ANNALES UNIVERSITATIS MARIAE CURIE – SKLODOWSKA LUBLIN – POLONIA

VOL. L, 16

SECTIO A

1996

In [101] the aution program to this the must set of all p > 0 met it performed program of the base of the base of the base of the prover of the base of prove.

MARIA NOWAK (Lublin)

Integral Means of Univalent Harmonic Maps

ABSTRACT. The main results obtained in this paper are the following. If $f = h + \bar{g}$ is a univalent harmonic map, then $g, h \in H^p$ and $f \in h^p$ for $p \in (0, A^{-2})$, where A is given in (3). This is an improvement of a result presented in [AL]. Moreover, a further improvement of the range: $p \in (0, 1/3)$ is established for close-to-convex harmonic maps.

1. Introduction. Statement of results. Let Δ denote the open unit disc in the complex plane and S_H denote the class of all complex valued, harmonic, sense-preserving univalent functions f in Δ normalized by

(1)
$$f(0) = 0, \quad f_z(0) = 1.$$

Each $f \in S_H$ can be expressed as

(2)
$$f = h + \bar{g},$$

where $h(z) = z + \sum_{n=2}^{\infty} a_n z^n$ and $g(z) = \sum_{n=1}^{\infty} b_n z^n$ are analytic in Δ . It is known ([BH]) that

(3)
$$3 \le A = \sup_{f \in S_H} |a_2| < 50.$$

Let $H^p(h^p)$, $0 , denote the standard Hardy space of analytic (harmonic) functions on <math>\Delta$. It is well-known that, if f is analytic and univalent in Δ , then $f \in H^p$ for 0 (see e.g. [D1, p. 50]).

In 1990 Y. Abu-Muhanna and A. Lyzzaik [AL] proved the following

Theorem A. If $f = h + \bar{g} \in S_H$, then $h, g \in H^p$ and $f \in h^p$ for every $p, p \in (0, (2A+2)^{-2})$, where A is given by (3).

In [BH] the authors proposed to find the exact set of all p > 0 such that $f \in h^p$, if $f \in S_H$. Here we extend the above cited range for p, namely we prove

Theorem 1. Under the assumptions of Theorem A, $h, g \in H^p$ and $f \in h^p$ for 0 .

Let K_H , C_H denote the subclasses of S_H consisting of harmonic mappings onto convex and close-to-convex regions, respectively. It has been shown in [CS] that if $f = h + \bar{g} \in K_H$, then h is close-to-convex and |g(z)| < |h(z)| for $z \in \Delta \setminus \{0\}$. These facts imply

Theorem 2. If $f = h + \overline{g} \in K_H$, then $g, h \in H^p$ and $f \in h^p$ for 0 .

In section 4 we show that the convex harmonic function [CS]

(4)
$$f(z) = (z - \frac{1}{2}z^2)(1 - z)^{-2} - \frac{1}{2}\overline{z^2(1 - z)^{-2}}$$
$$= \operatorname{Re}\left(\frac{z}{1 - z}\right) + i\operatorname{Im}\left(\frac{z}{(1 - z)^2}\right), \quad z \in \Delta,$$

is in $h^{\frac{1}{2}}$ (although $g, h \notin H^{\frac{1}{2}}$) but it is not in h^p for $p > \frac{1}{2}$. Therefore the exact range of p > 0 such that, $f \in h^p$ if f is a convex harmonic function, can be at most the interval $(0, \frac{1}{2}]$.

For close-to-convex harmonic mappings we get

Theorem 3. If $f = h + \bar{g} \in C_H$, then $h, g \in H^p$ and $f \in h^p$ for 0 .

Because

$$\sup_{I \in K_H} |a_2| = 2, \quad \sup_{I \in C_H} |a_2| = 3.$$

it seems natural to conjecture that, if $f = \overline{g} + h \in S_H$, then $g, h \in H^p$ and $f \in h^p$ for 0 , where A is given by (3). 2. Proof of Theorem 1. The proof of Theorem 1 is based on the following, below stated results.

For $p \in \mathbb{R}$ and f harmonic on Δ let us set

(5)
$$M_p(r,f) = \frac{1}{2\pi} \int_0^{2\pi} |f(re^{it})|^p dt \,, \quad 0 \le r < 1 \,.$$

Now, let \mathcal{A} denote the class of analytic, locally univalent functions h on Δ , normalized by

h(0) = 0, h'(0) = 1,

and satisfying the condition

(6)
$$\left|\frac{zh''(z)}{h'(z)} - \frac{2|z|^2}{1-|z|^2}\right| \le \frac{2A|z|}{1-|z|^2}$$

for some constant $A \ge 1$. As in [P3, p.176; P2] we define

(7)
$$\beta_h(p) = \limsup_{r \to 1} \frac{\log M_p(r, h')}{-\log(1 - r)}$$

Theorem B. If $h \in A$, then for $p \in \mathbb{R}$

(8)
$$\beta_h(p) \leq -\frac{1}{2} + p + \sqrt{\frac{1}{4} - p + A^2 p^2}$$

To prove this theorem it is enough to proceed analogously as in the proof of Theorem 1 of [P1] (see also [P3, pp.176-182])

The next result we will need is due to T.Flett [F1], [F2] (see also [MP] for its simple proof).

Theorem C. Let $0 and h be an analytic function on <math>\Delta$. If

(9)
$$\int_0^1 (1-r)^{p-1} M_p(r,h') dr < \infty$$

then $h \in H^p$.

Proof of Theorem 1. Let $f = h + \bar{g} \in S_H$. For fixed $\zeta \in \Delta$ consider the function

$$F(z) = \frac{f\left(\frac{z+\zeta}{1+\zeta z}\right) - f(\zeta)}{(1-|\zeta|^2)h'(\zeta)}$$

Then $F \in S_H$. This fact implies that the analytic and locally univalent function h satisfies (6) with A given by (3). Now it follows from Theorem B that for each $\epsilon > 0$ there exists $C(\epsilon)$ such that

$$M_p(r,g') < M_p(r,h') \le \frac{C(\epsilon)}{(1-r)^{-\frac{1}{2}+p} + \sqrt{\frac{1}{4}-p+A^2p^2} + \epsilon}$$

Hence for $0 and for arbitrarily fixed <math>\epsilon > 0$

$$\int_0^1 (1-r)^{p-1} M_p(r,g') dr < \int_0^1 (1-r)^{p-1} M_p(r,h') dr$$
$$\leq \int_0^1 \frac{C(\epsilon)}{(1-r)^{\frac{1}{2} + \sqrt{\frac{1}{4} - p + A^2 p^2 + \epsilon}} dr.$$

The last integral is finite if

$$\frac{1}{2} + \sqrt{\frac{1}{4}} - p + A^2 p^2 < 1 - \epsilon < 1$$

and this inequality holds if

 $p < A^{-2}.$

So, in view of Theorem C, h and $g \in H^p$ for $p < A^{-2}$.

3. Proof of Theorem 3. Let k be the function defined by the formula

(10)
$$k(z) = \frac{(1+z)^2}{(1-z)^4}, \quad z \in \Delta$$

We start with the following

Lemma. If $f = \overline{g} + h \in C_H$ is a close-to-convex harmonic map, then for 0

(11) $M_p(r,h') \le M_p(r,k).$

Proof. It was shown in [CS] that zh'(z) = F(z)G(z) if $f = \overline{g} + h \in C_H$ and $G(z) = e^{-i\alpha}z + a_2z^2 + \dots$, $-\pi < \alpha < \pi$, is a starlike function and $F(z) = e^{i\alpha} + b_1z + \dots$ satisfies $|\arg F(z)| < \pi$. Hence

$$\log |h'(z)| = \log |F(z)| + \log \left|\frac{G(z)}{z}\right|$$

Now notice that to prove our lemma it is enough to apply the reasoning similar to that in the proof of Theorem 7.2 of [D2, p. 229].

Lemma 1 implies immediately

Corollary. If $f = h + \bar{g} \in C_H$, then $g', h' \in H^p$ for 0 .

Proof of Theorem 3. Assume that $f = h + \bar{g} \in C_H$ and $\frac{1}{4} .$ Then Lemma 1 and the Lemma in [D1, p.65] imply that there is a positive constant <math>C such that

$$M_p(r,h') \le \frac{C}{(1-r)^{4p-1}}$$
.

From this

$$\int_0^1 (1-r)^{p-1} M_p(r,h') dr \le \int_0^1 (1-r)^{-3p} dr.$$

The last integral is finite if $p < \frac{1}{3}$ and the assertion follows from Theorem C.

Remark. Notice that Theorem 3 implies the result of J.A. Cima and J.E. Livingston [CL]: If $f = h + \bar{g} \in S_H$ and $f(\Delta)$ is a starlike domain (with respect to zero), then $h, g \in H^p$ and $f \in h^p$ for 0 .

4. Examples.

1. Let $f = h + \bar{g}$ be given by formula (4). We claim that $f \notin h^p$ if $p > \frac{1}{2}$, whereas $f \in h^{1/2}$.

First assume that $\frac{1}{2} . We have$

$$\int_{-\pi}^{\pi} |f(re^{i\theta})|^p d\theta \ge \int_{-\pi}^{\pi} |\mathrm{Im} f(re^{i\theta})|^p d\theta = r^p (1 - r^2)^p \int_{-\pi}^{\pi} \frac{|\sin \theta|^p}{|1 - re^{i\theta}|^{4p}} d\theta$$
$$= 2r^p (1 - r^2)^p \int_0^{\pi} \frac{(\sin \theta)^p}{(1 + r^2 - 2r\cos \theta)^{2p}} d\theta.$$

Making the substitution $t = \cos \theta$ gives

$$I_r = \int_0^{\pi} \frac{(\sin\theta)^p}{(1+r^2 - 2r\cos\theta)^{2p}} d\theta > \frac{1}{(1+r^2)^{2p}} \int_0^1 \frac{dt}{(1-t^2)^{(1-p)/2}(1-ct)^{2p}} > 2^{-(3p+1)/2} \int_0^1 \frac{dt}{(1-ct)^{(3p+1)/2}} = \frac{1}{c2^{(3p-1)/2}(3p-1)} \Big[(1-c)^{(-3p+1)/2} - 1 \Big],$$

where $c = 2r/(1+r^2)$. Thus

$$\int_{-\pi}^{\pi} |f(re^{i\theta})|^p d\theta = 2r^p (1-r^2)^p I_r \to \infty \text{ as } r \to 1^-$$

and the first assertion made about the function f is proved.

Now we show that $f \in h^{1/2}$. Because

$$\sup_{0 \le r < 1} \int_0^{2\pi} \left| \operatorname{Re}\left(\frac{re^{i\theta}}{1 - re^{i\theta}} \right) \right|^{1/2} d\theta \le \sup_{0 \le r < 1} \int_0^{2\pi} \left| \frac{re^{i\theta}}{1 - re^{i\theta}} \right|^{1/2} d\theta < \infty$$

it is enough to show that $\operatorname{Im} f \in h^{1/2}$. Similarly as above we get

(12)
$$\int_{0}^{2\pi} |\mathrm{Im}f(re^{i\theta})|^{\frac{1}{2}} d\theta = \frac{2\sqrt{r(1-r^{2})}}{1+r^{2}} \int_{-1}^{1} \frac{dt}{\sqrt[4]{1-t^{2}(1-ct)}} = \frac{4\sqrt{r(1-r^{2})}}{1+r^{2}} \int_{0}^{1} \frac{dt}{\sqrt[4]{1-t^{2}(1-(ct)^{2})}} < \frac{4\sqrt{r(1-r^{2})}}{1+r^{2}} \int_{0}^{1} \frac{dt}{\sqrt[4]{1-t}(1-ct)}.$$

Expanding the function $t \rightarrow 1/(1-ct)$ into a power series and integrating term by term we obtain

(13)
$$\int_0^1 \frac{dt}{\sqrt[4]{1-t(1-ct)}} = \sum_{n=0}^\infty \frac{n!}{\frac{3}{4}\left(\frac{3}{4}+1\right)\cdots\left(\frac{3}{4}+n\right)} c^n = S(c).$$

Using the fact that the gamma function can be expressed as

$$\Gamma(a) = \lim_{n \to \infty} \frac{n! n^a}{a(a+1) \cdots (a+n)}$$

one can easily check that the coefficients in the series in formula (13) are of order $n^{-3/4} = n^{(1/4-1)}$ as $n \to \infty$. This means that the function S(c)"behaves" like the function $F(c) = (1-c)^{-1/4}$, i.e. the ratio S(c)/F(c)has a positive limit as $c \to 1^-$. Hence there is a constant C > 0 such that

$$S(c) < C(1-c)^{-1/4} = C \frac{\sqrt[4]{1+r^2}}{\sqrt{1-r}}$$

Hence

$$\int_{0}^{2\pi} |\mathrm{Im}f(re^{i\theta})|^{1/2} d\theta < 8C$$

2. Consider the close-to-convex function $l = h + \bar{g}$ where

$$h(z) = \frac{z - z^2/2 + z^3/6}{(1-z)^3}, \quad g(z) = \frac{z^2/2 + z^3/6}{(1-z)^3}.$$

It can be easily checked that neither g, nor h is in $H^{1/3}$. However, l is in $h^{\frac{1}{3}}$. It has been shown in [CS] that l can be expressed as

$$l(z) = \frac{1}{6} \operatorname{Re}\left(\left(\frac{1+z}{1-z}\right)^3 - 1\right) + \frac{1}{4}i \operatorname{Im}\left(\frac{1+z}{1-z}\right)^2$$

Because $\text{Im}(l) \in h^{\frac{1}{3}}$ it is enough to prove that the integral

$$\int_{0}^{2\pi} \left| \operatorname{Re} \left(\frac{1 + re^{i\theta}}{1 - re^{i\theta}} \right)^{3} \right|^{1/3} d\theta$$

is bounded as $r \rightarrow 1^-$. We have

(14)

$$\int_{0}^{2\pi} \left| \operatorname{Re} \left(\frac{1+re^{i\theta}}{1-re^{i\theta}} \right)^{3} \right|^{1/3} d\theta \leq (1-r^{2}) \int_{0}^{2\pi} \frac{1}{|1-re^{i\theta}|^{2}} d\theta$$

$$+ \sqrt[3]{12}(1-r^{2})^{1/3} \int_{0}^{2\pi} \frac{\sin^{\frac{2}{3}}\theta}{1+r^{2}-2r\cos\theta} d\theta$$

$$\leq 2\pi + 4\sqrt[3]{12}(1-r^{2})^{1/3} \int_{0}^{1} \frac{dt}{(1-t)^{1/6}(1-ct)},$$

where $c = 2r/(1 + r^2)$ as above. Integrating term by term gives

$$\int_0^1 \frac{dt}{(1-t)^{1/6}(1-ct)} = \sum_{n=0}^\infty \frac{n!}{\frac{5}{6}\left(\frac{5}{6}+1\right)\cdots\left(\frac{5}{6}+n\right)} c^n \, .$$

Now it is enough to notice that the coefficients in the last series are of order $n^{1/6-1}$ as $n \to \infty$. Thus there is a constant C > 0 such that

$$\int_0^1 \frac{dt}{(1-t)^{1/6}(1-ct)} \le C(1-c)^{-1/6} = C(1-r)^{-1/3}(1+r^2)^{1/6}$$

This together with (14) proves that $\operatorname{Re}(l)$ is in $h^{1/3}$.

Open problem. Is f in $h^{1/2}(h^{1/3})$ if f is a convex (close-to-convex) harmonic mapping ?

Acknowledgment. The author wishes to thank the referee for a careful reading the manuscript and making several useful suggestions for improvement of the paper.

All select

References

- [AL] Abu-Muhanna, Y. and A. Lyzzaik, The boundary behaviour of harmonic univalent maps, Pacific J. Math. 141 (1990), 1-20.
- [BH] Bshouty, D. and W. Hengartner, Univalent harmonic mappings in the plane, Ann. Univ. Mariae Curie-Skłodowska Sect. A 48 (1994), 1-42.
- [CL] Cima, J.A. and A.E. Livingston, Integral smoothness properties of some harmonic mappings, Complex Variables 11 (1989), 95-110.
- [CS] Clunie, J. and T.Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI 9 (1984), 3-25.
- [D1] Duren, P.L., Theory of H^p spaces, Academic Press, New York London 1970.
- [D2] Duren, P.L., Univalent functions, Springer-Verlag, New York -Tokyo 1983.
- [F1] Flett, T. M., Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125-158.
- [F2] Flett, T. M., The dual of an inequality of Hardy and Littlewood and some related inequalities, ibid., 38 (1972), 746-765.
- [MP] Mateljevic, M. and M. Pavlovic, Multipliers of H^p and BMOA, Pacific J. Math. 146 (1990), 71-84.
- [P1] Pommerenke, Ch., On the integral means of the derivative of a univalent function, J. London Math. Soc. (2) 32 (1985), 254-258.
- [P2] Pommerenke, Ch., On the integral means of the derivative of a univalent function II, Bull. London Math. Soc. 17 (1985), 565-570.
- [P3] Pommerenke, Ch., Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin-Heidelberg- New York 1991.

Instytut Matematyki UMCS Plac Marii Curie-Skłodowskiej 1 20-031 Lublin, Poland received April 17, 1996