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Abstract. We apply some of Banach space properties depending on the 
metric behaviour of weakly convergent sequences to obtain the existence of 
fixed points for nonexpansive mappings.

Introduction. In this paper we deal with such properties of Banach spaces 
as normal structure, weak normal structure, asymptotic normal structure, 
weak asymptotic normal structure and different kinds of Opial’s conditions. 
Our aim is to concentrate on applications of the above mentioned properties 
to the fixed point theory of nonexpansive mappings.

1. Notations, definitions and basic facts. Throughout the paper, 
(A, || • ||) denotes a Banach space. The convex closure of a subset C of X is 
denoted by convC. Also fl(a:,r) always denotes the closed ball centered 
at x with radius r > 0.

For x G X and a bounded sequence {xn) the asymptotic radius of {xn} 
at x [3] is the number

r(x,{æn}) = lim ||x - xn||. n—*-oo
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Now for a nonempty closed subset C of X the asymptotic radius of {xn} 
in C [3] is the number

r(C, {xn}) = inf{r(x, {xn}): x € C}.

The asymptotic center of {xn} in C [3] is the set

Ac(C,{xn}) = {x € C : r(x,{xn}) = r(C,{x„})}.

When C is fixed we will simply write Ac({x„}) .
The space X is said to have normal structure (weak normal structure) [2]

if for each bounded (weakly compact) and convex subset C of X consisting 
of more than one point there is a point x 6 C such that

sup{||j/ — x|| : y € C} < diamC.

We denote this property briefly by NS (w -NS).
We will say that X has asymptotic normal structure (weak asymptotic

normal structure) [1], ANS (w-ANS) for short, if for each bounded (weakly 
compact) and convex subset C of X consisting of more than one point and 
each sequence {xn} in C satisfying lim^oo ||xn — xn+j || = 0 there is a 
point x 6 C such that limn_,oo ||xn - x|| < diamC.

It follows, directly from the definition, that if X has ANS, then for any 
{xn} such that diam{xn} > 0 and lim,,-»,» ||xn+1 - xnII = 0 we get

lim ||xn - x|| < diam{xn}

for some x € conv{xn}.
Moreover, this statement is equivalent to the original definition of ANS. 

Similarly, if we add an cissumption that conv{x„} is weakly compact, then 
we obtain an equivalent definition of w -ANS.

A Banach space X is said to satisfy Opial’s condition (nonstrict Opial’s 
condition) [11] if, whenever a sequence {xn} in X converges weakly to x, 
then for j/ / x

lim ||xn - x|| < lim ||x„ - j/||, 
n—*oo n—*oo

or respectively
Hm ||x„ - x|| < lim ||x„ - y||.

n—►oo n—►oo

We say that Banach space X has semi-Opial’s property (SO) if for any 
bounded nonconstant sequence with limn_0O ||xn — xn+11| = 0 there exists 
a subsequence {xni} weakly convergent to x and such that

lim ||x — xn<|| < diam{xn}.
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We say that Banach space X has weak semi-Opial’s property (w -SO) [7] 
if for any bounded nonconstant sequence {xn} with the weakly compact 
convex hull and with limn_oo ||a:n — xn+i || = 0 there exists a subsequence 
{a-'n,} weakly convergent to x and such that limi_oo ||a: — xnj || < diam{a;n}.

It is known that the w -NS implies the w -ANS but there exist spaces 
with w -ANS lacking the w -NS [1].

Obviously the w -SO property implies the w -ANS but it is still an open 
question whether the w - ANS implies the w -SO property. However, we 
have the following

Proposition. If the Banach space X has the w-ANS and satisfies nonstrict 
Opial’s condition, then it has the w -SO property.

Proof. Let {xn} be a sequence of points in X such that xn — £„+i —* 0, 
diam{xn} > 0 and conv{a:n} is weakly compact. By the above mentioned 
equivalent definition of the w-ANS there exists a subsequence {£„<} and 
x 6 conv{a;n} satisfying

lim ||xni - ¿|| < diam{xn}.
»—>oo

We may assume without loss of generality that {a;ni} is weakly convergent 
to an x. Now, by nonstrict the Opial condition, we have

lim ||a:ni - ®|| < lim ||xn - ¿|| < diam{xn}.
I—*oo i—*oo

The following conditions imply the w -SO property [7] of X:
(1) X has Opial’s condition.
(2) X has uniformly normal structure [10].
(3) X is nearly uniformly convex [6].
(4) X = Xp, where 1 < ¡3 < 2, Xp = (Z2, | • 1^), and, for x € Z2, 

l®lp = max(||a:||2,/?||a;||oo) [1], [5], [8].
(5) X is the James quasi-reflexive space [13].

It is worth to remark here that the proposition gives only a sufficient con
dition for the w -SO property. There exist spaces with the w -SO property 
but without the nonstrict Opial condition.

For example Lp([0,27t]) spaces with 1 < p < oo, have uniformly normal 
structure, and thus (see point (2)) they are the w -SO, but if p 2 they 
do not satisfy the nonstrict Opial condition [11].

A mapping T : C —* X, C C X , is called nonexpansive if 

||T(a;) - T(y)|| < ||x - y|| for all ®,jzeC.

It is said that C is T— invariant whenever T(C) C C.
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2. Fixed point theorems. In this section we consider the fixed point 
problem for the sum of two convex weakly compact subsets of a Banach 
space. At the beginning we recall some known theorems. First of them, 
which was proved in [12], is the following.

Theorem A. Let (X, || • ||) be a uniformly convex Banach space and 
Ci? C2,...,Cfc, k 6 N, be nonempty weakly compact convex subsets of X. 
Let C = ULi Cj be contractible in the strong topology and let T : C —> C 
be nonexpansive. Then T has a fixed point in C.

The next one is due to T. Kuczumow, S. Reich and A. Stachura [9].

Theorem B. Let (X, || • ||) be a Banach space and Cj, C2,..., Ck, k € N, 
be nonempty weakly compact convex subsets of X with normal structure. 
If Ci, C2,..., Ck satisfy the following condition

Ci Cl Cj / 0 <=> |i — j| < 1

for all 1 < i,j < k, then C = IJt=i C< ^ias ^ie fixed point property for 
nonexpansive mappings.

We want to apply the w-SO property of a Banach space to obtain a 
similar result for the sum of two sets. Considering the sum of only two 
sets is connected with the difficulties to find a suitable approximate fixed 
point sequence for nonexpansive mapping. Unfortunately, the Furi-Martelli 
theorem [4], which is used in the proof of Theorem B, does not give any 
useful information about approximate fixed point sequence.

Theorem. Let (X, || • ||) be a Banach space satisfying the weak semi-Opial 
condition and let Ai, A2 be nonempty weakly compact convex subsets 
of X such that their intersection Ai 0 A2 is nonempty. Then every 
nonexpansive mapping T : di U A2 —> Ai U A2 has a fixed point in 
Ai U A2.

Proof. Let T : Ai U A2 —* A\ U A2 be nonexpansive. Denote by XI a 
family of all nonempty and T—invariant subsets of Ai U A2 such that
(i) every such subset has the form Bi U B2, where Bi C Ai, B2 C A2,
(ii) if Bfc, k = 1,2, is nonempty, then it is convex and weakly compact,
(iii) if both Bi, B2 are nonempty sets, then B\ n B2 0.

Of course such a family is ordered by set inclusion. Thus by Zorn’s 
Lemma there exists at least one set C1UC2 which is minimal and T—invariant 
By a reasoning similar to that in [5, pages 35-36], we can restrict our consid
erations to the case in which all the members of the family A4 are separable.
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Thus C1UC2 is also separable. Moreover (analogously as in Lemma 3.3 [5]) 
we observe that conv(T(Ci UC2) DCi) Uconv(T(Ci UC^jPlC^) = C\ UC*2-

Now we can consider two cases.
Case 1. The minimal set C\ U C2 is convex. In such a situation we can 

apply the Baillon-Schoneberg theorem [1] to get a fixed point of T.
Case 2. The minimal set C\ U C2 is not convex. We will show that it 

is impossible. Fix z in Ci D C2. By a standard argument (see, e.g.,[5]), 
we find a sequence {xn} of points in C\ U C2 such that

xn 1
-2 + n

n - 1 
n

T(x„).

Since T is nonexpansive, we have

|ln - *n+l|

1 "z - T(®„)|| + —||x„ - x„+i||.
n(n + 1) n + 1

Therefore
Ikn - ®n+i|| < 7II2 - T(a:n)|| n

and
Xn ~ Xn+i --- > 0.

n—>oo

Now, by the semi-Opial condition, there is x in conv{xn} and a subse
quence {xni} satisfying limj_,oo Iknj — z|| < diam{xn) . By separability 
of Ci U C2 (taking a subsequence if necessary) the limit limj-,,» ||xni — y\\ 
exists for any y € Cj U C2. Moreover, we can assume that xni € Ci for 
i € N (in case rn, G C2 for i G N the proof is analogous). Here we have 
two possibilities: either there are x,y £ Ci such that

(*) Jim ||«n< - *|| < Hm ||a;ni - ?/||,
1—>oo i—*oo

or for each y € Ci there exists a constant c such that

lim ||inj - 3/II = c.
<—♦00

In both situations we will find disjoint nonempty sets Bi C Ci, B2 C C2 
such that

T(Bi)cB2, T(B2)QBi.
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Indeed, if (*) holds, then let us take the asymptotic center Ac({a:nj}) of 
the sequence {¡sni} with respect to Ci U C2. The fact xn — T(xn) —♦ 0 
implies

T(4c({x„,})) C Ac({®nj}).

Moreover, from the inequality (*) we get

Ac({xn<}) i Ci UC2.

If
Ac({xn,}) = U B2, 0 / Bi C Ci, 0 / B2 C C2, 

then, by minimality of Ci U C2, we get

B\ n B2 = 0

and
T(Bi)cB2, T(B2)cBi.

Suppose now that the condition (*) is not fulfilled. Thus for any 
y G Ci U C2 we have

(**) c = lim ||xn< - y\\ < diam{xn} = d.i—*oo

Consider the family (B (y, D Ci) U (B (j/, fl C2) , y G Ci U C2, 
and observe that it has the finite intersection property.
Indeed, let j/i, y2,..., J/k be any points in Ci U C2. Then, by (**), for any 
Z = l,2, there is t/ such that

Ikn. - yiII < (c + «0/2 for * > »/•

Therefore xny belongs to each set (5 (j/;, D Ci) U (B (yi, (~1 C2) 
where j is the greatest of the numbers ¿i,i2,...,ifc. Moreover the set 
B (y, Cl Cfc, k = 1,2, are weakly compact and convex. Hence the 
intersection of all the sets of our family is nonempty.

Let

We will show that D is T-invariant. Let us take y G Ci UC2, (e.g. y G Ci) 
and recall that conv(T(Ci UC2)flCi) = Ci. Thus we can approximate y 
by a convex combination of elements T(j/,) from T(CiUC2). For w G D
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and e > 0 we find 537Li £*.T(y,) such that ||w - 53™i ajT(j/j)|| < £ and 
therefore

m m

II» - T(w)|| < || aiTM - T(w)|| + 119-52
t=l i=l

sZ + £ =

Hence D is T-invariant. We will show that D C1UC2. Indeed, for w € D 
and y 6 C\ U C2, we have ||w - y|| < (c + d)/‘2 < diam{x„}. Next, there 
are xni, xn2 such that ||x„, - x„21| > (c + d)/2 and therefore at least one of 
them does not belong to D. Let D = Bj U B2. Because of the minimality of 
Ci U C2 the sets Bi, B2 are disjoint and T(5i) C B2, T(B2) C Hi, which 
we claimed.

Having such the sets Hi and B2 , we can apply the Baillon-Schoneberg 
theorem [1] to the mapping T2 : Bi —► B\ to get a fixed point 61 6 Bi, 
(7,2(61) = 61).

For Z > 0 we define the set

A(Z) = {xeGuCi :||x-61||2 + ||x-T(01)||2 <Z2} 

and put Afc(Z) = A(Z) n Ck, fc = 1, 2. Let

Zq = min{Z : A(Z) 0}, Zi = min{Z : A(Z) = Ci U C2}.

Of course such Zo, Zi exist and Zo / 0. Moreover, for Z > to we have 
T(A(I)) C A(l).

Let us also observe that A(Zo) 7^ Ci U C2 and hence Zo < Zi . Indeed, if 
4(Z0) = Ci U C2 then for all x 6 Ci U C2 we have the equality

||x-6i||2 + |k-T(6i)||2 = Z2.

Let us take z € Ci 0 C2 and for example z bx. Then (2 + ¿>i)/2 
belongs to Ci and in view of convexity of || • ||2 we reach the following 
contradiction

(j = l|i±^_4l|P + l|£±^-r(MI!

< jll* - h II2 + jll* - r(MII2 + jll»i - W, )ll2 < ¿i? + 5<o = <»•

Since Afc(Zo) f 0, k = 1, 2, and both sets are weakly compact and convex, 
by minimality of Ci U C2, we have ?li(Zo) (~l ^2(^0) = 0 and

T(Ai(Z0)) C A2(Z0), T(A2(Zo)) C A(Zo).
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One can also easily prove that

r(A!(i)) C A2(/), T(A2(<)) C At(t) for t0 < t < tp

To get
(J Afc(i) = Afc(*i) = for ¿=1,2

*O<«<1

it is sufficient to observe that for fixed yo € >U(io) and for any x 6 Ck, 
x yo, 0 < an < 1 and an —> 1, we have

anx + (1 — on)j/o —> x as n —► oo

and
||a„x + (1 - a„)j/ - 6i||2 + ||a„x + (1 - an)y - T(bi)||2

< «n (Ik - ¿ill2 + Ik - T(M|2) + (1 - an) (Ik - ¿ill2 + Ik - T(M|2)
< antl + (1 - an)t20 < 1%.

The above considerations guarantee us the following inclusion 

T(Ai(<i) D A2(ti)) C Ai(<i) D A2(<i),

which contradicts the minimality of Ci U C2 and completes the proof.
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