UNIVERSITATIS MARIAE CURIE-SKLODOWSKALUBLIN - POLONIA

MARIA NOWAK (Lublin)

Integral Means of Univalent Harmonic Maps

Abstract

The main results obtained in this paper are the following. If $f=h+\bar{g}$ is a univalent harmonic map, then $g, h \in H^{p}$ and $f \in h^{p}$ for $p \in\left(0, A^{-2}\right)$, where A is given in (3). This is an improvement of a result presented in [AL]. Moreover, a further improvement of the range: $p \in(0,1 / 3)$ is established for close-to-convex harmonic maps.

1. Introduction. Statement of results. Let Δ denote the open unit disc in the complex plane and S_{H} denote the class of all complex valued, harmonic, sense-preserving univalent functions f in Δ normalized by

$$
\begin{equation*}
f(0)=0, \quad f_{z}(0)=1 \tag{1}
\end{equation*}
$$

Each $f \in S_{H}$ can be expressed as

$$
\begin{equation*}
f=h+\bar{g} \tag{2}
\end{equation*}
$$

where $h(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=\sum_{n=1}^{\infty} b_{n} z^{n}$ are analytic in Δ. It is known ([BH]) that

$$
\begin{equation*}
3 \leq A=\sup _{f \in S_{H}}\left|a_{2}\right|<50 \tag{3}
\end{equation*}
$$

Let $H^{p}\left(h^{p}\right), 0<p<\infty$, denote the standard Hardy space of analytic (harmonic) functions on Δ. It is well-known that, if f is analytic and univalent in Δ, then $f \in H^{p}$ for $0<p<\frac{1}{2}$ (see e.g. [D1, p. 50]).

In 1990 Y. Abu-Muhanna and A. Lyzzaik [AL] proved the following
Theorem A. If $f=h+\bar{g} \in S_{H}$, then $h, g \in H^{p}$ and $f \in h^{p}$ for every $p, p \in\left(0,(2 A+2)^{-2}\right)$, where A is given by (3).

In [BH] the authors proposed to find the exact set of all $p>0$ such that $f \in h^{p}$, if $f \in S_{H}$. Here we extend the above cited range for p, namely we prove

Theorem 1. Under the assumptions of Theorem A, $h, g \in H^{p}$ and $f \in h^{p}$ for $0<p<A^{-2}$.

Let K_{H}, C_{H} denote the subclasses of S_{H} consisting of harmonic mappings onto convex and close-to-convex regions, respectively. It has been shown in [CS] that if $f=h+\bar{g} \in K_{H}$, then h is close-to-convex and $|g(z)|<|h(z)|$ for $z \in \Delta \backslash\{0\}$. These facts imply

Theorem 2. If $f=h+\bar{g} \in K_{H}$, then $g, h \in H^{p}$ and $f \in h^{p}$ for $0<p<\frac{1}{2}$.

In section 4 we show that the convex harmonic function [CS]

$$
\begin{align*}
f(z) & =\left(z-\frac{1}{2} z^{2}\right)(1-z)^{-2}-\frac{1}{2} \frac{z^{2}(1-z)^{-2}}{} \\
& =\operatorname{Re}\left(\frac{z}{1-z}\right)+i \operatorname{Im}\left(\frac{z}{(1-z)^{2}}\right), \quad z \in \Delta, \tag{4}
\end{align*}
$$

is in $h^{\frac{1}{2}}$ (although $g, h \notin H^{\frac{1}{2}}$) but it is not in h^{p} for $p>\frac{1}{2}$. Therefore the exact range of $p>0$ such that, $f \in h^{p}$ if f is a convex harmonic function, can be at most the interval $\left(0, \frac{1}{2}\right]$.

For close-to-convex harmonic mappings we get
Theorem 3. If $f=h+\bar{g} \in C_{H}$, then $h, g \in H^{p}$ and $f \in h^{p}$ for $0<p<\frac{1}{3}$.

Because

$$
\sup _{f \in K_{H}}\left|a_{2}\right|=2, \quad \sup _{f \in C_{H}}\left|a_{2}\right|=3,
$$

it seems natural to conjecture that, if $f=\bar{g}+h \in S_{H}$, then $g, h \in H^{p}$ and $f \in h^{p}$ for $0<p<1 / A$, where A is given by (3).
2. Proof of Theorem 1. The proof of Theorem 1 is based on the following, below stated results.

For $p \in \mathbb{R}$ and f harmonic on Δ let us set

$$
\begin{equation*}
M_{p}(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i t}\right)\right|^{p} d t, \quad 0 \leq r<1 . \tag{5}
\end{equation*}
$$

Now, let \mathcal{A} denote the class of analytic, locally univalent functions h on Δ, normalized by

$$
h(0)=0, \quad h^{\prime}(0)=1,
$$

and satisfying the condition

$$
\begin{equation*}
\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}-\frac{2|z|^{2}}{1-|z|^{2}}\right| \leq \frac{2 A|z|}{1-|z|^{2}} \tag{6}
\end{equation*}
$$

for some constant $A \geq 1$. As in [P3, p.176; P2] we define

$$
\begin{equation*}
\beta_{h}(p)=\underset{r \rightarrow 1}{\limsup } \frac{\log M_{p}\left(r, h^{\prime}\right)}{-\log (1-r)} . \tag{7}
\end{equation*}
$$

Theorem B. If $h \in \mathcal{A}$, then for $p \in \mathbb{R}$

$$
\begin{equation*}
\beta_{h}(p) \leq-\frac{1}{2}+p+\sqrt{\frac{1}{4}-p+A^{2} p^{2}} \tag{8}
\end{equation*}
$$

To prove this theorem it is enough to proceed analogously as in the proof of Theorem 1 of [P1] (see also [P3, pp.176-182])

The next result we will need is due to T.Flett [F1], [F2] (see also [MP] for its simple proof).

Theorem C. Let $0<p<1$ and h be an analytic function on Δ. If

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{p-1} M_{p}\left(r, h^{\prime}\right) d r<\infty \tag{9}
\end{equation*}
$$

then $h \in H^{p}$.

Proof of Theorem 1. Let $f=h+\bar{g} \in S_{H}$. For fixed $\zeta \in \Delta$ consider the function

$$
F(z)=\frac{f\left(\frac{z+\zeta}{1+\zeta z}\right)-f(\zeta)}{\left(1-|\zeta|^{2}\right) h^{\prime}(\zeta)}
$$

Then $F \in S_{H}$. This fact implies that the analytic and locally univalent function h satisfies (6) with A given by (3). Now it follows from Theorem B that for each $\epsilon>0$ there exists $C(\epsilon)$ such that

$$
M_{p}\left(r, g^{\prime}\right)<M_{p}\left(r, h^{\prime}\right) \leq \frac{C(\epsilon)}{(1-r)^{-\frac{1}{2}+p+\sqrt{\frac{1}{4}-p+A^{2} p^{2}}+\epsilon}} .
$$

Hence for $0<p<1$ and for arbitrarily fixed $\epsilon>0$

$$
\begin{aligned}
\int_{0}^{1}(1-r)^{p-1} M_{p}\left(r, g^{\prime}\right) d r & <\int_{0}^{1}(1-r)^{p-1} M_{p}\left(r, h^{\prime}\right) d r \\
& \leq \int_{0}^{1} \frac{C(\epsilon)}{(1-r)^{\frac{1}{2}+\sqrt{\frac{1}{4}-p+A^{2} p^{2}}+\epsilon}} d r .
\end{aligned}
$$

The last integral is finite if

$$
\frac{1}{2}+\sqrt{\frac{1}{4}-p+A^{2} p^{2}}<1-\epsilon<1
$$

and this inequality holds if

$$
p<A^{-2} .
$$

So, in view of Theorem C, h and $g \in H^{p}$ for $p<A^{-2}$.
3. Proof of Theorem 3. Let k be the function defined by the formula

$$
\begin{equation*}
k(z)=\frac{(1+z)^{2}}{(1-z)^{4}}, \quad z \in \Delta . \tag{10}
\end{equation*}
$$

We start with the following
Lemma. If $f=\bar{g}+h \in C_{H}$ is a close-to-convex harmonic map, then for $0<p<\infty$

$$
\begin{equation*}
M_{p}\left(r, h^{\prime}\right) \leq M_{p}(r, k) . \tag{11}
\end{equation*}
$$

Proof. It was shown in [CS] that $z h^{\prime}(z)=F(z) G(z)$ if $f=\bar{g}+h \in C_{H}$ and $G(z)=e^{-i \alpha} z+a_{2} z^{2}+\ldots,-\pi<\alpha<\pi$, is a starlike function and $F(z)=e^{i \alpha}+b_{1} z+\ldots$ satisfies $|\arg F(z)|<\pi$. Hence

$$
\log \left|h^{\prime}(z)\right|=\log |F(z)|+\log \left|\frac{G(z)}{z}\right| .
$$

Now notice that to prove our lemma it is enough to apply the reasoning similar to that in the proof of Theorem 7.2 of [D2, p. 229].

Lemma 1 implies immediately
Corollary. If $f=h+\bar{g} \in C_{H}$, then $g^{\prime}, h^{\prime} \in H^{p}$ for $0<p<\frac{1}{4}$.

Proof of Theorem 3. Assume that $f=h+\bar{g} \in C_{H}$ and $\frac{1}{4}<p<1$. Then Lemma 1 and the Lemma in [D1, p.65] imply that there is a positive constant C such that

$$
M_{p}\left(r, h^{\prime}\right) \leq \frac{C}{(1-r)^{4 p-1}} .
$$

From this

$$
\int_{0}^{1}(1-r)^{p-1} M_{p}\left(r, h^{\prime}\right) d r \leq \int_{0}^{1}(1-r)^{-3 p} d r .
$$

The last integral is finite if $p<\frac{1}{3}$ and the assertion follows from Theorem C.

Remark. Notice that Theorem 3 implies the result of J.A. Cima and J.E. Livingston [CL]: If $f=h+\bar{g} \in S_{H}$ and $f(\Delta)$ is a starlike domain (with respect to zero), then $h, g \in H^{p}$ and $f \in h^{p}$ for $0<p<1 / 3$.

4. Examples.

1. Let $f=h+\bar{g}$ be given by formula (4). We claim that $f \notin h^{p}$ if $p>\frac{1}{2}$, whereas $f \in h^{1 / 2}$.

First assume that $\frac{1}{2}<p<1$. We have

$$
\begin{aligned}
\int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta & \geq \int_{-\pi}^{\pi}\left|\operatorname{Im} f\left(r e^{i \theta}\right)\right|^{p} d \theta=r^{p}\left(1-r^{2}\right)^{p} \int_{-\pi}^{\pi} \frac{|\sin \theta|^{p}}{\left|1-r e^{i \theta}\right|^{4 p}} d \theta \\
& =2 r^{p}\left(1-r^{2}\right)^{p} \int_{0}^{\pi} \frac{(\sin \theta)^{p}}{\left(1+r^{2}-2 r \cos \theta\right)^{2 p}} d \theta
\end{aligned}
$$

Making the substitution $t=\cos \theta$ gives

$$
\begin{aligned}
& I_{r}=\int_{0}^{\pi} \frac{(\sin \theta)^{p}}{\left(1+r^{2}-2 r \cos \theta\right)^{2 p}} d \theta>\frac{1}{\left(1+r^{2}\right)^{2 p}} \int_{0}^{1} \frac{d t}{\left(1-t^{2}\right)^{(1-p) / 2}(1-c t)^{2 p}} \\
& >2^{-(3 p+1) / 2} \int_{0}^{1} \frac{d t}{(1-c t)^{(3 p+1) / 2}}=\frac{1}{c 2^{(3 p-1) / 2}(3 p-1)}\left[(1-c)^{(-3 p+1) / 2}-1\right]
\end{aligned}
$$

where $c=2 r /\left(1+r^{2}\right)$.
Thus

$$
\int_{-\pi}^{\pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta=2 r^{p}\left(1-r^{2}\right)^{p} I_{T} \rightarrow \infty \text { as } r \rightarrow 1^{-}
$$

and the first assertion made about the function f is proved.
Now we show that $f \in h^{1 / 2}$. Because

$$
\sup _{0 \leq r<1} \int_{0}^{2 \pi}\left|\operatorname{Ke}\left(\frac{r e^{i \theta}}{1-r e^{i \theta}}\right)\right|^{1 / 2} d \theta \leq \sup _{0 \leq r<1} \int_{0}^{2 \pi}\left|\frac{r e^{i \theta}}{1-r e^{i \theta}}\right|^{1 / 2} d \theta<\infty
$$

it is enough to show that $\operatorname{Im} f \in h^{1 / 2}$. Similarly as above we get

$$
\begin{align*}
\int_{0}^{2 \pi}\left|\operatorname{Im} f\left(r e^{i \theta}\right)\right|^{\frac{1}{2}} d \theta & =\frac{2 \sqrt{r\left(1-r^{2}\right)}}{1+r^{2}} \int_{-1}^{1} \frac{d t}{\sqrt[1]{1-t^{2}}(1-c t)} \\
& =\frac{4 \sqrt{r\left(1-r^{2}\right)}}{1+r^{2}} \int_{0}^{1} \frac{d t}{\sqrt[4]{1-t^{2}}\left(1-(c t)^{2}\right)} \tag{12}\\
& <\frac{4 \sqrt{r\left(1-r^{2}\right)}}{1+r^{2}} \int_{0}^{1} \frac{d t}{\sqrt[4]{1-t}(1-c t)} .
\end{align*}
$$

Expanding the function $t \rightarrow 1 /(1-c t)$ into a power series and integrating term by term we obtain

$$
\begin{equation*}
\int_{0}^{1} \frac{d t}{\sqrt[4]{1-t}(1-c t)}=\sum_{n=0}^{\infty} \frac{n!}{\frac{3}{4}\left(\frac{3}{4}+1\right) \cdots\left(\frac{3}{4}+n\right)} c^{n}=S(c) \tag{13}
\end{equation*}
$$

Using the fact that the gamma function can be expressed as

$$
\Gamma(a)=\lim _{n \rightarrow \infty} \frac{n!n^{a}}{a(a+1) \cdots(a+n)}
$$

one can easily check that the coefficients in the series in formula (13) are of order $n^{-3 / 4}=n^{(1 / 4-1)}$ as $n \rightarrow \infty$. This means that the function $S(c)$ "behaves" like the function $F(c)=(1-c)^{-1 / 4}$, i.e. the ratio $S(c) / F(c)$ has a positive limit as $c \rightarrow 1^{-}$. Hence there is a constant $C>0$ such that

$$
S(c)<C(1-c)^{-1 / 4}=C \frac{\sqrt[1]{1+r^{2}}}{\sqrt{1-r}}
$$

Hence

$$
\int_{0}^{2 \pi}\left|\operatorname{Im} f\left(r e^{i \theta}\right)\right|^{1 / 2} d \theta<8 C
$$

2. Consider the close-to-convex function $l=h+\bar{g}$ where

$$
h(z)=\frac{z-z^{2} / 2+z^{3} / 6}{(1-z)^{3}}, \quad g(z)=\frac{z^{2} / 2+z^{3} / 6}{(1-z)^{3}} .
$$

It can be easily checked that neither g, nor h is in $H^{1 / 3}$. However, l is in $h^{\frac{1}{3}}$. It has been shown in [CS] that l can be expressed as

$$
l(z)=\frac{1}{6} \operatorname{Re}\left(\left(\frac{1+z}{1-z}\right)^{3}-1\right)+\frac{1}{4} i \operatorname{Im}\left(\frac{1+z}{1-z}\right)^{2} .
$$

Because $\operatorname{Im}(l) \in h^{\frac{1}{3}}$ it is enough to prove that the integral

$$
\int_{0}^{2 \pi}\left|\operatorname{Re}\left(\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right)^{3}\right|^{1 / 3} d \theta
$$

is bounded as $r \rightarrow 1^{-}$. We have

$$
\begin{align*}
\int_{0}^{2 \pi} & \left|\operatorname{Re}\left(\frac{1+r e^{i \theta}}{1-r e^{i \theta}}\right)^{3}\right|^{1 / 3} d \theta \leq\left(1-r^{2}\right) \int_{0}^{2 \pi} \frac{1}{\left|1-r e^{i \theta}\right|^{2}} d \theta \\
& +\sqrt[3]{12}\left(1-r^{2}\right)^{1 / 3} \int_{0}^{2 \pi} \frac{\sin ^{\frac{2}{3}} \theta}{1+r^{2}-2 r \cos \theta} d \theta \tag{14}\\
& \leq 2 \pi+4 \sqrt[3]{12}\left(1-r^{2}\right)^{1 / 3} \int_{0}^{1} \frac{d t}{(1-t)^{1 / 6}(1-c t)}
\end{align*}
$$

where $c=2 r /\left(1+r^{2}\right)$ as above. Integrating term by term gives

$$
\int_{0}^{1} \frac{d t}{(1-t)^{1 / 6}(1-c t)}=\sum_{n=0}^{\infty} \frac{n!}{\frac{5}{6}\left(\frac{5}{6}+1\right) \cdots\left(\frac{5}{6}+n\right)} c^{n} .
$$

Now it is enough to notice that the coefficients in the last series are of order $n^{1 / 6-1}$ as $n \rightarrow \infty$. Thus there is a constant $C>0$ such that

$$
\int_{0}^{1} \frac{d t}{(1-t)^{1 / 6}(1-c t)} \leq C(1-c)^{-1 / 6}=C(1-r)^{-1 / 3}\left(1+r^{2}\right)^{1 / 6}
$$

This together with (14) proves that $\operatorname{Re}(l)$ is in $h^{1 / 3}$.
Open problem. Is f in $h^{1 / 2}\left(h^{1 / 3}\right)$ if f is a convex (close-to-convex) harmonic mapping ?

Acknowledgment. The author wishes to thank the referee for a careful reading the manuscript and making several useful suggestions for improvement of the paper.

References

[AL] Abu-Muhanna, Y. and A. Lyzzaik, The boundary behaviour of harmonic univalent maps, Pacific J. Math. 141 (1990), 1-20.
[BH] Bshouty, D. and W. Hengartner, Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Sklodowska Sect. A 48 (1994), 1-42.
[CL] Cima, J.A. and A.E. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables 11 (1989), 95-110.
[CS] Clunie, J. and T.Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI 9 (1984), 3-25.
[D1] Duren, P.L., Theory of H^{p} spaces, Academic Press, New York - London 1970.
[D2] Duren, P.L., Univalent functions, Springer-Verlag, New York -Tokyo 1983.
[F1] Flett, T. M., Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125-158.
[F2] Flett, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, ibid., 38 (1972), 746-765.
[MP] Mateljevic, M. and M. Pavlovic, Multipliers of H^{p} and BMOA, Pacific J. Math. 146 (1990), 71-84.
[P1] Pommerenke, Ch., On the integral means of the derivative of a univalent function, J. London Math. Soc. (2) 32 (1985), 254-258.
[P2] Pommerenke, Ch., On the integral means of the derivative of a univalent function II, Bull. London Math. Soc. 17 (1985), 565-570.
[P3] Pommerenke , Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg- New York 1991.

Instytut Matematyki UMCS
received April 17, 1996
Plac Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland

