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The Denjoy - Wolff Theorem

Abstract. We discuss the asymptotic behavior of one-parameter discrete 
and continuous semigroups of holomorphic and p-nonexpansive mappings 
in Hilbert and Banach spaces in the spirit of the classical Denjoy-Wolff 
Theorem

Let D be a domain in a complex Banach space X. By Hol(D,X) we 
denote the set of all holomorphic mappings on D with values in X. The 
subset of all holomorphic self-mappings of D will be denoted by Hol(D). 
This set is a semigroup with respect to composition. A mapping F 6 Hol(D) 
is called an automorphism of D if it has an inverse F_1 which also belongs 
to Hol(D). The set of all automorphisms of D is a subgroup of Hol(D) 
which will be denoted by Aut(D).

The main goal of our paper is to discuss the asymptotic behavior of one- 
parameter discrete and continuous semigroups in Hol(D) in the spirit of 
Denjoy and Wolff.

Theorem (Denjoy-Wolff). Let A be the open unit disk in the complex 
plane C. If F € Hol(A) is not the identity and is not an automorphism 
of A with exactly one fixed point in A, then there is a unique point a in 
the closed unit disk A such that the iterates (Fn}~=1 of F converge to a, 
uniformly on compact subsets of A.



220 S. Reich and D. Shoikhet

Over the last twenty years this result has been developed in at least three 
directions. The first one concerns increasing the dimension of the underlying 
space. Finite dimensional extensions are to be found, for instance, in the 
papers by Kubota [42], MacCluer [47], Chen [11], Abate [1], [2] and Mercer 
[51]. In this connection see also [6], [4], [46], [28] and [68].

Infinite-dimensional generalizations are due, for example, to Fan [18], 
[19], Włodarczyk [74], [75], [76], Goebel [20], Vesentini [69], [70], Sine [65] 
and Mellon [50]. These authors used a variety of approaches and assumed 
diverse conditions on the mappings and the domains.

The family {£"}[£-! of the iterates of F € Hol(D) can be considered 
a one-parameter discrete subsemigroup of Hol(D). Therefore the second 
direction is concerned with analogues of the Denjoy-Wolff Theorem for con­
tinuous semigroups of holomorphic self-mappings of D. This approach has 
been used by several mathematicians to study the asymptotic behavior of 
solutions to Cauchy problems (see, for example, [8], [3], [5], [13] and [57]). 
Berkson and Porta [8] also apply their continuous analogue of the Denjoy- 
Wolff Theorem to the study of the eigenvalue problem for composition op­
erators in Hardy spaces (see also [13]).

Several talks in the present conference spurred a renewed interest in an 
implicit method for finding fixed points of a nonexpansive mapping which 
uses the so-called “approximating curves”. This method also works effec­
tively for the class of holomorphic mappings (see, for example, [22], [40], 
[61], [49], [37], [31], [32], [58]). These results can also be considered implicit 
continuous analogues of the Denjoy-Wolff Theorem. It is remarkable that 
the asymptotic behavior of the approximating curves is actually nicer than 
that of the usual iterative process.

Moreover, this implicit method can be useful not only for a self-mapping 
of a domain, but also for a wider class of mappings in Hol(D,A) which 
satisfy certain “one-sided” estimates (see, for example, [32] and Section 2.2 
below).

Finally, note that it is well known that each element of Hol(D) is a 
nonexpansive mapping with respect to any metric assigned to the domain 
D by a Schwarz-Pick system (see, for example, [24]).

Therefore the third direction yields extensions of the Denjoy-Wolff The­
orem to the wider class of such nonexpansive mappings (which are not 
necessarily holomorphic). See, for example, [20], [23], [22], [61], [53], [41].

We begin with some historical information to trace common features and 
differences in these developments.

1. Discrete iterations. The classical Denjoy-Wolff Theorem deals with 
the convergence of the iterates of a holomorphic self-mapping of the open
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unit disk. Therefore we will say in general that a mapping F € Hol(D) is 
power convergent to a mapping R € Hol(D,X) if the sequence of iterates 
{Fn}^_i converges to R uniformly on each ball strictly inside D. If R = a 
is a constant mapping, then the point a E D will be called attractive.

1.1 The one-dimensional case. In this section we let D be the open unit 
disk A in the complex place C. Recall that an automorphism F € Aut(A) 
is said to be elliptic if it has exactly one fixed point in A.

So, the Denjoy-Wolff Theorem asserts that F € Hol(A) is power conver­
gent if and only if it is not an elliptic automorphism.

This result is, in fact, a summary of the following three assertions due to 
Denjoy and Wolff [14], [77], [78]. Each one of them has been extended to 
different situations.

Theorem 1.1 (The Wolff-Schwarz Lemma). If F € Hol(A) has no fixed 
point in A, then there is a unique unimodular point a € 9A such that every 
disk Da in A, internally tangent to 9A at a, is F-invariant, i.e.,

(1.1) F(£>„) C Da.

Theorem 1.2. If F 6 Hol(A) has no fixed point in A, then there is a unique 
unimodular point b € 9A such that the sequence {Fn}™=i converges to b, 
uniformly on compact subsets of A.

Theorem 1.3. If F € Hol(A) is not an automorphism of A and has a fixed 
point c in A, then this point is unique in A, and the sequence {Fn}^=1 
converges to c uniformly on compact subsets of A.

The limit point of Theorem 1.2 will be called the Denjoy-Wolff point of 
F.

The point a in Theorem 1.1 and the point b in Theorem 1.2 are, of course, 
one and the same. However, this is not always the case in higher dimensional 
situations.

Therefore, in the general case, the point a of Theorem 1.1 will usually be 
called the sink point of F. So, the sink point is the Denjoy-Wolff point if it 
is also attractive.

In fact, there are many situations in the higher dimensional case when 
a holomorphic fixed point free mapping has a sink point, but is not power 
convergent (see section 1.2).

Returning to the one-dimensional case, we refer the reader to the paper 
by R. Burckel [9] and to the book by C. Cowen and B. MacCluer [13] for
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a modern interpretation of the Denjoy-Wolff Theorem and its applications. 
Here we mention only three observations concerning this case.

Remark 1.1. The Denjoy-Wolff Theorem directly implies that if F G 
Hol(A) is power convergent to a nonconstant mapping, then it is an auto­
morphism.

We will see below that this fact does not hold in general.

Remark 1.2 By using the Schwarz Lemma, Theorem 1.3 can be rephrased 
in the following manner:

Theorem 1.4. Let F 6 Hol(A) have a fixed point a 6 A. If F is not the 
identity, then F is power convergent if and only if |jF,'(ct)| < 1.

It turns out that by using the notion of the derivative and its spectral 
properties, one can also study power convergent mappings in higher dimen­
sional spaces. See, for example, [69], [35], [70], [1], [2], [36].

Remark 1.3. The proofs of Theorems 1.1 and 1.2 are based on the Schwarz 
Lemma, Montel’s Theorem and a geometrical description of the set Da.

For £ € 5 A the set

(1.2) Dt = D(£, R) = € A : < R j

is called a horocycle at £ with radius R.
So, Theorem 1.1 actually asserts the following:

Theorem 1.5. If F E Hol(A) has no fixed point in A, then there is a 
unique point a 6 dA such that
(1 3) I1 ~ *WI2 < >1 ~ *5|2

1 - |F(z)|2 - 1 - |z|2
for all z € A.

We are now in a position to formulate several generalizations of Theorems
1.1, 1.2 and 1.3.

1.2. The unit Hilbert ball. Let H be a complex Hilbert space with the 
inner product (•,•), and let B be the open unit ball in H.

The following generalization of the Wolff-Schwarz Lemma (Theorem 1.1) 
is due to K. Goebel [20]. For the finite dimensional case, H = Cn, this 
result was independently obtained by B. MacCluer [47] and G. Chen [11].
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Theorem 1.6. If F 6 Hol(D) has no fixed point, then there exists a unique 
point a 6 dB such that for each 0 < R < oo the set

E(a, R) ={x
1- II x IP <Re b

is F-invariant.

Geometrically, the set E(a, R) is an ellipsoid the closure of which inter­
sects the unit sphere dB at the point a. It is a natural analogue of the 
horocycle D(a, R).

Now the question is whether the sink point a in Theorem 1.6 is also the 
Denjoy-Wolff point of F, i.e., is it attractive?

For the finite dimensional case (B is then the open Euclidean ball in 
H = Cn) the affirmative answer was given by B. MacCluer [47].

For infinite dimensional Hilbert balls A. Stachura [66] has given a coun­
terexample to show that the convergence result fails even for biholomorphic 
self-mappings.

Nevertheless, some restrictions on a mapping from Hol(B) lead to a gen­
eralization of Theorem 1.2.

The following result was obtained by Cho-Ho Chu and P. Mellon [12].

Theorem 1.7. Let B be the open unit ball in a Hilbert space H, and let 
F € Hol(B) be a compact mapping with no fixed point in B. Then the sink 
point a in Theorem 1.6 is attractive, i.e., the sequence {Fnj of iterates of F 
converges locally uniformly on B to the constant mapping taking the value 
a.

Although this theorem contains Theorem 1.2 (as well as the above- 
mentioned finite-dimensional result of B. MacCluer), at the same time it 
loses sight of the automorphisms of B because of the compactness restric­
tion. In this connection we have to mention a result by T.J. Suffridge [67] 
which complements our information.

Theorem 1.8. Let B be as above, and let F € Hol(B) be an automorphism 
of B with exactly two fixed points on dB. Then one of them is an attractive 
sink point of F.

Remark 1.4. It is known that each automorphism of B can be extended to 
an automorphism of B and that it has a fixed point in B (see T.L. Hayden 
and T. J. Suffridge [25]). Moreover, if it does not have a fixed point in B, 
then it has one or two fixed points on the boundary.
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We are not going to discuss now possible generalizations of Theorem 
1.3 (that is, the case when F has an interior fixed point), since such a 
discussion requires an additional local study of such a point, and is also 
connected to another important topic of fixed point theory, namely the 
study of holomorphic retracts.

We will consider this question in the sequel in somewhat more general 
situations. For weak convergence results we refer the reader, for example, 
to [22]. We also note that Theorem 1.1 can be generalized to the operator 
ball over a Hilbert space H and more generally to the open unit ball U of 
a so-called J*-algebra (see [74], [75], [76], [50]) while Theorem 1.2 fails in 
general even we assume the compactness of F (see Example 1.1 below). A 
visible reason for such nonattractiveness of the sink point is the nonsimple 
structure of the boundary of the domain. Therefore, even for the finite­
dimensional case it would be significant to get out of the framework of the 
Euclidean ball.

1.3. Convex domains in C". In 1941 M.H. Heins [27] extended the 
Denjoy-Wolff Theorem to a finitely connected domain bounded by Jordan 
curves in C. His approach is specific to the one-dimensional case.

Another look at the Denjoy-Wolff Theorem is provided by a useful result 
of P. Yang [80] concerning a characterization of the horocycle in terms of 
the Poincare hyperbolic metric in A. More precisely, he established the 
following formula:

lim [p(A,M) - p(0,M)] = j log •

So, in these terms the horocycle Da in A can be described by the formula

(1.4) D(a, R) = {z e A : lim (p(z, w) - p(0,w)) < log R}.

Since a hyperbolic metric can be defined in each bounded domain in C", one 
can try to extend this formula and use it as a definition of the horosphere in 
a domain in Cn. Unfortunately, in general the limit in (1.4) does not exist.

Therefore, the new idea of M. Abate [1] was to study two kinds of horo- 
spheres. More precisely, he defined the small horosphere EZo(x, R) of center 
x, pole z0 and radius R by the formula

Ez0(x, R) = {z e D : lim sup[A'f)(x, w) - AD(z0, w)] < ^log R},
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and the big horosphere of center x, pole zo and radius R by the formula

FZo(x, A) = {z e D : lim inf[A'D(z, w) - KD(z0, w)] < log R},

where D is a bounded domain in Cn and R'd is its Kobayashi metric. For 
the Euclidean ball in Cn, FZo(x, A) = FZo(a:,A) (see [1], [80]).

Thus each assertion which states for a domain D in Cn the existence of 
a point a £ dD such that

(1.5) r(Fz(a,A))cFz(a,A))

for all z € D, R > 0, f € Hol(D) and n = 1,2,... is a generalization of 
Wolff’s Theorem 1.1.

This is true, for example, for a bounded convex domain in Cn [1]. A 
more general result was established by M. Abate in another work [4].

Theorem 1.9. Let D be a bounded complete hyperbolic domain with a 
simple boundary, and let z ę D. Suppose that for some f 6 Hol(D) the 
sequence of iterates {/"} is compactly divergent. Then there is a € dD 
such that for all z € D, R > 0 and n = 1,2,... the inclusion (1.5) holds.

In fact, the assumptions of Theorem 1.9 are not sufficient to ensure a 
convergence result. Indeed, to generalize the notion of a sink point we give 
the following definition.

Let D be a domain in a Banach space X and let F 6 Hol(J9). We will 
say that a point x 6 dD is a boundary sink point for F if there exist two 
sets of neighborhoods {f/a} and {VQ}, a £ A ( a directed set), in D such 
that the following conditions hold:

(i) Ua C_Va C £>;

(ii) x 6 Ua-,
(iii) noex^o = = 0;

(iv) F(Ua) C

(v) For Qi < «2, ai,a2 € A, Ua2 C Ua, and Va2 C Vai.
The following example is due to C.H. Chu and P. Mellon [13].

Example 1.1. Let D be the open unit bidisk in C2, i.e., D = A X A, and 
let h 6 Hol(A) be a fixed point free mapping with the Denjoy-Wolff point 
< e dA. Consider the mapping F € Hol(D) defined as follows:

F(z,w) = (e’*z,A(w))

where 0 < 9? < 27T. It is clear that if F has the sink point a € dD, then 
a = (0,<) € dD. At the same time, the sequence of iterates {Fn} does not 
converge to any boundary point of D.
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Nevertheless, the convergence result does hold for bounded strongly con­
vex C2 domains, and for strongly pseudo-convex hyperbolic domains with 
a C2 boundary [1], [2].

To generalize these facts M. Abate defined the following notion [3]:
A domain D CC Cn is said to be F-convex at x € dD if for all z G D 

and R > 0,

(1.6) Fz(x, F) n = {x}.

The domain D is said to be F-convex if (1.6) holds for each x G dD.
His result is the following:

Theorem 1.10. Suppose that in addition to the assumptions of Theorem 
1.9 the domain D is F-convex. Then there is a point a G dD which is 
attractive for f.

Certain types of domains are known to be F-convex. We mention, for 
example, strictly pseudo-convex domains with a C2 boundary, and the so- 
called m-convex domains (see [1], [2], [50]).

1.4. Domains in Banach spaces. Unfortunately, our knowledge does not 
include positive results and approaches devoted to extensions of Theorems 
1.1 and 1.2 for general Banach spaces. Indeed, a simple example shows that 
there is a situation where even a sink point does not exist.

Example 1.2. Consider the Banach space co of all complex sequences 
x = (zi, £2, • • • ,xn,...) such that xn —► 0 as n tends to infinity, with the 
max norm, and the affine (hence holomorphic) mapping F : co —> co defined 
by Dx = (a,xi,x2,..where a 0 0, |a| < 1. It is clear that F maps the 
open unit ball D of co into itself and that it is continuous on D. Therefore, 
if F has a sink point on dD, then it must be a fixed point of F in D. But 
F has no fixed point there.

However, the question is still open for reflexive Banach spaces. Moreover, 
if D has a strictly convex boundary and F is compact or, more generally, 
condensing, then one can expect the convergence result to hold.

Conjecture 1.1. Let X be a strictly convex Banach space, and let F be a 
holomorphic condensing self-mapping of the open unit ball D of X without 
a fixed point in D. Then F is power convergent on D.

Remark 1.5. This conjecture has recently been verified for the case when 
F is assumed to be compact [29].
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The situation is more fully understood when F has a fixed point in the 
domain.

From now on we will assume that D is a bounded domain in a Banach 
space X and that F € Hol(D) has an interior fixed point a G D. Of 
course, as simple examples show, one cannot expect that a is always an 
attractive point, even if F is not an automorphism (consider Example 1.1 
with h(w) = w2). Nevertheless, rephrasing the Denjoy-Wolff Theorem 1.3 
in the form 1.4, one can point out several generalizations of this result.

Proposition 1.1 ([62], [35], [36]). Let D be a bounded domain in X and 
let F G Hol(D). Suppose that F has an interior fixed point a G D and let 
F'(a) be its Frechet derivative at this point. Then a is an attractive fixed 
point of F if and only if the spectral radius of F'(a) is strictly less than 1.

Combining this assertion with the Earle-Hamilton [17] fixed point theo­
rem, one can formulate a geometrical characterization of the attractive fixed 
point.

Proposition 1.2 ([35], [36]). Let D be a bounded domain in X and let 
F G Hol(D). Then F has an attractive fixed point in D if and only if there 
exist a domain D C D and an integer n > 0 such that Fn maps D strictly 
inside itself.

If a is an attractive fixed point of F, then by definition it is unique and 
F is power convergent.

For D C C, the converse is also true:
If F G Hol(D) is not the identity and has an interior fixed point, and F 

is power convergent, then a is unique.
However, this is not the case in higher dimensions. Indeed, the following 

example exhibits a function F, mapping the bidisk B2 in C2 into itself, 
which is power convergent, but its fixed point set consists of an infinite 
number of points (actually it is a submanifold of D of dimension 1).

Example 1.3. Let D = B2 = A x A and F = (zi, |(z2 + zj). Then F is a 
power convergent mapping, but all the points of the form (zj, 1 — \/l — zj) 
are fixed points of F.

A full description of such a situation was obtained by E. Vesentini [70],
[71].
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Theorem 1.11. Let D be a bounded convex domain in a Banach space 
X, and let F belong to Hol(D). Suppose that F has a fixed point a £ D, 
and denote the spectrum of the linear operator F'(a) by <r(F'(a)). Then F 
is power convergent if and only if the following two conditions hold:

(i) <r(F'(a))C AU{1}; and
(ii) 1 is a pole of the resolvent of F'(a) of order at most 1.

Comments. Condition (ii) is actually equivalent to the condition

(*) Ker(Z-F'(o))©Im(/-F'(a)) = X

(see, for example, [43], [45]). It is also known that conditions (i) and (ii) are 
equivalent to F'(a) being power-convergent to a projection P onto Ker(/ — 
F'(a)). So, if R 6 Hol(D) is the limit point of {Fn} under these conditions, 
then R = a is constant if and only if P = 0.

In general, there is a neighborhood U of a such that R2 = R on U, that 
is, R is an idempotent of the semigroup Hol(D). In this case the mapping 
R is said to be a local holomorphic retraction, and its image R(U) is called 
a holomorphic retract in U.

In our setting this means that FixF D U = F(f/) is a submanifold of 
U tangent to Ker(/ - F'(a)) (see [10]). This fact describes the general 
structure of the fixed point set. As a matter of fact, only condition (ii) or 
(*) is sufficient for FixF to be a local retract (see, for example, [63], [64],
[72] , [73], [48], [49]). Moreover, if D is convex, FixF is a global retract in 
£>, and hence a connected complex submanifold of D.

However, once again, a retraction onto the fixed point set can be obtained 
by the simple iteration method only if condition (i) holds, i.e., F'(a) has no 
spectrum points on the unit circle except, possibly, 1. This brings us to an­
other interesting aspect of fixed point theory: the study of the holomorphic 
retracts of a domain. This problem has been studied by many mathemati­
cians (see, for example, [60], [26], [47], [7], [69], [70], [71], [1], [2], [3], [72],
[73] , [48]). Unfortunately a complete account of the relevant results is not 
possible here.

Returning to the Denjoy-Wolff Theorem we now consider some explicit 
and implicit continuous versions of this theorem.

2. Continuous versions of the Denjoy-Wolff Theorem.

2.1. One-parameter continuous semigroups (explicit versions). We
have already mentioned that for F € Hol(D) the family of iterates S =
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{Fn}£Lj can be considered a one-parameter discrete-time semigroup. In 
this case the vector-field f = I — F is referred to as the generator of S (see 
[30]).

Recall that a family S = (Ft)t>o C Hol(P) is called a one-parameter 
continuous semigroup if it satisfies the semigroup property:

Ft o F, = Ft+a,

and for each x € D there exists the strong limit lim(_o+ Ft(x) = x.
A natural explicit continuous one-dimensional analogue of the Denjoy-

Wolff Theorem was given by E. Berkson and H. Porta [8] and was used by 
them to study semigroups of composition operators on Hardy spaces.

Theorem 2.1. Let A be the open unit disk in the complex plane C, and 
let S = {Ft} be a one-parameter continuous semigroup of holomorphic self­
mappings Ft of A. Then Ft converges as t —> oo to a holomorphic function 
h : A —> C if and only if no Ft is an elliptic automorphism of A.

M. Abate generalized this theorem to the n-dimensional case [3], sepa­
rating the case of a fixed-point free semigroup from the case of a semigroup 
with an interior common fixed point.

Using the terminology of the theory of dynamical systems we call a com­
mon fixed point of a continuous semigroup a stationary point. Thus in 
this sense the convergence of the semigroup to a stationary point means 
its asymptotic stability. In such terms the finite-dimensional case was also 
partially described by Yu. Lyubich [44].

Finally, note that for a bounded domain in a Banach space X and a 
net {Fj}j£A of holomorphic self-mappings of D, its pointwise convergence 
is equivalent to its uniform convergence on compact subsets of D (that is, 
convergence in the compact open topology on D). If X = Cn, this in turn is 
the same as uniform convergence on each subset strictly inside D. This is no 
longer true in the infinite dimensional case. Therefore, in order to achieve 
certain results, in this situation it may sometimes be more advantageous 
to consider a finer topology than the compact open topology, namely, the 
so-called topology of local uniform convergence over D.

Definition 2.1. A net {fj}jeA C Hol(F,A) is said to converge to a 
mapping f € Hol(F,X) in the topology of local uniform convergence over 
D (or briefly T-converge) if for every ball B CC D,

lim sup || fj{x} - f(x) ||= 0. 
jeA xeB
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We write in this case f = T — limjęjtfj. For the finite dimensional case 
this topology coincides with the compact open topology on D.

Definition 2.2. A family S = {Ft}t>o C Hol(D) is said to be a locally 
uniformly continuous one-parameter semigroup (or briefly a T-continuous 
semigroup) if it satisfies the semigroup property

(i) F)+t = F,oFt, s,t > 0, 
and

(ii) T - limt_0+ Ft = I\d-

Proposition 2.1 ([59]). Let D be a bounded domain in X and let S = 
{Ft}t>0 C Hol(D) be a strongly continuous semigroup. The following con­
ditions are equivalent:

(a) S is a T-continuous semigroup;
(b) The differences ft = (I—Ft)/t are uniformly bounded on each subset 

strictly inside D;
(c) For each x € D there exists the strong limit

“ Ft^ =

which is bounded on each subset strictly inside D.

Since it is clear that if (c) holds, then f belongs to Hol(£>,X), it will 
be called the holomorphic infinitesimal generator of the semigroup S. It is 
remarkable that actually

f = T- Urn -(I-Ft), t-o+ tv 7

i.e., the convergence in (c) is actually local uniform convergence over D (see 
[57]).

Moreover, condition (c) means that a T-continuous semigroup is right- 
differentiable with respect to the parameter t at zero. This implies, in 
turn, that Ft is differentiable at each point t € R+ and that the function 
u(f)(i) = Ft(i) is the solution of the Cauchy problem u'(t)(i) = —/(u(t)(i)), 
u(0) = x [57].

Since for the finite dimensional case a continuous semigroup of holomor­
phic self-mappings is T-continuous, it follows that such a semigroup always 
has a holomorphic infinitesimal generator (see also [2]).

Let us once again assume that D is a domain in a complex Banach space 
X and let Q C Hol(D) be any semigroup with respect to the composition 
operation.
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Definition 2.3. We will say that the pair (D,t7) has the iteration (Denjoy- 
Wolff) property if the following hypothesis holds:

(I) If F € G has no fixed point in D, then the sequence {Fn} is T-convergent 
to a point on the boundary of D.
We will say that the pair (£),£) has the common fixed point property if the 
following hypothesis holds:

(II) If {Fs}se?i C G is a net of commuting mappings in G such that for each 
s G A the mapping F3 has a fixed point in D, then Ose?iFix£»Fs / 0.

Theorem 2.2 ([58]). Let D be a bounded domain in X and let G C Hol(D) 
be a semigroup in Hol(D) such that for the pair (D,G) both hypotheses (I) 
and (II) are satisfied. Assume that S = {Ft}t>o is a T-continuous one- 
parameter semigroup such that Ft € G, t > 0.

(1) The following assertions are equivalent:
(a) S has a stationary point in D, i.e., C\t>oFixDFt 0 ;
(b) for some to > 0 the mapping F<0 has a fixed point in D;
(c) there is x E D and a sequence tn —> oo such that {Ftn(x)} is strictly 

inside D;
(d) for each x € D there is a sequence tn —>■ oo such that {F<n(i)) is 

strictly inside D.
(2) If S has no stationary point in D, i.e., nt>oFixFt = 9, then there exists a 

unique point e € dD such that for all x € D, the net {Ft} is T-convergent, 
as t oo, to the point e.

Now let D be a bounded convex domain in Cn. It is proved in [6] that 
the pair (D,Hol(D)) has the common fixed point property (II) (Definition 
2.3). If, in addition, D is a strongly convex C2-domain in Cn, then the pair 
(D, Hol(£>)) also has the iteration property (I) (see [1], [2]). Hence we have 
the following consequence of Theorem 2.2 which was proved earlier by M. 
Abate [3].

Corollary 2.1. Let D be a bounded strongly convex C2-domain in Cn, 
and let S = {Ft}t>o C Hol(D) be a continuous semigroup. If S has no 
stationary point in D, then there is a unique point e 6 dD such that {Ft} 
is T-convergent, as t tends to infinity, to e.

Other finite dimensional situations when the pair (D,G), G C Hol(D), 
satisfies both the hypotheses (I) and (II) of Definition 2.3 can be found in 
[1], [2]-
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In the infinite dimensional case, it seems not to be known even for the 
Hilbert ball B whether the pair (H,Hol(F)) satisfies hypothesis (II) (the 
common fixed point property), while hypothesis (I) for this pair fails by 
Stachura’s example (see [66]). If we restrict ourselves to the family (7 C 
Hol(B) of all compact holomorphic self-mappings of B, then the iteration 
property (I) is satisfied by the pair (£>,£) according to the theorem of 
C.H. Chu and P. Mellon (see [12]). However, for T-continuous semigroups 
this fact can be useful only in the finite-dimensional case. In the infinite 
dimensional case there is no T-continuous semigroup of holomorphic self­
mappings which contains a compact mapping. Indeed, the peculiarity of a 
T-continuous semigroup S = {F<}t>o on D is that each element Ft of S is 
a locally biholomorphic mapping on D.

At the same time, Theorem 1.8 is relevant to our considerations. In view 
of this theorem one can propose that the following assertion holds.

Conjecture 2.1. Let B be the open unit ball in a Hilbert space H, and 
let S = {Ft} be a one-parameter T-continuous semigroup on B. Suppose 
that for some to > 0, Fto G Aut(H) and has two different fixed points on 
the boundary dB of B. Then {Ft} converges, as t —> oo, to one of them.

Now we will turn to the asymptotic behavior of those semigroups which 
have an interior stationary point. It turns out that in such a situation, one 
can completely describe the T-convergence of the semigroup using the local 
spectral properties of the linear semigroup obtained by differentiation at 
the stationary point.

For a linear operator A : X —> X, we will denote the spectrum of this 
operator by <r(A).

Theorem 2.3 ([33], [57]). Let D be a bounded convex domain in a complex 
Banach space X and let S = {F(}t>o C Hol(D) be a one-parameter T- 
continuous semigroup such that F - r\t>oFixDFt is not empty. Then the 
following assertions are equivalent:

(1) The semigroup {Ft} is T-convergent to a holomorphic mapping R 
which is a retraction of D onto F.

(2) There exist a G F and to > 0 such that Im(I — (Fto)'(a)) is closed 
and <r((Fto)'(a))\{l} C A.

(3) There exists b £ F such that Imf'(b} is closed and {(r(f'{b}}}n 
{A G C : ReX = 0, A 0} = 0, where f = lim(_o+ }(J - Ft).

(4) There is a point c G F such that the linear semigroup e~tA uniformly 
converges to a projection on X, where A = f'(c}.

Moreover, if condition (2), (3) or (4) holds for at least one sta­
tionary point of S, all of these conditions are satisfied for all points
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of F. In addition, in this case T is a connected complex submanifold 
of D, tangent to Ker(I — /'(a)) at the point a € F.

This theorem generalizes finite dimensional results of M. Abate [5].
Note that even in the one-dimensional case, when an interior fixed point 

exists, both versions of the Denjoy-Wolff Theorem (discrete and continu­
ous) establish the convergence of the corresponding semigroup (discrete­
time or continuous) in all cases except for automorphisms with exactly one 
fixed point. For higher dimensions, the scope of counterexamples is wider, 
and one needs to find out some special conditions to establish a retraction 
method for approximating fixed points. Sometimes those conditions have a 
theoretical character and it is difficult to verify them.

At the same time, it has turned out that for an arbitrary holomorphic 
self-mapping, one can construct an associated continuous semigroup which 
has the same fixed point set and which converges to a retraction onto this 
set under simpler conditions (for the finite dimensional case this always 
happens).

More precisely, let Z? be a bounded convex domain in X and let F G 
Hol(D). It was shown in [57] that f = I — F generates a T-continuous 
one-parameter semigroup S = {Ft}t>o C Hol(D), i.e., the Cauchy problem

*fr = F(Ft)-Ft 
Fo = I

has a unique solution on R+. It is clear that

FixDF = P FixDFt. 
t>o

We refer to this semigroup as being associated with F.

Theorem 2.4 [33]. Let D be a convex bounded domain in X and let F G 
Hol(D). Suppose that F has a fixed-point a in D such that Im(Z-F'(a)) is 
closed. Then the associated semigroup {Ft}t>o is T-convergent, ast->oo, 
to a holomorphic mapping R £ Hol(D) which is a retraction onto FixDF.

In fact, this theorem is a consequence of Theorem 2.3, because the semi­
group associated with a holomorphic self-mapping always satisfies the spec­
tral condition (2) of that theorem.

Nevertheless, the problem of establishing a retraction onto the stationary 
point set of a general semigroup (which is not necessarily differentiable) is 
still open.
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2.2. Implicit continuous versions. Several talks in this conference in­
volved an implicit method for finding a fixed point of a nonexpansive map­
ping by using the so-called “approximating curves”. Actually, this method 
also works effectively for the class of holomorphic self-mappings (see, for 
example, [22], [41], [61], [49]), and it can also be useful for continuous semi­
groups of such mappings.

Throughout what follows let D be a bounded convex domain in X and 
let F g Hol(D). The Earle-Hamilton fixed point theorem shows that the 
equation

(**) za = aF(za) + (1 - a)z

can be solved for each z € D and each a g [0,1). This solution, viewed as 
a function from [0,1) into £), is called an approximating curve.

It is clear that if, for some z £ D, za strongly converges, as a —► 1—, to 
a point a g D, then this point is a fixed point of F. The converse is not 
so obvious: If F has a fixed point, does the approximating curve converge 
as a tends to 1—? Many mathematicians have considered this question in 
different situations (see, for example, [22], [61], [49]).

As a matter of fact, in fixed point theory, approximating curves have 
been used not only for self-mappings, but also for the so-called “pseudo- 
contractive” mappings [52], as well as for other classes of mappings. So, in 
our investigations, one can extend the problem and ask a general question: 
What is the class of holomorphic mappings F : D —» X (not necessarily 
self-mappings) for which the approximating curve exists for all z g D and 
what is the asymptotic behavior of such a curve, when a tends to 1— ?

Note that if F € Hol(£>), then za g D, as defined by (**), depends 
holomorphically on z £ D. Thus equation (**), rewritten in the form 

(* * *) Ja(z) = aFJa(z) + (1 - a)z

for each a g [0,1), defines a holomorphic self-mapping Ja g Hol(D). For 
each fixed a g [0,1) the mapping Ja has the same fixed-point set as F.

The following result gives an answer to the first question mentioned 
above.

Proposition 2.2 ([57]). Let D be a convex bounded domain in X and 
let F g Ho1(jD, A). Then equation (* * *) has a solution Ja g Hol(P) 
if and only if the mapping f = I - F is a generator of a T-continuous 
one-parameter semigroup.

If D is a homogeneous ball in A, a description of such mappings F in 
terms of one-sided estimates is given in [34] in this volume.

We will denote this class of holomorphic mappings by AG(D).
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Theorem 2.5 ([32], [54]). Let B be the open unit ball in a complex Hilbert 
space H, and let F G AG(D).

If F has no fixed point in D, then there is a unique point e G dD such 
that:

(1) For each a G (0,1) and each x G B, the iterations {J£(a;)} strongly 
converge to e as n —> oo;

(2) The net {Ja(x\} strongly converges to e, as a—> 1—, for each B.

Theorem 2.6 ([59]). Let D be a bounded convex domain in an arbitrary 
complex Banach space X, and let F G AG(D) have a fixed point a £ D 
such that Im(I — F'(a)) is closed.

(1) For each a G (0,1), the sequence {v7"}n^i is T-convergent to a 
retraction R onto the fixed-point set of F in D;

(2) The net {ya}Qg(o,i) ,s T-convergent to the same retraction as 
q —► 1—.

3. Nonexpansive mappings with respect to the hyperbolic metric.
Recall that all metrics assigned to a convex bounded domain D in a Banach 
space X by Schwarz-Pick systems of pseudometrics [24] coincide [16]. We 
call this unique metric the hyperbolic metric of D and denote it by po or 
simply by p.

This section is devoted to a brief discussion of the asymptotic behavior (in 
the spirit of the Denjoy-Wolff Theorem) of those mappings (not necessarily 
holomorphic) and semigroups which are nonexpansive with respect to this 
metric.

We begin with descrete iterations. By an averaged mapping of the first 
kind in the Hilbert ball B we mean a mapping U : B —> B of the form (1- 
c)I © cT, where 0 < c < 1, I is the identity, T : B —> B is p-nonexpansive, 
and (/ — c)x ® cy denotes a metric convex combination of x and y (see [22], 
p. 103). A mapping of the form (1 - c)I + cT, where again T : B —► B is 
p-nonexpansive and 0 < c < 1, is an averaged mapping of the second kind.

Theorem 3.1 ([53])- Let U be an averaged mapping of the first or the 
second kind in the Hilbert ball B.

(1) If U has a fixed point, then for each x in B the sequence of iterates 
{Unxj converges weakly to a fixed point of U.

(2) IfU is fixed point free, then for each x in B the sequence of iterates 
{Hnx} converges strongly to e(lF), a point on the boundary of B.
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There are other classes of p-nonexpansive mappings for which the conclu­
sions of Theorem 3.1 hold. Without going into details, we refer, in particu­
lar, to the firmly nonexpansive mappings of the first and second kind [21], 
[22], [55], Theorem 9 of [39] is an interesting result for p-isometries. We 
also note that A. Kryczka and T. Kuczumow [38] have recently extended 
the result of C.H. Chti and P. Mellon [12] (Theorem 1.7) to all compact, 
p-nonexpansive and fixed point free self-mappings of B.

Other results on discrete iterations of p-nonexpansive mappings for Eu­
clidean balls, as well as for other finite-dimensional domains, can be found 
in [65] and in [41].

We now turn our attention to p-nonexpansive semigroups.

Theorem 3.2 ([54]). Let T : C —> C be a p-nonexpansive self-mapping of 
a p-closed p-convex subset C of (B,p), and Jet S be the semigroup corre­
sponding to T.

(1) If T has a fixed point, then for each x in C the weak lim S(t)x exists
t—»oo

and is a fixed point ofT.
(2) IfT is fixed point free, then for each x in C the strong lim S(t)x =t—too

e(T), a point on the boundary of B.

Related results can be found in [56] and in [58]. As for the behavior 
of the approximating curves associated with p-nonexpansive mappings we 
refer the reader to [22] and to [61], where the open problem posed on p. 135 
of [22] has been settled in the affirmative.
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