ANNALES

UNIVERSITATIS MARIAECURIE-SKLODOWSKA LUBLIN - POLONIA

VOL. L, 4

SECTIO A 1996

MONIKA BUDZYŃSKA, WIESLAWA KACZOR, MALGORZATA KOTER - MÓRGOWSKA (Lublin)

Asymptotic Normal Structure, Semi-Opial Property and Fixed Points

Abstract

We apply some of Banach space properties depending on the metric behaviour of weakly convergent sequences to obtain the existence of fixed points for nonexpansive mappings.

Introduction. In this paper we deal with such properties of Banach spaces as normal structure, weak normal structure, asymptotic normal structure, weak asymptotic normal structure and different kinds of Opial's conditions. Our aim is to concentrate on applications of the above mentioned properties to the fixed point theory of nonexpansive mappings.

1. Notations, definitions and basic facts. Throughout the paper, $(X,\|\cdot\|)$ denotes a Banach space. The convex closure of a subset C of X is denoted by $\operatorname{conv} C$. Also $B(x, r)$ always denotes the closed ball centered at x with radius $r>0$.

For $x \in X$ and a bounded sequence $\left\{x_{n}\right\}$ the asymptotic radius of $\left\{x_{n}\right\}$ at $x[3]$ is the number

$$
r\left(x,\left\{x_{n}\right\}\right)=\varlimsup_{n \rightarrow \infty}\left\|x-x_{n}\right\|
$$

Now for a nonempty closed subset C of X the asymptotic radius of $\left\{x_{n}\right\}$ in C [3] is the number

$$
r\left(C,\left\{x_{n}\right\}\right)=\inf \left\{r\left(x,\left\{x_{n}\right\}\right): x \in C\right\} .
$$

The asymptotic center of $\left\{x_{n}\right\}$ in $C[3]$ is the set

$$
A c\left(C,\left\{x_{n}\right\}\right)=\left\{x \in C: r\left(x,\left\{x_{n}\right\}\right)=r\left(C,\left\{x_{n}\right\}\right)\right\}
$$

When C is fixed we will simply write $\operatorname{Ac}\left(\left\{x_{n}\right\}\right)$.
The space X is said to have normal structure (weak normal structure) [2] if for each bounded (weakly compact) and convex subset C of X consisting of more than one point there is a point $x \in C$ such that

$$
\sup \{\|y-x\|: y \in C\}<\operatorname{diam} C
$$

We denote this property briefly by NS ($w-\mathrm{NS}$).
We will say that X has asymptotic normal structure (weak asymptotic normal structure) [1], ANS (w-ANS) for short, if for each bounded (weakly compact) and convex subset C of X consisting of more than one point and each sequence $\left\{x_{n}\right\}$ in C satisfying $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$ there is a point $x \in C$ such that $\varliminf_{n \rightarrow \infty}\left\|x_{n}-x\right\|<\operatorname{diam} C$.

It follows, directly from the definition, that if X has ANS, then for any $\left\{x_{n}\right\}$ such that $\operatorname{diam}\left\{x_{n}\right\}>0$ and $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$ we get

$$
\varliminf_{n \rightarrow \infty}\left\|x_{n}-x\right\|<\operatorname{diam}\left\{x_{n}\right\}
$$

for some $x \in \operatorname{conv}\left\{x_{n}\right\}$.
Moreover, this statement is equivalent to the original definition of ANS. Similarly, if we add an assumption that conv $\left\{x_{n}\right\}$ is weakly compact, then we obtain an equivalent definition of w-ANS.

A Banach space X is said to satisfy Opial's condition (nonstrict Opial's condition) [11] if, whenever a sequence $\left\{x_{n}\right\}$ in X converges weakly to x, then for $y \neq x$

$$
\underline{\varliminf_{n \rightarrow \infty}}\left\|x_{n}-x\right\|<\varliminf_{n \rightarrow \infty}\left\|x_{n}-y\right\|,
$$

or respectively

$$
\underline{\varliminf i m}_{n \rightarrow \infty}\left\|x_{n}-x\right\| \leq \varliminf_{n \rightarrow \infty}\left\|x_{n}-y\right\| .
$$

We say that Banach space X has semi-Opial's property (SO) if for any bounded nonconstant sequence with $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$ there exists a subsequence $\left\{x_{n_{i}}\right\}$ weakly convergent to x and such that

$$
\lim _{i \rightarrow \infty}\left\|x-x_{n_{i}}\right\|<\operatorname{diam}\left\{x_{n}\right\} .
$$

We say that Banach space X has weak semi-Opial's property (w-SO) [7] if for any bounded nonconstant sequence $\left\{x_{n}\right\}$ with the weakly compact convex hull and with $\lim _{n \rightarrow \infty}\left\|x_{n}-x_{n+1}\right\|=0$ there exists a subsequence $\left\{x_{n_{i}}\right\}$ weakly convergent to x and such that $\lim _{i \rightarrow \infty}\left\|x-x_{n_{i}}\right\|<\operatorname{diam}\left\{x_{n}\right\}$.

It is known that the w-NS implies the w-ANS but there exist spaces with w-ANS lacking the w-NS [1].

Obviously the w-SO property implies the w-ANS but it is still an open question whether the w - ANS implies the $w-S O$ property. However, we have the following

Proposition. If the Banach space X has the $w-A N S$ and satisfies nonstrict Opial's condition, then it has the $w-S O$ property.

Proof. Let $\left\{x_{n}\right\}$ be a sequence of points in X such that $x_{n}-x_{n+1} \rightarrow 0$, $\operatorname{diam}\left\{x_{n}\right\}>0$ and $\operatorname{conv}\left\{x_{n}\right\}$ is weakly compact. By the above mentioned equivalent definition of the w-ANS there exists a subsequence $\left\{x_{n_{i}}\right\}$ and $\tilde{x} \in \operatorname{conv}\left\{x_{n}\right\}$ satisfying

$$
\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-\tilde{x}\right\|<\operatorname{diam}\left\{x_{n}\right\}
$$

We may assume without loss of generality that $\left\{x_{n_{i}}\right\}$ is weakly convergent to an x. Now, by nonstrict the Opial condition, we have

$$
\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\| \leq \lim _{i \rightarrow \infty}\left\|x_{n_{i}}-\bar{x}\right\|<\operatorname{diam}\left\{x_{n}\right\}
$$

The following conditions imply the w-SO property [7] of X :
(1) X has Opial's condition.
(2) X has uniformly normal structure [10].
(3) X is nearly uniformly convex [6].
(4) $X=X_{\beta}$, where $1<\beta<2, X_{\beta}=\left(l^{2},|\cdot|_{\beta}\right)$, and, for $x \in l^{2}$, $|x|_{\beta}=\max \left(\|x\|_{2}, \beta\|x\|_{\infty}\right)[1],[5],[8]$.
(5) X is the James quasi-reflexive space [13].

It is worth to remark here that the proposition gives only a sufficient condition for the w-SO property. There exist spaces with the w-SO property but without the nonstrict Opial condition.

For example $L^{p}([0,2 \pi])$ spaces with $1<p<\infty$, have uniformly normal structure, and thus (see point (2)) they are the w-SO, but if $p \neq 2$ they do not satisfy the nonstrict Opial condition [11].

A mapping $T: C \rightarrow X, C \subset X$, is called nonexpansive if

$$
\|T(x)-T(y)\| \leq\|x-y\| \quad \text { for all } \quad x, y \in C
$$

It is said that C is T-invariant whenever $T(C) \subset C$.
2. Fixed point theorems. In this section we consider the fixed point problem for the sum of two convex weakly compact subsets of a Banach space. At the beginning we recall some known theorems. First of them, which was proved in [12], is the following.

Theorem A. Let $(X,\|\cdot\|)$ be a uniformly convex Banach space and $C_{1}, C_{2}, \ldots, C_{k}, k \in \mathrm{~N}$, be nonempty weakly compact convex subsets of X. Let $C=\bigcup_{i=1}^{k} C_{i}$ be contractible in the strong topology and let $T: C \rightarrow C$ be nonexpansive. Then T has a fixed point in C.

The next one is due to T. Kuczumow, S. Reich and A. Stachura [9].
Theorem B. Let $(X,\|\cdot\|)$ be a Banach space and $C_{1}, C_{2}, \ldots, C_{k}, k \in \mathrm{~N}$, be nonempty weakly compact convex subsets of X with normal structure. If $C_{1}, C_{2}, \ldots, C_{k}$ satisfy the following condition

$$
C_{i} \cap C_{j} \neq \emptyset \Leftrightarrow|i-j| \leq 1
$$

for all $1 \leq i, j \leq k$, then $C=\bigcup_{i=1}^{k} C_{i}$ has the fixed point property for nonexpansive mappings.

We want to apply the w-SO property of a Banach space to obtain a similar result for the sum of two sets. Considering the sum of only two sets is connected with the difficulties to find a suitable approximate fixed point sequence for nonexpansive mapping. Unfortunately, the Furi-Martelli theorem [4], which is used in the proof of Theorem B, does not give any useful information about approximate fixed point sequence.

Theorem. Let $(X,\|\cdot\|)$ be a Banach space satisfying the weak semi-Opial condition and let A_{1}, A_{2} be nonempty weakly compact convex subsets of X such that their intersection $A_{1} \cap A_{2}$ is nonempty. Then every nonexpansive mapping $T: A_{1} \cup A_{2} \rightarrow A_{1} \cup A_{2}$ has a fixed point in $A_{1} \cup A_{2}$.

Proof. Let $T: A_{1} \cup A_{2} \rightarrow A_{1} \cup A_{2}$ be nonexpansive. Denote by \mathcal{M} a family of all nonempty and T-invariant subsets of $A_{1} \cup A_{2}$ such that
(i) every such subset has the form $B_{1} \cup B_{2}$, where $B_{1} \subset A_{1}, B_{2} \subset A_{2}$,
(ii) if $B_{k}, k=1,2$, is nonempty, then it is convex and weakly compact,
(iii) if both B_{1}, B_{2} are nonempty sets, then $B_{1} \cap B_{2} \neq \emptyset$.

Of course such a family is ordered by set inclusion. Thus by 'Zorn's Lemma there exists at least one set $C_{1} \cup C_{2}$ which is minimal and T-invariant. By a reasoning similar to that in [5, pages 35-36], we can restrict our considerations to the case in which all the members of the family \mathcal{M} are separable.

Thus $C_{1} \cup C_{2}$ is also separable. Moreover (analogously as in Lemma 3.3 [5]) we observe that $\operatorname{conv}\left(T\left(C_{1} \cup C_{2}\right) \cap C_{1}\right) \cup \operatorname{conv}\left(T\left(C_{1} \cup C_{2}\right) \cap C_{2}\right)=C_{1} \cup C_{2}$.

Now we can consider two cases.
Case 1. The minimal set $C_{1} \cup C_{2}$ is convex. In such a situation we can apply the Baillon-Schöneberg theorem [1] to get a fixed point of T.

Case 2. The minimal set $C_{1} \cup C_{2}$ is not convex. We will show that it is impossible. Fix z in $C_{1} \cap C_{2}$. By a standard argument (see, e.g.,[5]), we find a sequence $\left\{x_{n}\right\}$ of points in $C_{1} \cup C_{2}$ such that

$$
x_{n}=\frac{1}{n} z+\frac{n-1}{n} T\left(x_{n}\right) .
$$

Since T is nonexpansive, we have

$$
\begin{aligned}
\left\|x_{n}-x_{n+1}\right\| & =\left\|\frac{1}{n(n+1)}\left(z-T\left(x_{n}\right)\right)+\frac{n}{n+1}\left(T\left(x_{n}\right)-T\left(x_{n+1}\right)\right)\right\| \\
& \leq \frac{1}{n(n+1)}\left\|z-T\left(x_{n}\right)\right\|+\frac{n}{n+1}\left\|x_{n}-x_{n+1}\right\| .
\end{aligned}
$$

Therefore

$$
\left\|x_{n}-x_{n+1}\right\| \leq \frac{1}{n}\left\|z-T\left(x_{n}\right)\right\|
$$

and

$$
x_{n}-x_{n+1} \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

Now, by the semi-Opial condition, there is \bar{x} in $\operatorname{conv}\left\{x_{n}\right\}$ and a subsequence $\left\{x_{n_{i}}\right\}$ satisfying $\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-\bar{x}\right\|<\operatorname{diam}\left\{x_{n}\right\}$. By separability of $C_{1} \cup C_{2}$ (taking a subsequence if necessary) the limit $\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-y\right\|$ exists for any $y \in C_{1} \cup C_{2}$. Moreover, we can assume that $x_{n_{i}} \in C_{1}$ for $i \in N$ (in case $x_{n_{i}} \in C_{2}$ for $i \in N$ the proof is analogous). Here we have two possibilities: either there are $x, y \in C_{1}$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\|<\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-y\right\|, \tag{*}
\end{equation*}
$$

or for each $y \in C_{1}$ there exists a constant c such that

$$
\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-y\right\|=c
$$

In both situations we will find disjoint nonempty sets $B_{1} \subset C_{1}, B_{2} \subset C_{2}$ such that

$$
T\left(B_{1}\right) \subset B_{2}, T\left(B_{2}\right) \subset B_{1} .
$$

Indeed, if (*) holds, then let us take the asymptotic center $\operatorname{Ac}\left(\left\{x_{n_{i}}\right\}\right)$ of the sequence $\left\{x_{n_{i}}\right\}$ with respect to $C_{1} \cup C_{2}$. The fact $x_{n}-T\left(x_{n}\right) \rightarrow 0$ implies

$$
T\left(A c\left(\left\{x_{n_{i}}\right\}\right)\right) \subset A c\left(\left\{x_{n_{i}}\right\}\right) .
$$

Moreover, from the inequality (*) we get

$$
A c\left(\left\{x_{n_{i}}\right\}\right) \neq C_{1} \cup C_{2} .
$$

If

$$
A \mathrm{c}\left(\left\{x_{n_{\mathrm{i}}}\right\}\right)=B_{1} \cup B_{2}, \emptyset \neq B_{1} \subset C_{1}, \emptyset \neq B_{2} \subset C_{2},
$$

then, by minimality of $C_{1} \cup C_{2}$, we get

$$
B_{1} \cap B_{2}=\emptyset
$$

and

$$
T\left(B_{1}\right) \subset B_{2}, T\left(B_{2}\right) \subset B_{1}
$$

Suppose now that the condition (*) is not fulfilled. Thus for any $y \in C_{1} \cup C_{2}$ we have

$$
\begin{equation*}
c=\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-y\right\|<\operatorname{diam}\left\{x_{n}\right\}=d . \tag{**}
\end{equation*}
$$

Consider the family $\left(B\left(y, \frac{c+d}{2}\right) \cap C_{1}\right) \cup\left(B\left(y, \frac{c+d}{2}\right) \cap C_{2}\right), y \in C_{1} \cup C_{2}$, and observe that it has the finite intersection property.
Indeed, let $y_{1}, y_{2}, \ldots, y_{k}$ be any points in $C_{1} \cup C_{2}$. Then, by (**), for any $l=1,2, \ldots, k$ there is i_{l} such that

$$
\left\|x_{n_{i}}-y_{l}\right\|<(c+d) / 2 \text { for } i>i_{l} \text {. }
$$

Therefore $x_{n_{j}}$ belongs to each set $\left(B\left(y_{l}, \frac{c+d}{2}\right) \cap C_{1}\right) \cup\left(B\left(y_{l}, \frac{c+d}{2}\right) \cap C_{2}\right)$ where j is the greatest of the numbers $i_{1}, i_{2}, \ldots, i_{k}$. Moreover the set $B\left(y, \frac{c+d}{2}\right) \cap C_{k}, k=1,2$, are weakly compact and convex. Hence the intersection of all the sets of our family is nonempty.

Let

$$
D=\bigcap_{y \in C_{1} \cup C_{2}}\left(B\left(y, \frac{c+d}{2}\right) \cap C_{1}\right) \cup\left(B\left(y, \frac{c+d}{2}\right) \cap C_{2}\right) .
$$

We will show that D is T-invariant. Let us take $y \in C_{1} \cup C_{2}$, (e.g. $y \in C_{1}$) and recall that $\operatorname{conv}\left(T\left(C_{1} \cup C_{2}\right) \cap C_{1}\right)=C_{1}$. Thus we can approximate y by a convex combination of elements $T\left(y_{i}\right)$ from $T\left(C_{1} \cup C_{2}\right)$. For $w \in D$
and $\varepsilon>0$ we find $\sum_{i=1}^{m} \alpha_{i} T\left(y_{i}\right)$ such that $\left\|w-\sum_{i=1}^{m} \alpha_{i} T\left(y_{i}\right)\right\|<\varepsilon$ and therefore

$$
\begin{aligned}
\|y-T(w)\| & \leq\left\|\sum_{i=1}^{m} \alpha_{i} T\left(y_{i}\right)-T(w)\right\|+\left\|y-\sum_{i=1}^{m} \alpha_{i} T\left(y_{i}\right)\right\| \\
& \leq \sum_{i=1}^{m} \alpha_{i} \frac{c+d}{2}+\varepsilon=\frac{c+d}{2}+\varepsilon .
\end{aligned}
$$

Hence D is T-invariant. We will show that $D \neq C_{1} \cup C_{2}$. Indeed, for $w \in D$ and $y \in C_{1} \cup C_{2}$, we have $\|w-y\| \leq(c+d) / 2<\operatorname{diam}\left\{x_{n}\right\}$. Next, there are $x_{n_{1}}, x_{n_{2}}$ such that $\left\|x_{n_{1}}-x_{n_{2}}\right\|>(c+d) / 2$ and therefore at least one of them does not belong to D. Let $D=B_{1} \cup B_{2}$. Because of the minimality of $C_{1} \cup C_{2}$ the sets B_{1}, B_{2} are disjoint and $T\left(B_{1}\right) \subset B_{2}, T\left(B_{2}\right) \subset B_{1}$, which we claimed.

Having such the sets B_{1} and B_{2}, we can apply the Baillon-Schöneberg theorem [1] to the mapping $T^{2}: B_{1} \rightarrow B_{1}$ to get a fixed point $b_{1} \in B_{1}$, $\left(T^{2}\left(b_{1}\right)=b_{1}\right)$.

For $t>0$ we define the set

$$
A(t)=\left\{x \in C_{1} \cup C_{2}:\left\|x-b_{1}\right\|^{2}+\left\|x-T\left(b_{1}\right)\right\|^{2} \leq t^{2}\right\}
$$

and put $A_{k}(t)=A(t) \cap C_{k}, k=1,2$. Let

$$
t_{0}=\min \{t: A(t) \neq \emptyset\}, \quad t_{1}=\min \left\{t: A(t)=C_{1} \cup C_{2}\right\} .
$$

Of course such t_{0}, t_{1} exist and $t_{0} \neq 0$. Moreover, for $t \geq t_{0}$ we have $T(A(t)) \subset A(t)$.

Let us also observe that $A\left(t_{0}\right) \neq C_{1} \cup C_{2}$ and hence $t_{0}<t_{1}$. Indeed, if $A\left(t_{0}\right)=C_{1} \cup C_{2}$ then for all $x \in C_{1} \cup C_{2}$ we have the equality

$$
\left\|x-b_{1}\right\|^{2}+\left\|x-T\left(b_{1}\right)\right\|^{2}=t_{0}^{2}
$$

Let us take $z \in C_{1} \cap C_{2}$ and for example $z \neq b_{1}$. Then $\left(z+b_{1}\right) / 2$ belongs to C_{1} and in view of convexity of $\|\cdot\|^{2}$ we reach the following contradiction

$$
\begin{aligned}
t_{0}^{2} & =\left\|\frac{z+b_{1}}{2}-b_{1}\right\|^{2}+\left\|\frac{z+b_{1}}{2}-T\left(b_{1}\right)\right\|^{2} \\
& \leq \frac{1}{4}\left\|z-b_{1}\right\|^{2}+\frac{1}{2}\left\|z-T\left(b_{1}\right)\right\|^{2}+\frac{1}{2}\left\|b_{1}-T\left(b_{1}\right)\right\|^{2}<\frac{1}{2} t_{0}^{2}+\frac{1}{2} t_{0}^{2}=t_{0}^{2} .
\end{aligned}
$$

Since $A_{k}\left(t_{0}\right) \neq \emptyset, k=1,2$, and both sets are weakly compact and convex, by minimality of $C_{1} \cup C_{2}$, we have $A_{1}\left(t_{0}\right) \cap A_{2}\left(t_{0}\right)=\emptyset$ and

$$
T\left(A_{1}\left(t_{0}\right)\right) \subset A_{2}\left(t_{0}\right), \quad T\left(A_{2}\left(t_{0}\right)\right) \subset A_{1}\left(t_{0}\right)
$$

One can also easily prove that

$$
T\left(A_{1}(t)\right) \subset A_{2}(t), \quad T\left(A_{2}(t)\right) \subset A_{1}(t) \quad \text { for } \quad t_{0} \leq t<t_{1} .
$$

To get

$$
\overline{\bigcup_{t_{0} \leq t<t_{1}} A_{k}(t)}=A_{k}\left(t_{1}\right)=C_{k} \quad \text { for } \quad k=1,2
$$

it is sufficient to observe that for fixed $y_{0} \in A_{k}\left(t_{0}\right)$ and for any $x \in C_{k}$, $x \neq y_{0}, \quad 0<\alpha_{n}<1$ and $\alpha_{n} \rightarrow 1$, we have

$$
\alpha_{n} x+\left(1-\alpha_{n}\right) y_{0} \rightarrow x \quad \text { as } \quad n \rightarrow \infty
$$

and

$$
\begin{aligned}
& \left\|\alpha_{n} x+\left(1-\alpha_{n}\right) y-b_{1}\right\|^{2}+\left\|\alpha_{n} x+\left(1-\alpha_{n}\right) y-T\left(b_{1}\right)\right\|^{2} \\
& \leq \alpha_{n}\left(\left\|x-b_{1}\right\|^{2}+\left\|x-T\left(b_{1}\right)\right\|^{2}\right)+\left(1-\alpha_{n}\right)\left(\left\|y-b_{1}\right\|^{2}+\left\|y-T\left(b_{1}\right)\right\|^{2}\right) \\
& \leq \alpha_{n} t_{1}^{2}+\left(1-\alpha_{n}\right) t_{0}^{2}<t_{1}^{2}
\end{aligned}
$$

The above considerations guarantee us the following inclusion

$$
T\left(A_{1}\left(t_{1}\right) \cap A_{2}\left(t_{1}\right)\right) \subset A_{1}\left(t_{1}\right) \cap A_{2}\left(t_{1}\right)
$$

which contradicts the minimality of $C_{1} \cup C_{2}$ and completes the proof.

References

[1] Baillon, J. B. and R. Schōneberg, Asymptotic normal structure and fixed points of nonexpansive mappings, Proc. Amer. Math. Soc. 81 (1981), 257-264.
[2] Brodskii, M. S. and D. P. Milman, On the center of a convex set, Dokl. Akad. Nauk SSSR 59 (1948), 837-840.
[3] Edelstein, M., The construction of an asymptotic center with a fixed point property, Bull. Amer. Math. Soc. 78 (1972), 206-208.
[4] Furi, M. and M. Martelli, A Lefschetz type theorem for the minimal displacement of points under maps defined on a class of ANR's, Boll. Un. Mat. Ital. 10 (1974), 174-181.
[5] Goebel, K. and W. A. Kirk, Topics in metric fixed point theory, Cambridge University Press, 1990.
[6] Huff, R., Banach spaces which are nearly uniformly convex, Rocky Mountain J. Math. 10 (1980), 743-749.
[7] Kuczumow, T., S. Reich and M. Schmidt, A fixed point property of l_{1}-product spaces, Proc. Amer. Math. Soc. 119 (1993), 457-463.
[8] Kuczumow, T., S. Reich, M. Schmidt and A. Stachura, Strong asymptotic normal structure and fixed points in product spaces, Nonlinear Anal. 21 (1993), 501-515.
[9] Kuczumow, T., S. Reich and A. Stachura, Minimal displacement of points under holomorphic mappings and fixed point properties for unions of convex sets, Trans. Amer. Math. Soc. 343 (1994), 575-586.
[10] Maluta, E., Uniformly normal structure and related coefficients, Pacific J. Math. 111 (1984), 357-369.
[11] Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
[12] Reinermann, J. and R. Schōneberg, Some results and problems in the fixed point theory of nonexpansive and pseudocontractive mappings in Hilbert space, (Proc. Sem., Dalhousie Univ., Halifax, NS., 1975) (1976), Academic Press, New York, 187196.
[13] Tingley, D., The normal structure of James' quasi-reflexive space, Bull. Austral. Math. Soc. 42 (1990), 95-100.

Instytut Matematyki UMCS
received September 6, 1996
Plac Marii Curie-Sklodowskiej 1
20-031 Lublin, Poland

