ANNALES

UNIVERSITATIS MARIAE CURIE – SKŁODOWSKA LUBLIN – POLONIA

VOL. L, 10

SECTIO A

1996

Certain Partial Differential Inequalities and Applications for Holomorphic Mappings Defined On the Unit Ball of \mathbb{C}^n

GABRIELA KOHR (Cluj - Napoca)

ABSTRACT. In this paper the author obtains some partial differential inequalities involving holomorphic mappings defined on the unit ball in \mathbb{C}^n . Some applications to univalence criteria are given.

1. Preliminaries. Let \mathbb{C}^n denote the space of *n* complex variables $z = (z_1, \ldots, z_n)'$ with the Euclidean inner product $\langle z, w \rangle = \sum_{j=1}^n z_j \overline{w_j}$ and the norm $||z|| = \sqrt{\langle z, z \rangle}$. The open Euclidean ball $\{z \in \mathbb{C}^n : ||z|| < r\}$ is denoted by B_r and B stands for the open unit Euclidean ball B_1 . The origin $(0, \ldots, 0)'$ is always denoted by 0. As usual, we denote by $L(\mathbb{C}^n, \mathbb{C}^m)$ the space of all continuous linear operators from \mathbb{C}^n into \mathbb{C}^m with the the standard operator norm. The letter I will always represent the identity operator in $L(\mathbb{C}^n, \mathbb{C}^n)$. The class of holomorphic mappings from a domain $G \subseteq \mathbb{C}^n$ into \mathbb{C}^n is denoted by H(G). A mapping $f \in H(G)$ is said to be locally biholomorphic in G if its Frechet derivative

$$Df(z) = \left[\frac{\partial f_j(z)}{\partial z_k}\right]_{1 \le j, \ k \le n}$$

1991 Mathematics Subject Classification. 32H02, 30C45.

Key words and phrases. Starlikeness, convexity, biholomorphic mapping ...

as an element of $L(\mathbb{C}^n, \mathbb{C}^n)$ is nonsingular at each point $z \in G$. A mapping $f \in H(G)$ is called biholomorphic on G if the inverse mapping f^{-1} does exist, is holomorphic in a domain Ω and $f^{-1}(\Omega) = G$.

If $D^2 f(z)$ means the Fréchet derivative of the second order for $f \in H(G)$ at the point z, then of course $D^2 f(z)$ is a continuous bilinear operator from $\mathbb{C}^n \times \mathbb{C}^n$ into \mathbb{C}^n and its restriction $D^2 f(z)(u, \cdot)$ to $u \times \mathbb{C}^n$ belongs to $L(\mathbb{C}^n, \mathbb{C}^n)$. The symbol "'" means the transpose of elements and matrix defined on \mathbb{C}^n . For our purposes, we shall use the following definitions and results.

Definition 1.1. A biholomorphic map $f: B \to \mathbb{C}^n$ is said to be starlike on B, if f(0) = 0 and $(1-t)f(B) \subseteq f(B)$, for all $t \in [0,1]$.

Lemma 1.1. [7], [8]. Let $f: B \to \mathbb{C}^n$ be a locally biholomorphic mapping on B with f(0) = 0. Then f is starlike on B iff

$${
m Re}\,\left< [Df(z)]^{-1}f(z),z \right> 0\,,$$

for all $z \in B \setminus \{0\}$.

Definition 1.2. Let $f : B \to \mathbb{C}^n$ be a locally biholomorphic mapping on B with f(0) = 0 and Df(0) = I. We say that f is starlike of order $\alpha \in (0,1)$ if

$$\left|\frac{1}{||z||^2}\left\langle [Df(z)]^{-1}f(z),z\right\rangle - \frac{1}{2\alpha}\right| < \frac{1}{2\alpha}$$

for all $z \in B \setminus \{0\}$.

For n = 1, it is not difficult to show that the above inequality becomes

$$\operatorname{Re} rac{zf'(z)}{f(z)} > lpha \quad z \in U \ ,$$

hence we obtain the usual class of holomorphic functions, starlike of order α on the unit disc U in \mathbb{C} .

It is not difficult to show that for $\alpha \in (0,1)$, the mapping $f: B \to \mathbb{C}^n$,

$$f(z) = \left(\frac{z_1}{(1-z_1)^{2(1-\alpha)}}, \dots, \frac{z_n}{(1-z_n)^{2(1-\alpha)}}\right)', \quad z \in B,$$

is starlike of order α .

Lemma 1.2 [4]. Let $w(z) = a + w_1 z + \cdots$ be holomorphic in the unit disc U, with $w(z) \neq a$. If $z_0 = r_0 e^{i\theta_0}$, $0 < r_0 < 1$, and

$$w(z_0)| = \max_{|z| \le r_0} |w(z)|,$$

then

(i)
$$z_0 w'(z_0) = sw(z_0),$$

(ii)
$$\operatorname{Re}\left[1 + \frac{z_0 w''(z_0)}{w'(z_0)}\right] \ge s ,$$

where

$$s \ge rac{|w(z_0) - a|^2}{|w(z_0)|^2 - |a|^2} \ge rac{|w(z_0)| - |a|}{|w(z_0)| + |a|}$$

2. Main Results

Theorem 2.1. Let M > 0 and

$$\mathcal{N}(M) = \left\{ p \in H(B) : p(0) = 0, \ Dp(0) = aI, \ |a| < M, \\ \left| \left\langle p(z), \frac{z}{||z||^2} \right\rangle \right| < M, \ \text{for all} \ z \in B \setminus \{0\} \right\}.$$

If $p \notin \mathcal{N}(M)$, then there exist $z_0 \in B \setminus \{0\}$, $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ and $m \in \mathbb{R}$ such that the following hold:

(1)
$$|\langle p(z_0), z_0 \rangle| = M ||z_0||^2 = \max_{||z|| \le ||z_0||} |\langle p(z), z \rangle|,$$

(2)
$$\lambda[\overline{Dp(z_0)}]'z_0 + \overline{\lambda}p(z_0) = mz_0, \ \langle p(z_0), z_0 \rangle = \lambda M ||z_0|^2$$

and $m \ge M(3M + |a|)/(M + |a|)$.

Proof. If we consider the mapping $g: B \to \mathbb{C}$, given by

$$g(z) = \frac{1}{||z||^2} \langle p(z), z \rangle,$$

for all $z \in B \setminus \{0\}$, then g is continuous on $B \setminus \{0\}$ and since $\lim_{z \to 0} g(z) = a = g(0), g$ is continuous on B and from the hypothesis we have |g(0)| < M.

If $p \notin \mathcal{N}(M)$, then we can easily determine $z_0 \in B \setminus \{0\}$ such that $|g(z_0)| = M = \max_{||z|| \le ||z_0||} |g(z)|$, so the first condition holds.

On the other hand, if $T_{z_0}(\partial B_{r_0})$ means the real tangent space of ∂B_{r_0} at the point z_0 and $v \in T_{z_0}(\partial B_{r_0})$ is an arbitrary tangent vector of ∂B_{r_0} at z_0 , where $r_0 = ||z_0||$, then obviously there exist $\varepsilon > 0$ and a twice differentiable curve $\gamma : (-\varepsilon, \varepsilon) \to \partial B_{r_0}$ such that $\gamma(0) = z_0$ and $\frac{d\gamma}{dt}(0) = v$.

Let $\alpha : (-\varepsilon, \varepsilon) \to \mathbb{R}_+$, $\alpha(t) = |\langle (p \circ \gamma)(t), \gamma(t) \rangle|^2$, for all $t \in (-\varepsilon, \varepsilon)$. Then using the above notations we conclude that

$$\alpha(0) = \max\{\alpha(t) : t \in (-\varepsilon, \varepsilon)\}$$

so $\alpha'(0) = 0$ and $\alpha''(0) \leq 0$.

A straightforward calculation yields

$$0=lpha'(0)=2\operatorname{Re}\{[\langle Dp(z_0)v,z_0
angle+\langle p(z_0),v
angle]\langle p(z_0),z_0
angle\}.$$

Since

$$|\langle p(z_0), z_0 \rangle| = M ||z_0||^2$$
,

we can get $\lambda \in \mathbb{C}$, with $|\lambda| = 1$, such that $\langle p(z_0), z_0 \rangle = M \lambda ||z_0||^2$, so we obtain

$$0 = \operatorname{Re}\left[\langle [\overline{Dp(z_0)}]'z_0, v\rangle \lambda + \langle p(z_0), v\rangle \overline{\lambda}\right]$$

i.e.

$$0 = \operatorname{Re} \left\langle \lambda [\overline{Dp(z_0)}]' z_0 + \overline{\lambda} p(z_0), v \right\rangle \,.$$

But, the above condition is satisfied for all $v \in T_{z_0}(\partial B_{r_0})$, hence we conclude that $\lambda[\overline{Dp(z_0)}]'z_0 + \overline{\lambda}p(z_0)$ is a normal vector to the boundary ∂B_{r_0} at z_0 .

On the other hand, if we write

$$\varphi(z) = ||z||^2 - r_0^2, \quad z \in \mathbb{C}^n$$

then it is clear that $\partial Br_0 = \{z \in B : \varphi(z) = 0\}$ and a normal vector to ∂B_{r_0} at z_0 is z_0 . Hence, we can find a real number m such that

$$\lambda[Dp(z_0)]'z_0 + \overline{\lambda}p(z_0) = mz_0$$

It remains only to prove that $m \ge M(3M + |a|)/(M + |a|)$. Indeed, let us consider the function $h: U \to \mathbb{C}$,

$$h(\zeta) = \frac{1}{\zeta} \left\langle p\left[\zeta \frac{z_0}{||z_0||}\right], \frac{z_0}{||z_0||} \right\rangle, \quad \zeta \in U.$$

Then h(0) = a and we easily deduce that $h \in H(U)$ and

$$M = |h(\zeta_0)| = \max_{|\zeta| \le |\zeta_0|} |h(\zeta|, \quad \zeta_0 = ||z_0||.$$

Using the result of Lemma 1.2 we can find a real number s, such that

$$\zeta_0 h'(\zeta_0) = sh(\zeta_0)$$
 and $s \ge \frac{|h(\zeta_0)| - |a|}{|h(\zeta_0)| + |a|}$.

A straightforward calculation yields:

$$\zeta_0 h'(\zeta_0) = \left\langle Dp(z_0) \left[\frac{z_0}{||z_0||} \right], \frac{z_0}{||z_0||} \right\rangle - \frac{1}{||z_0||} \left\langle p(z_0), \frac{z_0}{||z_0||} \right\rangle,$$

and hence

$$\langle Dp(z_0)(z_0), z_0 \rangle = (s+1) \langle p(z_0), z_0 \rangle$$

i.e.

$$\langle Dp(z_0)(z_0), z_0 \rangle = (s+1)M\lambda ||z_0||^2$$

Since $\lambda[Dp(z_0)]'z_0 + \overline{\lambda}p(z_0) = mz_0$, multiplying both sides of this equality by z_0 , we deduce that

$$m = M(s+2)$$
, so $m \ge M \frac{3M + |a|}{M + |a|}$.

Next we shall apply the above result to some sufficient conditions of univalence on \mathbb{C}^n .

Theorem 2.2. Let f be a locally biholomorphic mapping in B, with f(0) = 0, Df(0) = I and $f(z) \neq 0$, for all $z \in B \setminus \{0\}$. Let $\alpha \in [\frac{1}{2}, 1)$ and let $\beta \geq 1$ be such that $\beta(2\alpha - 1)(\alpha + 1) < 2\alpha$. Suppose that

(3)
$$||z||^{2} + \operatorname{Re} \langle [Df(z)]^{-1}D^{2}f(z)(z,z),z \rangle > \frac{(2\alpha - 1)(\alpha + 1)||z||^{2}}{2\alpha}$$

for all $z \in B \setminus \{0\}$,

(4)
$$(1-\beta) \operatorname{Re} \left\langle [Df(z)]^{-1} f(z), z \right\rangle \frac{||x||^2}{||z||^2}$$

$$+\beta\Big\{||x||^{2} - \operatorname{Re}\left\langle [Df(z)]^{-1}D^{2}f(z)(x,x),z\right\rangle\Big\} > \frac{||x||^{2}}{2\alpha}(2\alpha - 1)(\alpha + 1)\beta$$

for all $z \in B \setminus \{0\}$ and $x \in \mathbb{C}^n \setminus \{0\}$ with $\operatorname{Re} \langle x, z \rangle = 0$. Then f is starlike of order α in B.

Proof. If $p(z) = 2\alpha [Df(z)]^{-1}f(z) - z$, then p is holomorphic in B, p(0) = 0 and $Dp(0) = (2\alpha - 1)I$. It is sufficient to show that

$$|\langle p(z), z \rangle| < ||z||^2$$
 for all $z \in B \setminus \{0\}$,

i.e.

$$\left|\left\langle p(z), \frac{z}{||z||^2}\right\rangle\right| < 1, \qquad z \in B \setminus \{0\}.$$

If this does not hold then, using the result of Theorem 2.1, we can find $z_0 \in B \setminus \{0\}, \theta \in \mathbb{R}$ and $m \in \mathbb{R}$ such that

$$\begin{aligned} ||z_0||^2 &= |\langle p(z_0), z_0 \rangle| = \max \{ |\langle p(z), z \rangle| : ||z|| \le ||z_0|| \} ,\\ e^{i\theta} [\overline{Dp(z_0)}]' z_0 + e^{-i\theta} p(z_0) = m z_0 , \end{aligned}$$

where $m \ge (\alpha + 1)/\alpha$ and $\langle p(z_0), z_0 \rangle = e^{i\theta} ||z_0||^2$. It is clear that $||p(z_0)|| \ge ||z_0||$.

A straightforward calculation yields

(5)
$$[Df(z)]^{-1}D^2f(z)(p(z)+z,\,\cdot\,)+Dp(z)=(2\alpha-1)I.$$

Write $y = [Df(z_0)]^{-1}f(z_0)$. Multiplying both sides of (5) by z_0 and then by y, respectively, we easily obtain

(6)
$$2\alpha \langle [Df(z_0)]^{-1} D^2 f(z_0)(y, z_0), z_0 \rangle = (2\alpha - 1) ||z_0||^2 + e^{i\theta} ||z_0||^2 (1 - m)$$

and

(7)
$$4\alpha^{2} \langle [Df(z_{0})]^{-1} D^{2} f(z_{0})(y, y), z_{0} \rangle = (2\alpha - m) ||z_{0}||^{2} e^{i\theta} + (2\alpha - 1) ||z_{0}||^{2} - m e^{2i\theta} ||z_{0}||^{2} + e^{2i\theta} ||p(z_{0})||^{2}.$$

Now, if $x = 2\alpha y e^{-i\theta} - z_0(1 + \cos\theta)$ then $\text{Re} < x, z_0 >= 0$ and $||x||^2 = ||p(z_0)||^2 - \cos^2\theta ||z_0||^2$.

After short computation we obtain

$$e^{2i\theta} \left\langle [Df(z_0)]^{-1} D^2 f(z_0)(x,x), z_0 \right\rangle \\ - e^{2i\theta} (1 + \cos\theta)^2 \left\langle [Df(z_0)]^{-1} D^2 f(z_0)(z_0, z_0), z_0 \right\rangle \\ = (2\alpha - m)||z_0||^2 e^{i\theta} + (2\alpha - 1)||z_0||^2 - m||z_0||^2 e^{2i\theta} \\ + e^{2i\theta}||p(z_0)||^2 - 2e^{i\theta} (2\alpha - 1)(1 + \cos\theta)||z_0||^2 \\ - 2e^{2i\theta} (1 - m)(1 + \cos\theta)||z_0||^2 .$$

Using the condition (3) and taking the real part in the both sides of (8), we obtain

(9)

$$\operatorname{Re}\left\langle [Df(z_0)]^{-1}D^2f(z_0)(x,x), z_0 \right\rangle - ||x||^2 \left(1 - \frac{(2\alpha - 1)(\alpha + 1)}{2\alpha}\right)$$

$$\geq (1 + \cos\theta) \left(m - 2\alpha - 2 + \frac{(2\alpha - 1)(\alpha + 1)}{\alpha}\right) ||z_0||^2.$$

From (9) swing to
$$m \ge (\alpha + 1)/\alpha$$
 and $\beta \ge 1$, we deduce the following
 $\operatorname{Re}\left[(1-\beta)\frac{||x||^2}{||z_0||^2} \langle [Df(z_0)]^{-1}f(z_0), z_0 \rangle + \beta \left(||x||^2 - \langle [Df(z_0)]^{-1}D^2f(z_0)(x, x), z_0 \rangle \right)\right] \le \frac{1-\beta}{2\alpha}(1+\cos\theta)||x_0||^2 + \beta(1+\cos\theta) \left(-m+2\alpha+2-\frac{(2\alpha-1)(\alpha+1)}{\alpha}\right)||z_0||^2 + \frac{\beta(2\alpha-1)(\alpha+1)}{2\alpha}||x||^2 \le \frac{\beta(2\alpha-1)(\alpha+1)}{2\alpha}||x||^2.$

If $x \neq 0$, then the above inequality contradicts (4).

If x = 0, then $||p(z_0)||^2 = \cos^2 \theta ||z_0||^2$ and since $||p(z_0)|| \ge ||z_0||$, we deduce that $\cos \theta = \pm 1$.

If $\cos \theta = -1$, then we obtain $[Df(z_0)]^{-1}f(z_0) = 0$, which contradicts $f(z) \neq 0$ for all $z \in B \setminus \{0\}$.

If $\cos \theta = 1$, then $\alpha y = z_0$ and using the condition (6), we get

$$||z_0||^2 + \operatorname{Re}\left\langle [Df(z_0)]^{-1} D^2 f(z_0)(z_0, z_0), z_0 \right\rangle = ||z_0||^2 \left[\alpha + 1 - \frac{m}{2} \right]$$

Since $m \geq \frac{1+\alpha}{\alpha}$, we conclude that

$$\begin{aligned} ||z_0||^2 + \operatorname{Re} \left\langle [Df(z_0)]^{-1} D^2 f(z_0)(z_0, z_0), z_0 \right\rangle \\ &\leq \frac{(2\alpha - 1)(\alpha + 1)||z_0||^2}{2\alpha} \end{aligned}$$

which also contradicts (3). Hence $|\langle p(z), z \rangle| < ||z||^2$, $z \in B \setminus \{0\}$, which completes the proof.

Remark 2.1. K. Kikuchi [2] and also S. Gong [1] proved that a locally biholomorphic mapping f with f(0) = 0 is biholomorphic convex on B iff the following inequality

(10)
$$||x||^2 - \operatorname{Re} \langle [Df(z)]^{-1} D^2 f(z)(x,x), z \rangle > 0,$$

holds for all $z \in B \setminus \{0\}$ and $x \in \mathbb{C}^n \setminus \{0\}$, with $\operatorname{Re} \langle x, z \rangle = 0$.

For $\beta = 1$ and $\alpha = \frac{1}{2}$ in Theorem 2.2, we obtain:

Corollary 2.1. Let f be a locally biholomorphic mapping on B, with f(0) = 0, Df(0) = I, which satisfies (10) for all $z \in B \setminus \{0\}$ and $x \in \mathbb{C}^n \setminus \{0\}$, with $\operatorname{Re}\langle x, z \rangle = 0$. Then f is starlike of order 1/2 on B.

Proof. If (10) holds then the condition (3) holds, too, because is enough to put $x = iz, z \neq 0$ in (10).

Remark 2.2. From Corollary 2.1 and Remark 2.1 we deduce that any convex biholomorphic mapping f on B, with f(0) = 0 and Df(0) = I, is starlike of order 1/2 on B.

This is a generalization of a well known result due to A. Marx [3] and T. J. Strohhäcker [6].

For $\beta = 1$ and $\alpha \in [\frac{1}{2}, 1)$ in Theorem 2.2, we obtain:

Corollary 2.2. Let f be a locally biholomorphic mapping on B with f(0) = 0 and Df(0) = I and $f(z) \neq 0$ for all $z \in B \setminus \{0\}$. If $\alpha \in [\frac{1}{2}, 1)$ and

(11)
$$||x||^2 - \operatorname{Re}\left\langle [Df(z)]^{-1}D^2f(z)(x,x),z\right\rangle > \frac{(2\alpha - 1)(\alpha + 1)||x||^2}{2\alpha}$$

for all $z \in B \setminus \{0\}$ and $x \in \mathbb{C}^n \setminus \{0\}$ with $\operatorname{Re}\langle x, z \rangle = 0$, then f is starlike of order α on B.

Proof. Putting $x = iz, z \in B \setminus \{0\}$ in (11) we obtain (3) and our corollary follows from Theorem 2.1.

REFERENCES

- Gong, S. and Q. Wang, Biholomorphic convex mappings of ball in Cⁿ, Pacific J. Math. 161,2 (1993), 287-306.
- [2] Kikuchi, K., Starlike and convex mappings in several complex variables, Pacific J. Math. 44, 2 (1973), 569-580.
- [3] Marx, A., Untersuchungen über schlichte Abbildungen, Math. Ann. 107 (1932/33), 40-67.
- [4] Miller, S. S. and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 2 (1978), 289-305.
- [5] _____, Differential subordinations and inequalities in the complex plane, J. Differential Equations 67, 2 (1987), 199-211.
- [6] Strohhäcker, T. J., Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), 356-380.
- [7] Suffridge, T. J., Starlike and convex maps in Banach spaces, Pacific J. Math. 46, 2 (1973), 575-589.
- [8] _____, Starlikeness, convexity and other geometric properties of holomorphic maps in higher dimensions, Lecture Notes in Math. 599 (1976), 146-159.

Babes-Bolyai University Faculty of Mathematics 1. M. Kogälniceanu Str. 3400 Cluj-Napoca, Romania revised version received January 31, 1996