y$ and

$$\omega\left(x',y'\right) = 2\tanh^{-1}\left(\frac{t}{2r_0}\right)$$

Inequality (5) follows from (1).

3. Main results. We now prove the following theorem.

Theorem 1. If $p \neq 2$ then B and B_p are not holomorphically equivalent.

Proof. Assume the contrary. Then the metric spaces (B, ρ) and (B_p, d) are isometric. We consider two cases.

Case 1, 1 . Choose <math>t > 0 such that $a, x, y \in B_p$, where

$$a = (t, t, 0, ...), \quad x = (-t, t, 0, ...), \quad y = (t, -t, 0, ...)$$

Obviously d(a, x) = d(a, y) and $0 = (0, 0, ...) = \frac{1}{2}(x \oplus y)$. By the definition of the metric d([1], [5]) we obtain:

$$d(x,y) = 2d(0,x) = 2 \tanh^{-1} ||x|| = 2 \tanh^{-1} \left(2^{1/p}t\right)$$

Putting r = d(a, x), $\varepsilon r = d(x, y)$ and applying (3) we obtain

$$d\left(0,a
ight) \leq anh^{-1} \sqrt{rac{ anh^2 r - anh^2 \left(arepsilon r/2
ight)}{1 - anh^2 \left(arepsilon r/2
ight)}}$$

and further, after simple calculations:

1

$$(\tanh d\left(0,a
ight))\left(2-\tanh^2 d\left(0,a
ight)
ight)^{1/2}\leq anh r$$
.

Lemma 2 gives

$$2^{1/p}t\left(2-2^{2/p}t^2\right)^{1/2} \le \tanh\left[2\tanh^{-1}\left(\frac{t}{(1-t^p)^{1/p}}\right)\right]$$

and

$$2^{1/p} \left(2 - 2^{2/p} t^2\right)^{1/2} \le \frac{2 \left(1 - t^p\right)^{1/p}}{\left(1 - t^p\right)^{2/p} + t^2}.$$

If t tends to zero, we obtain $2^{2/p} \leq 2$ or $p \geq 2$. This contradicts our assumption (1 .

Case 2, p > 2. Choose t > 0 such that $a, x, y \in B_p$, where

$$x = (0, t, 0, ...), \quad x = (t, 0, 0, ...), \quad y = (-t, 0, 0, ...).$$

It is easy to observe that d(a,x) = d(a,y) and $0 = (0,0,...) = \frac{1}{2}(x \oplus y)$. Moreover,

$$d(x,y) = 2d(0,x) = 2 \tanh^{-1} t$$

Let us put r = d(a, x), $\varepsilon r = d(x, y)$. By means of (3) we conclude that

$$d\left(0,a
ight) \leq anh^{-1} \sqrt{rac{ anh^2 r - anh^2 \left(arepsilon r/2
ight)}{1 - anh^2 \left(arepsilon r/2
ight)}}$$

and equivalently

$$2 anh^2 d(0,a) - anh^4 d(0,a) \leq anh^2 r$$
.

Let us denote by r_0 the unique positive solution of (6). Lemma 3 together with the above inequality yields

$$2t^2 - t^4 \le \left(\frac{4tr_0}{4r_0^2 + t^2}\right)^2$$

or equivalently

$$2 - t^2 \le \frac{16r_0^2}{\left(4r_0 + t^2\right)^2} \,.$$

If $t \to 0$, then $r_0 \to 2^{(-1)/p}$, so we obtain $2 \le 2^{2/p}$, or $p \le 2$. This contradicts our assumption (p > 2).

Theorem 2. B and $B \times B$ are not holomorphically equivalent.

Proof. The Caratheodory metric d in $B \times B$ is defined by

 $d\left(\left(x,y
ight),\left(a,b
ight)
ight)=\max\left\{
ho\left(x,a
ight),
ho\left(y,b
ight)
ight\}\,,$

where ρ is the Carathéodory metric in B cf. [1], [5]. To complete the proof it is enough to notice that in $(B \times B, d)$ metric segments are not unique. Thus metric spaces $(B \times B, d)$ and (B, ρ) are not isometric.

Remark. Theorem 2 was proved by S. Greenfield and N. Wallach [4] by using standard methods of complex analysis.

References

- [1] Franzoni, T. and E. Vesentini, Holomorphic Maps and Invariant Distances, North Holland, Amsterdam, 1980.
- [2] Goebel, K. and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
- [3] Goebel, K., T. Sękowski and A. Stachura, Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011-1021.
- [4] Greenfield, S. and N. Wallach, The Hilbert ball and bi-ball are holomorphically inequivalent, Bull. Amer. Math. Soc. 77 (1971), 261-263.

- [5] Harris, L. A., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Advances in Holomorphy, J. A. Barroso (ed.), North-Holland, 1979.
- [6] Kaup, W. and H. Upmeier, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133.

Instytut Matematyki UMCS Plac Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland received October 14, 1996