UNIVERSITATIS MARIAE CURIE - SKlodowska LUBLIN - POLONIA

\qquad

TADEUSZ SȨKOWSKI and ADAM STACHURA (Lublin)

Holomorphic Non-Equivalence of Balls in Banach Spaces l_{p} and L_{2} from the Geometrical Point of View

> Abstract. Let $B_{p}(p>1)$ denotes the open unit ball in Banach space of all sequences of complex numbers with the usual l_{p}-norm. We prove that B_{2} and $B_{p}(p \neq 2)$ are not holomorphically equivalent, and the same for B_{2} and $B_{2} \times B_{2}$.

1. Introduction. The Riemann Mapping Theorem states that two open, simply connected and bounded subsets of the complex plane \mathbb{C} are holomorphically equivalent. In other complex Banach spaces the situation is more complicated. Methods applied in the study of holomorphic equivalence, or non-equivalence of domains usually depend on rather sophisticated tools (see e.g. [6]).
K. Goebel and S. Reich proved in [2] that the unit ball in complex Hilbert space can be seen as a "nice" metric space (so called ρ-uniformly convex space) and holomorphic feature and metric properties are strictly connected.

Using the idea of Goebel and Reich together with the classical theory of Schwarz-Pick systems of pseudometrics ([1], [5]) one can present an elementary proof of holomorphic non-equivalence of unit balls in even spaces. "Elementary" means here: based on concept of isometry between two metric spaces.

[^0]Let $D \subset X, E \subset Y$ be nonempty, open and bounded subsets of complex normed linear spaces X, Y and let c_{D}, c_{E} be Carathéodory metrics in D and E, respectively, cf. [1], [5]. It is known that every holomorphic mapping $f: D \rightarrow E$ is nonexpansive in the sense that

$$
\begin{equation*}
c_{E}(f(x), f(y)) \leq c_{D}(x, y) \tag{1}
\end{equation*}
$$

for any $x \in D, y \in E$. This implies

$$
\begin{equation*}
c_{E}(f(x), f(y))=c_{D}(x, y) \tag{2}
\end{equation*}
$$

for every biholomorphic mapping $f: D \rightarrow E$ and any points $x \in D$, $y \in E$. Consequently, if D and E are holomorphically equivalent then the corresponding metric spaces $\left(D, c_{D}\right)$ and $\left(E, c_{E}\right)$ are isometric.

Now let $l^{p}(1<p<\infty)$ be the space of all sequences $x=\left(x_{n}\right)$ of complex numbers with the norm

$$
\|x\|_{p}=\left(\sum_{n=1}^{\infty}\left|x_{n}\right|^{p}\right)^{1 / p}
$$

and let B_{p} be the open unit ball in this space (in case $p=2$ we will simply write B instead of B_{2}). Take $p \neq 2$. We show that B and B_{p} are not holomorphically equivalent, and the same is true for B and $B \times B$.
2. Auxiliary lemmas. Let ρ be the Carathéodory metric in B, cf. [2], [3]. Recall that the metric space (B, ρ) is unbounded and complete, and $\rho(0, x)=\tanh ^{-1}\|x\|$ for every $x \in B$. Any two points $x, y \in B$ may be joined by the unique geodesic segment (isometric to the interval $[0, \rho(x, y)])$. Consequently, for any points $x, y \in B$ there exists the unique metric midpoint $u \in B$ such that

$$
\rho(x, u)=\rho(y, u)=\rho(x, y) / 2 .
$$

We will denote this point by $u=\frac{1}{2}(x \oplus y)$.
We need the following result from [2] (also see [3]), which, after a little reformulation, can be stated in the following form.

Lemma 1. Let $a \in B, r>0,0 \leq \varepsilon \leq 2$. Let $x, y \in B$ be such that $\rho(a, x) \leq r, \rho(a, y) \leq r$ and $\rho(x, y) \geq \varepsilon r$. Then

$$
\begin{equation*}
\rho\left(a, \frac{1}{2}(x \oplus y)\right) \leq \tanh ^{-1} \sqrt{\frac{\tanh ^{2} r-\tanh ^{2}(\varepsilon r / 2)}{1-\tanh ^{2}(\varepsilon r / 2)}} . \tag{3}
\end{equation*}
$$

Let us denote by ω the Poincaré-Bergman metric in the unit disc $\Delta \subset \mathbb{C}$ (which is equal to the Carathéodory metric in Δ, see [1]). Now we can prove the following two lemmas.

Lemma 2. Take $1<p<2$ and let d denote the Carathéodory metric in B_{p}. Let $t>0$ be such that

$$
x=(t, t, 0,0, \ldots) \in B_{p} \text { and } y=(t,-t, 0,0, \ldots) \in B_{p} .
$$

Then

$$
\begin{equation*}
d(x, y) \leq 2 \tanh ^{-1}\left(\frac{t}{\left(1-t^{p}\right)^{1 / p}}\right) . \tag{4}
\end{equation*}
$$

Proof. We define holomorphic function $\varphi: \Delta \rightarrow B_{p}$ by the formula

$$
\varphi(z)=\left(t, z\left(1-t^{p}\right)^{1 / p}, 0,0, \ldots\right)
$$

If $x^{\prime}=t /\left(1-t^{p}\right)^{1 / p}, y^{\prime}=(-t) /\left(1-t^{p}\right)^{1 / p}$ then we have $\varphi\left(x^{\prime}\right)=x$, $\varphi\left(y^{\prime}\right)=y$ and

$$
\omega\left(x^{\prime}, y^{\prime}\right)=2 \tanh ^{-1}\left(\frac{t}{\left(1-t^{p}\right)^{1 / p}}\right) .
$$

Because of (1) the lemma is proved.
Lemma 3. Take $p>2$ and let d denote the Carathéodory metric in B_{p}. Let $t>0$ be such a number that

$$
x=(t, 0,0,0, \ldots) \in B_{p} \text { and } y=(0, t, 0,0, \ldots) \in B_{p}
$$

Then we have

$$
\begin{equation*}
d(x, y) \leq 2 \tanh ^{-1}\left(\frac{t}{2 r_{0}}\right) \tag{5}
\end{equation*}
$$

where r_{0} is the unique solution of the equation

$$
\begin{equation*}
\left|\frac{t}{2}+r\right|^{p}+\left|\frac{t}{2}-r\right|^{p}=1, \quad r \geq 0 \tag{6}
\end{equation*}
$$

Proof. Let us define holomorphic function $\psi: \Delta \rightarrow B_{p}$ by the formula

$$
\psi(z)=\left(\frac{t}{2}+r_{0} z, \frac{t}{2}-r_{0} z, 0,0, \ldots\right)
$$

Let us put $x^{\prime}=t /\left(2 r_{0}\right), y^{\prime}=(-t) /\left(2 r_{0}\right)$. We have now $\psi\left(x^{\prime}\right)=x$, $\psi\left(y^{\prime}\right)=y$ and

$$
\omega\left(x^{\prime}, y^{\prime}\right)=2 \tanh ^{-1}\left(\frac{t}{2 r_{0}}\right) .
$$

Inequality (5) follows from (1).
3. Main results. We now prove the following theorem.

Theorem 1. If $p \neq 2$ then B and B_{p} are not holomorphically equivalent.

Proof. Assume the contrary. Then the metric spaces (B, ρ) and $\left(B_{p}, d\right)$ are isometric. We consider two cases.

Case $1,1<p<2$. Choose $t>0$ such that $a, x, y \in B_{p}$, where

$$
a=(t, t, 0, \ldots), \quad x=(-t, t, 0, \ldots), \quad y=(t,-t, 0, \ldots)
$$

Obviously $d(a, x)=d(a, y)$ and $0=(0,0, \ldots)=\frac{1}{2}(x \oplus y)$. By the definition of the metric $d([1],[5])$ we obtain:

$$
d(x, y)=2 d(0, x)=2 \tanh ^{-1}\|x\|=2 \tanh ^{-1}\left(2^{1 / p_{t}}\right)
$$

Putting $r=d(a, x), \varepsilon r=d(x, y)$ and applying (3) we obtain

$$
d(0, a) \leq \tanh ^{-1} \sqrt{\frac{\tanh ^{2} r-\tanh ^{2}(\varepsilon r / 2)}{1-\tanh ^{2}(\varepsilon r / 2)}}
$$

and further, after simple calculations:

$$
(\tanh d(0, a))\left(2-\tanh ^{2} d(0, a)\right)^{1 / 2} \leq \tanh r
$$

Lemma 2 gives

$$
2^{1 / p} t\left(2-2^{2 / p} t^{2}\right)^{1 / 2} \leq \tanh \left[2 \tanh ^{-1}\left(\frac{t}{\left(1-t^{p}\right)^{1 / p}}\right)\right]
$$

and

$$
2^{1 / p}\left(2-2^{2 / p} t^{2}\right)^{1 / 2} \leq \frac{2\left(1-t^{p}\right)^{1 / p}}{\left(1-t^{p}\right)^{2 / p}+t^{2}}
$$

If t tends to zero, we obtain $2^{2 / p} \leq 2$ or $p \geq 2$. This contradicts our assumption $(1<p<2)$.

Case 2, $p>2$. Choose $t>0$ such that $a, x, y \in B_{p}$, where

$$
a=(0, t, 0, \ldots), \quad x=(t, 0,0, \ldots), \quad y=(-t, 0,0, \ldots)
$$

It is easy to observe that $d(a, x)=d(a, y)$ and $0=(0,0, \ldots)=\frac{1}{2}(x \oplus y)$. Moreover,

$$
d(x, y)=2 d(0, x)=2 \tanh ^{-1} t
$$

Let us put $r=d(a, x), \varepsilon r=d(x, y)$. By means of (3) we conclude that

$$
d(0, a) \leq \tanh ^{-1} \sqrt{\frac{\tanh ^{2} r-\tanh ^{2}(\varepsilon r / 2)}{1-\tanh ^{2}(\varepsilon r / 2)}}
$$

and equivalently

$$
2 \tanh ^{2} d(0, a)-\tanh ^{4} d(0, a) \leq \tanh ^{2} r .
$$

Let us denote by r_{0} the unique positive solution of (6). Lemma 3 together with the above inequality yields

$$
2 t^{2}-t^{4} \leq\left(\frac{4 t r_{0}}{4 r_{0}^{2}+t^{2}}\right)^{2}
$$

or equivalently

$$
2-t^{2} \leq \frac{16 r_{0}^{2}}{\left(4 r_{0}+t^{2}\right)^{2}}
$$

If $t \rightarrow 0$, then $r_{0} \rightarrow 2^{(-1) / p}$, so we obtain $2 \leq 2^{2 / p}$, or $p \leq 2$. This contradicts our assumption ($p>2$).

Theorem 2. B and $B \times B$ are not holomorphically equivalent.

Proof. The Carathéodory metric d in $B \times B$ is defined by

$$
d((x, y),(a, b))=\max \{\rho(x, a), \rho(y, b)\}
$$

where ρ is the Carathéodory metric in , B cf. [1], [5]. To complete the proof it is enough to notice that in ($B \times B, d$) metric segments are not unique. Thus metric spaces $(B \times B, d)$ and (B, ρ) are not isometric.

Remark. Theorem 2 was proved by S. Greenfield and N. Wallach [4] by using standard methods of complex analysis.

References

[1] Franzoni, T. and E. Vesentini,, Holomorphic Maps and Invariant Distances, North Holland, Amsterdam, 1980.
[2] Goebel, K. and S. Reich,, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
[3] Goebel, K., T. Sẹkowski and A. Stachura,, Uniform convexity of the hyperbolic metric and fixed points of holomorphic mappings in the Hilbert ball, Nonlinear Analysis 4 (1980), 1011-1021.
[4] Greenfield, S. and N. Wallach,, The Hilbert ball and bi-ball are holomorphically inequivalent, Bull. Amer. Math. Soc. 77 (1971), 261-263.
[5] Harris, L. A., Schwarz-Pick systems of pseudometrics for domains in normed linear spaces, Advances in Holomorphy, J. A. Barroso (ed.), North-Holland, 1979.
[6] Kaup, W. and H. Upmeier,, Banach spaces with biholomorphically equivalent unit balls are isomorphic, Proc. Amer. Math. Soc. 58 (1976), 129-133.

Instytut Matematyki UMCS
received October 14, 1996
Plac Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland

[^0]: Key words and phrases. Holomorphic mapping, hyperbolic metric, biholomorphic equivalence.

