
ANNALES
U NIV E RS IT A TIS MARIAE C U RI E - S K L 0 D 0 W S K A

LUBLIN - POLONIA

VOL. L, 6 SECTIO A 1996

ZDZISŁAW GRODZKI and JERZY MYCKA (Lublin)

Two-dimensional Markov-like Algorithms

Abstract. Four classes of two-dimensional Markov-like algorithms are in
troduced which are equivalent to the class MN A of Markov normal algo
rithms. Only for illustration the proof of equivalence of one of these classes
and MN A is given in detail.

1. Introduction. Markov normal algorithms have been intensively studied
by Russian scientists [7] since 1950. Most results have been obtained in the
sixties. Dietlows [4] has shown that the class A47V/1 of Markov normal algo
rithms is equivalent to the class VRF of partial recursive functions, whereas
Asser [1] has shown that MN A is equivalent to the class TM of Turing
machines. Other notions of effective computability, such as A-notation of
Church [2], or unlimited register machine [3], are well known. All above -
mentioned notions of algorithm are equivalent to each other. The compre
hensive study on this subject can be found in Mendelson’s monograph [8],
as well as in [6].

Two new classes CMAk and CMAk of Markov-like ¿-algorithms have
been introduced in [5]. They are also equivalent to the class MN A of
Markov normal algorithms.

The aim of this paper is to introduce four classes of two-dimensional
Markov-like algorithms which are equivalent to the class MN A of Markov
normal algorithms. Only for one of them, denoted by MAfn , the proof
of the theorem relating to the equivalence of this class and MN A is given.
An idea of the proofs of theorems related to the equivalence of the remainng

52 Z. Grodzki and J. Mycka

three classes and MN A is similar and therefore the proofs will be omitted
here.

The formalization used here allows us to introduce four classes (n > 1)
of n-dimensional Markov-like algorithms and to show easily the equivalence
of these classes and MN A.

Let us add that the formalization used here can be easily adopted to
define other classes of n-dimensional algorithms (not necessarily Markov-
like), for instance n-dimensional matrix of indexed algorithms.

Inspiration of introducing the above classes was Priese’s paper [9], where
two-dimensional Thue systems have been used for transformation of objects,
which are two-dimensional words in Gaussian plane. The Priese’s paper
is related to the problem how to develope conçurent, asynchronous two-
dimensional calculi with the computation complexity of safe Petri nets and
self-reproducing Turing machines.

But what is the motivation to consider n-dimensional algorithms (n > 2).
Transformation of n-dimensional Gaussian plane appears in a few areas of
science or technique, such as cartography, chemistry, cryminology, crysta-
lography, meteorology, mechanics, picture processing, physics (percolation
theory) and many others. Therefore it is suitable to study n-dimensional
algorithms (not necessarily Markov-like) that would be a good tool to solve
uniformly some practical problems from areas mentioned above.

2. Two-dimensional words and productions. Before we introduce a
class MA(n'W) of two-dimensional Markov-like algorithms we must intro
duce at the beginning some auxiliary notions.

Let £ be a finite (nonempty) alphabet. The symbol e £ will represent
the empty symbol. In what follows Z and N stand for the set of integers,
or positive integers, resp..

Let us consider a partial function : N2 £ . The domain of will be
denoted by Dom (V>) and the set of all functions from N2 into £ will be
denoted by .

Let V’l, ^2 be two functions, both from $2 . Let us introduce a relation
£ € Ie x as follows:

ifaEifo <=> (3r,s e Z)(Vi, j € N)

{[((»,j) € Dom(V>i))A((i-|-r, j + s) € Dom^)) A(Vq(i, j) = ^(i + G j + s))]

V

[((*,» 0 Dom(V’i)) A ((» + r,j + s) 0 Dom^))]} •

Then E is an equivalence relation.

Two-dimensional Markov-like Algorithms 53

For every function € "^E let we set

IIV’IIe = {i € : ÇEip}.

The eqivalence class ||0||e will be called two-dimensional word in an
alphabet E.

Let us assume the following convention. For every function € ^e we
will consider such an element £ € HV’IIe that {(0,j), (¿, 0)} C Dom(£)
for some numbers i,j G N. In the majority of cases such représentants
£ °f IIV’He will be considered. For simplicity such £ will be called a
two-dimensional word and denoted by t,u,v,w,x,y, z (possibly with sub
scripts). We will write in this case /¿j instead of £(z,j) and Dom(Z)
instead of Dom(£). The set of all two-dimensional words in an alphabet E
will be denoted by E£ .

The two-dimensional word t will be called over an alphabet E iff t is
in an alphabet E', where E' D E.

Now let us define a shape of a two-dimensional word t G E£ . The pair
(m,p) is said to be a shape of a two-dimensional word t iff

m = sup{z : (3j 6 N)(i,j) G Dom(Z)} 4- 1
p = sup{j : (3i G N)(i,f) G Dom(Z)} + 1.

The word t will be usually written in the form:

¿m,0 • • • lm,p

¿0,0 • • • ¿0,p

where = e if (i,j) £ Dom(Z).
For arbitrary two-dimensional words u, v G E£ a word u is a subword

of v, u v, ifF there exist nonnegative integers k, I such that for all
(i,j) 6 Dom(w) we have:

— ^i+kij+i •

Example 2.1. Let us consider two two-dimensional words u and v of
^2, E = {a, b] , where u and v have the form:

a a a
u — b b

a a a

54 Z. Grodzki and J. Mycka

a a
b

v — a a
b b

a

a a a a
b b b b
a a a a
b b b b
a a a a

a
a

a
It is simple to see, that u < v.

By a restriction of a two-dimensional word v to a Gaussian plane P, u|p ,
we mean such a word u that

= vhj

for all (i, j) 6 P .
Let us introduce the notions of a first (/, ^-occurrence of a two-dimensio

nal word into another one for (fig) G {(n, w), (n, e), (s,w), (s,e)}, where
(n, w), (n,e), (s,w), (s,e) are the abbreviations of north-western, north
eastern, south-western and south-eastern.

Let u and v be two-dimensional words of • Then a restricted word
u|p, P C Dom(u), is said to be the first (n,w)-occurrence of u in v iff
the following conditions hold:

(1) v|P = u
(2) for arbitrary two-dimensional Gaussian plane P' C Dom (u), if

u|p' = u then there exists a pair (z,j) G P, such that for all (?,/) G P'
we have i' < i or j' > j .

For the first (n, e)-occurrence, first (s,w)~ occurrence and first (s, co
occurrence the condition (2) should be replaced by the following ones:

(2') for arbitrary two-dimensional Gaussian plane P' C Dom(v), if
v|p< = u then there exists a pair (t,j) G P, such that for all (iz,Jz) G P'
we have i' < i or j' < j .

(2") for arbitrary two-dimensional Gaussian plane P' C Dom(v), if
u|p< = u then there exists a pair (i, j) G P such that for all (iz,Jz) G Pz
we have i' > i or j' > j .

(2ZZZ) for arbitrary two-dimensional Gaussian plane Pz C Dom(v), if
u|p< = u then there exists a pair («’, j) G P, such that for all (»',/) G Pz
we have i' > i or j' < j.

Remark 2.2. The analogy of the first north-western occurrence of a word
u in a word v is the same as in topography. We localize any object on a
map most in the western and northern directions (analogously for the other
occurrences).

Two-dimensional Markov-like Algorithms 55

Example 2.3. Let us consider two-dimensional words u and v of the
Example 2.1. Then we have:

v|pj is the first (n, w) — occurrence of u in v,
u|p2 is the first (n,e) — occurrence of u in v,
u|p3 is the first (s, w) - occurrence of u in v
v|p4 is the first (s,e) — occurrence of u inn,

where

A = {(2,3),(2,4),(2,5),(3,1),(3,2),(4,2),(4,3),(4,4)},
P2 = {(2,4),(2,5),(2,6),(3,2),(3,3),(4,3),(4,4),(4,5)},
P3 = {(0,2),(0,3),(0,4),(1,0),(1,1),(2,1),(2,2),(2,3)},
P4 = {(0,4),(0,5),(0,6),(1,2),(1,3),(2,3),(2,4),(2,5)}.

Now let us introduce a notion of a two-dimensional production.
By a two-dimensional production in an alphabet E we mean a pair

(x, y) of two equally shaped two-dimensional words in E with the property

Xitj is undefined <=> t/jj is undefined

for 1 < i < m, 1 < j < p.
Let Ps denote the set of all two-dimensional productions over an alpha

bet E of arbitrary shapes.
The elements of Ps will be usually denoted by x —* y (possibly with

subscripts). Some production will be called final and will be denoted by
x —► -y (by analogy with notation for Markov normal algorithms). If we
do not underline that a production is final or nonfinal then it will be denoted
by x —* (•)?/.

A two-dimensional production x —* (-)y is said to be applicable to a
two-dimensional word t iff x t.

Now let us define a resulting function Res(„tW) : PjxEJ >-» E£ as follows.
For arbitrary two-dimensional production x —► (-)j/ G Pe and a two-

dimensional word t G E£ we have:

(u if x t
Res(n>w)(x —> (-)y,t)= if^(xXi), ’

where u is a two-dimensional word of E£, which is obtained from f by
replacing the first (n, w)-occurrence of x in t by y.

56 Z. Grodzki and J. Mycka

In the first case (if x t) a production x —► (*)j/ is said to be effectively
used, whereas in the second one (if ->(a: /)) noneffectively used to a word
t.

3. The two-dimensional Markov-like algorithms. Four classes
, e) of two-dimensional algorithms are

introduced. The classes mentioned above differ from one another only by
transformations.

Namely, for the class and (/,g) 6 {(n, w), (n,e), (s, w), (s,e)}
the transformation replaces the first (f,g) occurrence of the left side of a
production in a transformed word by the right side of this production.

Only for illustration the class Atd(2n w) will be studied.
By a two-dimensional Markov-like algorithm of the class AAA^n in an

alphabet E we mean a sixtuple

d — (P'L, £> ¿i, Lf, Contr, Tr^n,w))>

where
Px is a finite (nonempty) subset of of two-dimensional productions in
an alphabet E,
L is set of labels of p£ (we assume L = {1,... |PsI}),
Li = {1} and Lf are subsets of L whose elements are called initial and
final productions1.

A partial function Contr L, called a control of A, and a
total function Tr(n>w) : E£ X £ i-> E£, called a transformation of A, are
defined as follows:

For arbitrary words t, u € E£ and i € L we have:

if Xi t and i & Lf
if -i(«i <) and i < \L\
if Xi X t and i £ Lf
or -,(®» 0 and 2 = |£|,

1
i + 1
undefined

Contrat, i) = <

u
tTr(niW)(fi2) —

if Xi < t and Res(njU,)(x,
if -'(®t 0 •

(•)y,-,i) = u

We denote some production from Pz by P, iff d>(t) = Pi, where </> is
one-to-one mapping of P% onto L .

1 We will sometimes identify productions with their labels.

Two-dimensional Markov-like Algorithms 57

Thus if a production Pi has been effectively used to a word t and
it is nonfinal then Contr(t,i) — 1 or if -i(xj Z) and i < |£| then
Contr(t,i) = i + 1. Contr is undefined if a production Pi has been ef
fectively used to a word t and it is final (i € f/) or if -<(xi ■< Z) and
*' = |£|.

If a production Pi has been effectively used to a word t then Tr(n w)
transforms a word t in a such way that the first (n,w)-occurrence of the
left side Xi of a production Pi in t is replaced by the right side y, of this
production. If a production Pi has been noneffectively used to a word t
then Tr(n)W)(Z,i) = t and we continue a computation in every case (if Pi
is final or nonfinal) with only such restriction that i < |T|. Let us observe
that the process stops iff the last used production is final and additionally
it has been effectively used to an actually transformed word or if the last
used production Pj has been noneffectively used and j = |L|.

Following Markov [7] let us assume the following convention.
As for all algorithms of A4A(nw) the controls Contr and transformation

Tr(n,w) are defined in the same manner. Therefore to define an algorithm
A € AAA(n it is sufficient to define a sequence of productions in an
alphabet E by omitting their labels (such sequence will be called a schema
of productions).

In some examples it is necessary to introduce some additional letters
(separators, parantheses). This leads to the following definition.

A two-dimensional Markov-like algorithm is said to be over an alphabet
£ iff it is an algorithm in some alphabet £' such that E C £ .

Now let us introduce the notion of a computation of a two-dimensional
Markov-like algorithm.

A sequence T = Zi,Z2,... E (SJ)^ (finite or infinite) is said to be a com
putation of a two-dimensional algorithm A = (P^, L, Li, L f,Contr,Tr(n,w))
iff there exists a sequence I — ¿1, ¿2, • • • € L°°, called a trace of T, such
that the following conditions hold:

(1) Both sequences T and I are infinite, »1 G £<, and for every J > 1
we have: tj+1 = Tr(ntW)(tj,ij) and ij+i = Contr(tj,ij)

(2) Both sequences T and I are of finite length equal to m for some
> 1, ti € £,• and for every 1 < j < m we have: tj+i = Tr(n<w)(tj,ij)

and tJ+i = Contr(tj,ij) }
We additionally assume that im = |T| + 1 and this label indicates the fact

that a computation T stops. Two cases imply that T is finite. The first
one is when a production Pim_, with the label tm_i has been effectively
used to a word tm-i and it is final or if P,m_, has been noneffectively used
to a word Zm_i and tm_i = |T|.

2 Let us denote by A(ti) the last element tm of a finite computation T = <1,... , tm
°f A and we assume that A(t) is undefined if T is infinite.

58 Z. Grodzki and J. Mycka

The set of all computations of a two-dimensional Markov-like algorithm
A is said to be its computation set and denoted by C(A).

From the above definitions we immediately obtain the following

Corollary 3.1. Let T = and U = ux,u2,... be arbitrary com
putations of a two-dimensional algorithm A in an alphabet S. Let Ti =
/¿,ti+i,... for every i > 1. Then we have:

(3) Every sequence Ti, l(Fj) > 2, is a computation of A ;
(4) For every numbers i,j 6 N, i < l(T), j < l(U) if ti = Uj then

ti+i = Uj+i or both tj+i,Uj+i are undefined.

Remark 3.2. The conditions (3) and (4) are necessary (not sufficient) for a
nonempty set S C (£2)°° to be a computation set of any two-dimensional
Markov-like algorithm.

Let us consider the following examples.

Example 3.3. Let A have the following schema of productions, where
E = {b,b, g,g, w, r},

9 9 b b
Px : w w —► b b

b b

9 9 9 9_
P2 : w w —►(•)<? 9

b b

The following sequence is a computation of A :

_ 9 9 b g g _ b
b w w b w w , b b

b b b b

b b 9 9 b b b 9 9
b b w w , b b b b 9 9
b b b b b b b

4. Equivalence of the classes MN A and MA^nw^. Before we for
mulate the equivalence of the classes MN A and we should in
troduce a manner of coding of two-dimensional words and productions into
one-dimensional ones.

Let E be an alphabet which does not contain the symbols & and —.
Let c: Ej i-> (EU {&,-})* be an injective mapping, called a coding

function, defined as follows:

Two-dimensional Markov-like Algorithms 59

For an arbitary two-dimensional word t £ ££ we have:

c(l) = • ••&*!»»

where is a sequence j,... ,t'ip for all 1 < i < m such that j = -
if tij is undefined or j = 1,-j otherwise.

Example 4.1. Let us consider a two-dimensional word u in the alphabet
£ = {0,1} of the form

110 1
1 0 0

1 1

Then c(u) is a one-dimensional word over {0,1} U {&, —} of the form:
c(u) = -1101&100- -&------- 11.

For t G £2 hy c(i\ we denote the code of the t-th component of t.
Then we have c(tz)i = -1101,c(u)2 = 100---- ,c(u)3 =--------11.

For a two-dimensional production x —* (-)y its code c(x —► (-)y) is
defined as (c(x)i —>c(y)x,... ,c(x)n_i —> c(y)„_1,c(x)„—» (-)c(!/)n)3.

Lemma 4.2. For every two-dimensional Markov-like algorithm
4 £ AdA(n in an alphabet £ we are able to construct effectively a
Markov-normal algorithm M over an alphabet £ such that for every two-
dimensional word t £ £2

c(A(t)) = M(e(t))

unless both algorithms are undefined.

Eroof. Let us give at the beginning a short outline of the proof.
Let A £ be a two-dimensional algorithm in an alphabet £

with a schema of productions of the form (Pi,P2,... ,Fn), where every
Production P, has the form (x, —* (-)l/«) f°r 1 < t < «•

For every P, we shall construct one-dimensional productions sequence
*$» ’’simulating” P, . One can distinguish three parts in every sequence Si.

The first one (denoted by Sj) chooses in a code of actually transformed
w°rd t the first line c(xi)j counting by means of symbols A- the distance
°f this subword from the left beginning of t. If such a subword there exists

3If the production x —» ()y is final then only last component c(z)n —♦ (-)c(s)n *s
final

60 Z. Grodzki and J. Mycka

then S} replaces a subword c(xj)i by a word in an additional alphabet S'
of the form4 (c(ij)i)', otherwise the sequence SI+i is started.

The second part S? chooses in the next parts of c(/) the subwords
c(x,)j,2 < j < ki, with respect to the distance of these subwords from &
equal to the quantity of A|, and then replaces c(xi)j by (c(x,•)_,)' for every
2<j<ki If such a subword does not exist then the algorithm replaces
the first symbol of the subword (c(x,)j)' by the symbol of E". The rest
of symbols in the word (c(xj)i)' are replaced by symbols of alphabet E.
All symbols of S' are replaced by means the symbols of S and then the
first part Sj is started. If all subwords c(xi)j,2 < j < ki, are replaced by
(c(x,)j)' then the third part Sf ¡s started .

The third part Sf ends ’’simulation” of Pi. All (c(i,)j)' are replaced
by (c(j/.)j), for 1 < j < ki.

Now we will present the full form of the sequence Si by using the addi
tional symbols (not in the alphabet S).

S] is the sequence of one-dimensional productions of the form5:

♦ Aj(c(®i)j)'
M —> AJAJ
f.Aj —> AJ
OiaOi —* affiOj a € S U { —}
£>ct —♦ atfi
0xa —► adi
6i^L —► &
&& — ^Oi
Oi --- ♦ £
6 —* Vi

The first three productions are used if there exists the first line c(x,)i of
the left side of production Pi in a transformed word. In this case quantity
of Aj is equal to the quantity of symbols preceding c(®i)i.

The productions from 4-th to 6-th line move symbols 3t in a transformed
word and increase their quantity after each symbol a.

The remaining productions in the sequence try to find c(®j)i in the other
components of a transformed word or (the last two) prepare a transformed
word to be used by the next sequence S'i+i.

Now let us construct S? of the form • • • Sj ki . Every sequence
for m = 2,... , ki is defined as follows:

A”1-1 a —► «A™’1 a€Eu{-}
A^fe —- &A-n7I”‘

4 Every symbol a € £ is replaced by respective a' €
5e is the empty symbol.

Two-dimensional Markov-like Algorithms 61

A?“1 Vi\m — l
*i Vi —» Vi

A™aA™ —♦ aAT'Ap
A^f* —* «a™
7,^07 ► a7,m7,m
7^7,"*« —• 7,m«7,rn
A?7r<*i)m —* A7’(c(a:i)m)'
AS,fcic(a:i)k1 —► A^(c(x,)fci)'<T,fc‘
Arn7m

APrr —* t™

for m < ki
for m = ki

arf* —> r™a
br?
a'r^ —> T™a
arf1“1 —► rf1-1«

—> rm-2&
a'rf1"2 —► r"l~2a
arf-2 — rA"2a

a'/J'r/ a'r^p
<*P'Ti —* aXi/3"

In the first part of S2 the algorithm changes the symbols A™-1 by the
symbols A™ at the end (&) of some component of a transformed word. Then
the algorithm adds symbols 7™ (the quantity of symbols 7™ is equal to
quantity of A™). In the last component of transformed word a new symbol
Vi is introduced.

In the second part of S2m the algorithm replaces (if it is possible) c(x,)m
by (c(x;)m)', otherwise introduces the symbol rtm. If the algorithm finds
the last component c(x,)fc. of xt then new symbol is introduced.

In the third part of S2 m the symbols r™ are used to replace all symbols
of S' into symbols of S . The first symbol in c(x,)i is changed into a symbol
of S".

The sequence S2 has the form:

aVi —*
o'i/i —> 7/ja
0"% —♦ r^a
Xi' Vi —* Vi

62 Z. Grodzki and J. Mycka

—* »/i
—» £«+i#i+i

(*Xi —► X«<*
<*'Xi —* X:«
a"x. —* Xi«"
>£xi —» Xi

AiXi —* Xi
Xi —» Wi

(c(xi)kiya^ —♦ a^c(yi)ki

(c(Xi)m)'ffP --- * ^rc(!/0m

(cfxihya} —♦ a}c(y{)i
aaki —» ak,a
a"aki —> <rkia
\ k, _ki __ _ _ki
A. °i --- * ai

aa- —» aja
a"a} —> a-a
X)ff| —» a}
&:ak‘ —> <7fci_1&

&CT2 —* <r1&
a} —» •£ if Pi is final
a- —» £i#i if Pi is nonfinal

In this part of Si the algorithm replaces all occurrences of (c(x,)tn)/
by c^y^m for m — 1,... ,ki If x,- is a subword of a transformed word
then algorithm stops if production Pi is final, otherwise algorithm starts
with ’’simulation” of Pi using symbol . If x< is not a subword of a
transformed word then an algorithm continues ’’simulation” of P,+i using
symbol .

Two-dimensional Markov-like Algorithms 63

Let us add at the end an important remark. In the productions of
the form (c(x,)fci)' —* c(ÿ,)fc, , (c(x,)fct.) —» c(x,)'fc. there can occur
some sequences over { —}. In this case productions (c(x,)fct.)' —► c(îZi)fci ,
(c(xj)fc.) —* c(xj)'fci will represent two sequences. These sequences consist
of all productions of the above form in which all symbols ” on the left
and right sides of production are replaced by all combination of symbols
from £, the same on the left and right side of production.

It is clear that the above construction implies equivalence with respect
to coding function the algorithms M = (Si,... ,5n,a —» fi0ia),(a G £)
of MN A and A = (Pi,... ,Pn) of MAfn w). ■

Lemma 4.3. For every Markov normal algorithm M in an alphabet £ we
are able to construct effectively a two-dimensional Markov-like algorithm
A G over an alpahbet £ such that for every v G £* ip(M(v)) =
A(ip(v)) unless both algorithms are undefined, where ^ : £* (£u A)*
(A ^ £) is a total funcion, defined as follows (A is A.. .A with the same
length as v):

^(v) =

for every v G £* .

Proof. Let M be an arbitary Markov normal algorithm with a schema of
productions

Pi:xi —♦ (-)yi

Pn : xn -----► (•)?/„

Let A be an two-dimensional algorithm with the schema of productions
of the form:

Pi : V’(xi) —♦ (-)V»(!Zi)

Pn : ip(xn) —♦ (-)V’(yn)
with a restriction that 7i is final iff Pi is final. Then two-dimensional
algorithm A is equivalent with respect to coding function ip to Markov
normal algorithm M . ■

As a consequence of two previous lemmas we have the following theorem.

Theorem 4.4. The classes AdA(„w) and MN A are equivalent with re
spect to coding function.

64 Z. Grodzki and J. Mycka

5. Final remarks. Using the idea of the proof of Lemmas 4.2 and 4.3 one
can prove the equivalence of the classes AAA(ne) , A4A(3 w\, A4A(3e) of
two-dimensional algorithms with the class AANA of Markov normal algo
rithms.

This paper is an initial stage of development related to two-dimensional
Markov-like algorithms. Many problems remain open, for example the com
plexity problem of algorithms and their computations. Another open prob
lem is to study n-dimensional algorithms (not necessarily Markov-like).

References

[1] Asser, G., Turing Maschinen und Markovsche Algorithmen, Z. Math. Logik Grund-
lag. Math. 5 (1959), 326-359.

[2] Church, A., An unsolvable problem for elementary number theory, J. of Math. 58
(1936), 345-363.

[3] Cutland, N. J., Computability and introduction to recursive function theory, Cam
bridge University Press, Cambridge-London-New York-Sydney-Melbourne, 1980.

[4] Dietlows W.K., Equivalence of Markov normal algorithms and recursive functions,
Trudy Mat. Inst. Steklov. IV (1952), 66-69 (Russian).

[5] Grodzki, Z. and J. Mycka, The equivalence of some classes of algorithms, Ann. Univ.
Mariae Curie-Sklodowska XLIX, 6 (1995), 85-99.

[6] Kleene, S.C. A-definability and recursivennes, Duke Math. J. 2 (1936), 340-358.
[7] Markov, A., The Theory of Algorithms, Trudy Mat. Inst. Steklov. XLII (1954 (Rus

sian)).
[8] Mendelson, E., Introduction to Mathematical Logic, Princeton, 1964.
[9] Priese, L., A note of asynchronous cellular automata, J. Comput. System Sci. 17

(1978), 237-252.

Institute of Management received October 1, 1996
and Foundation of Technique
Department of Applied Mathematics
Technical University of Lublin
ul. Bernardyńska 13
20-950 Lublin, Poland

Instytut Matematyki UMCS
Plac Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland

