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Remarks on Approximation and Approximate 
Fixed Points in Metric Fixed Point Theory

Abstract. Some applications of an approach of Ishikawa are discussed. In 
particular suppose K is a closed convex subset of a Banach space, suppose 
T : K —► K is a nonexpansive mapping with fix(T) 0, and suppose 
/Q = (1 — a)I + aT for a € (0,1). It is shown that if 0(||x — T(z)||) > 
c dist(i, fix(T)) for each x € K , where 0 : R+ —<• R+ is a function which is 
right continuous at 0 = 0(0), then {/£(x)} converges to a point of fix(T) for 
each x£K. One consequence of this fact is the following. If K is bounded 
closed and convex, and if T : K —» K is a nonexpansive mapping which 
satisfies

\\T(x) = T(y)\\ < fc[||z - T(x)|| +1|» - T(»)||], (x, y € K),

for some k > 0, then T has a unique fixed point p and moreover /2(x) ~* P 
as n —► oo for each a € (0,1) and x g K.

The paper concludes with a brief discussion of approximate fixed points 
for Holder continuous mappings and for mappings which are not necessarily 
continuous.

1. Ishikawa’s theorem and approximation of fixed points. We
begin with a brief historical note. (The results of this section should be
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compared with those in [12].) Let K be a bounded closed convex subset 
of a uniformly convex Banach space and T : A" —> K is a nonexpansive 
mapping with (nonempty) fixed point set A. It is shown in [24] that if 

(1-1) ||® ~ T(®)|| > csup{||x - y\\ : y £ A}

for some constant c > 0, then the sequence {/n(x)} converges to a point of 
A for every x £ K, where f is the averaged mapping: f = (l/2)(f + T).

It follows from a very simple observation about nonexpansive mappings 
and a fundamental result of Ishikawa about the behavior of the iterates of 
f that the above result holds in an arbitrary Banach space. This fact has 
immediate implications for nonexpansive mappings which satisfy constraints 
such as

FM - r(!z)|| < *[||x - T(»)|| + II!, - TWIIl (x,» e JQ.

These results are noteworthy in that no geometric assumptions are required 
on the underlying space.

Let (Af, d) be a metric space. A mapping f : M —> M is said to be 
nonexpansive if for each x,y € Af, d(/(x),/(j/)) < d(x,p), and asymptot­
ically regular if for each x £ M, d(fn(x), /n+1(x)) -> 0 as n -> oo. The 
result of Ishikawa ([13] ) we shall need asserts that if K is a bounded 
closed convex subset of a Banach space and if T : K —> K is nonexpan­
sive, then for each a £ (0,1), the mapping fa : K —> A', defined by setting 
/a(®) = (1 — &)x + Af(i), x £ A, is always asymptotically regular. Since 
the fixed points of fa and T coincide, this observation effectively reduces the 
study of nonexpansive mappings to the much smaller class of asymptotically 
regular nonexpansive mappings.

We begin with a rather trivial yet basic observation.

Proposition 1.1. Let M be a complete metric space, suppose f : Af —► M 
is a continuous mapping for which fix(f) 0, and suppose f satisfies 
d(f(z),p) < ^(®?p) for each p £ fixfj). Then given x € M,

fn(,x) -+pe fix(f) <s> dist(/n(x),/ix(/)) - 0.

Proof. The implication => is immediate (for an arbitrary mapping in any 
metric space). For the reverse implication, let {en} be a sequence of positive 
numbers for which en J 0 and let x £ Af. By assumption there exists 
Pi £ fix(f') and ni £ N such that d(/ni(x),p!) < q. Also pi £ fix(J) 
implies d(/n(x),pi) < d(/"1(x),p1) < q for all n > nj. Similarly, there 
exists p2 £ fix(f) and n2 > rq such that d(/n(x),p2) < Q for all n < n2.
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Note in particular that n < «2 => /n(x) € 5(pi;fi) n B(p2jf2)- Continue 
in this manner to obtain for each fc 6 N an integer nk such that n < nk => 
/"(re) € Dk := nJ!_1B(p,; ej. Since diam(Dk) < 2e^ A 0, by Cantor’s 
Theorem there exists p 6 M such that = {p}. Clearly fn(x) -* p.
Since f is continuous fix(f) is closed, so p € /ix(/).

□

At this point our strategy becomes one of searching for conditions which 
will assure that dist(/n(a:),/ix(/)) —> 0, and in particular conditions which 
do not require one to first identify fix(f). This is where the Ishikawa result 
proves useful.

In the following theorem we use Ff(T) to denote the set {x € K : 
||x - T(a:)|| < c}. The result of [24] is a very special case of this fact.

Theorem 1.2. Suppose K is a bounded closed and convex subset of a 
Banach space, suppose T : K —> K is nonexpansive with fix(T) / 0, and 
for a € (0,1), let fa := (1 - a) I + aT Suppose there exits e > 0 such that 
for all x e Fe(T),

(1-2) 0(||x - T(i)||) > dist(«, /tx(T)),

where 0 : 1R+ —* R+ is a function which is right continuous at 0 and for 
which 0(0) = 0. Then for each x € K and a 6 (0,1), the sequence {/"(x)} 
converges to a fixed point of T.

Proof. Note that if x € K and a € (0,1) then

J£W - r(/;(i))|| = a ||/;(i) - z:+1w||

and ||/-(,) - /"+*(x)|| - 0 as n —* oo by Theorem 2 of Ishikawa [13]. 
Thus for n sufficiently large

0(q ||/n(i) - /n+1(x)||) > dist(/n(x),/ix(T)),

and by (3.2) we conclude dist(/"(x), fix(f)) 0. The conclusion now 
follows from Proposition 1.1 and the fact that /ix(/) = fix(T).

□

Remark. The above theorem, which is closely related to Theorem 3.1 of 
[12], also includes Theorem 6.4 of [19] as a special case.
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We now examine some particular cases. If 0(t) = ct for some constant c, 
then the rate at which {/"(a;)} converges to a fixed point of T will depend 
on the rate at which {| /£(x) - /"+1(x)||} converges to 0 and this rate of 
convergence is now known (Baillon and Bruck [3]). In particular if the 
diameter of K is 1 then for any x € K,

||z:w-z:+,w <
— a)n

We have not yet addressed whether it is possible to obtain conditions of 
the type needed without first knowing something about the fixed point set. 
The answer is that such conditions may be forced by additional information 
about the mapping. The obvious example is that of a contraction mapping. 
Note that if T : K —> K is a contraction mapping with Lipshitz constant 
c < 1, then ||x - T(x)|| > (1 - c) ||x - p|| where p is the unique fixed point 
of T. However we can prove the following much more general fact.

Theorem 1.3. Suppose K C X is bounded closed and convex, suppose 
T : K K is a nonexpansive mapping, and for fixed a G (0,1), let fa := 
(1 — a)/ + aT. Suppose also that for some e > 0 and k > 0 T satisfies the 
condition

(1.3) im - T(k)|| < » - TWII + II, - T(j)||| (x.sef.CT)).

Then T has a unique fixed point p, and for each x G K and a G (0,1), the 
sequence {/£(x)} converges to p.

Proof. Since T is nonexpansive and K is bounded and convex it is easy 
to see that inf{||x — T(i)|| : x G K} = 0. Thus there exists {in) £ K such 
that ||x„ - T(xn)|| —> 0 as n —> oo, and by (1.3)

||T(xm) - T(xn)|| < fc[||a:m - T(xm)|| + ||xn - T(x„)||] - 0

as m,n —> oo. Therefore {T(z„)} is a Cauchy sequence which converges to 
a point p G A for which p = T(p). The condition (1.3) implies p is unique. 
Taking x G Fe(T) and y = p in (1.3) gives k ||x - T(x)|| > ||T(x) - p|| from 
which k ||x - T(i)|| + ||a; - T(x)|| > ||T(x) - p|| + ||i - T(x)|| > ||x - p||; 
hence ||x — T(x)|| > (1 + fc)~l ||ar — p||. Theorem 1.2 now applies and we 
have /„(x) -> p for each x G K and a G (0,1).

□
We also have the following variant of Theorem 1.2, which we state without 

proof. Note that this result does not require an a priori assumption that 
/ix(T) / 0.
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Theorem 1.4. Suppose K is a bounded closed and convex subset of a 
Banach space and suppose T : K —> K is nonexpansive. Let 0 : R+ —> R+ 
be any function which is right continuous at 0 and for which 0(0) = 0, and 
suppose for some c > 0 and for some nonempty compact set A C K,

0(11* - T(x)||) > dist(x, A) (x G Fe(T)).

Then for each x £ K and a G (0,1), the sequence {f£(x)} converges to a 
fixed point ofT.

2. Minimal displacement and Holder conditions. This section con­
tains a summary of the results of [18] which will appear elsewhere. Let K 
be a bounded closed convex subset of a Banach space X and let T : K —► K 
be a mapping which satisfies, for some h > 0 and p > 0, the condition

(2.1) ||T(x) - T(iO|| < M* " , (x,j/eF).

These mappings are well understood for various choices of h and p. If p = 1 
and h < 1, then such mappings always have a fixed point because of the 
celebrated Banach contraction mapping principle discussed above, and if 
P = 1 and h = 1 these are the nonexpansive mappings which also are 
known to have an extensive fixed point theory (see, e.g., [1], [10] ). For 
P = 1 and h > 1 (the usual Lipschitz condition) fixed points in general do 
not exist in non-compact settings, but a fair amount (not everything) is 
known about minimal displacement properties of such mappings (e.g., see 
[9], [11]).

We now describe the results of [18] which apply to the remaining case, 
P < 1. (Mappings satisfying (2.1) are degenerate if p > 1 regardless of 
the value of h.) The question of minimal displacement for such mappings 
is taken up in [18], and central to the observations there is the fact that 
mappings which satisfy the Holder condition (2.1) for 0 < h,p < 1, also 
satisfy the following more general condition:

(2.2) ||T(x) - T(p)|| < max{M* - I'll},

The principal results of [18] apply to mappings of the above class. Specific 
conditions are identified under which inf{||x — T(x)|| : x G K} < h for 
mappings T : K K satisfying (2.2). It is also shown that in certain spaces, 
including uniformly convex spaces, supfinf{||a: - T(x)|| :x G A}] < ft where 
the supremum ranges over all mappings satisfying (2.2).
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It is noteworthy that mappings satisfying (2.2) need not even be contin­
uous. In this sense such results are motivated by a classical result of Vic­
tor Klee regarding the stability of the fixed point property for continuous 
mappings in compact convex subsets of normed linear spaces. Let X be a 
topological space and (Af, d) a metric space. A mapping <p: X —> M is said 
to be (-continuous for e > 0 provided each point x 6 X has a neighborhood 
Ux such that diam(<p((/r)) < c. In [20] Klee proved that if K is a compact 
convex subset of a normed linear space and if <p : K —> K is c-continuous, 
then for every e' > c there exists z € K such that ||z — <p(z)|| < f/- We show 
here that by essentially adding the assumption ||<p(«) - <p(u)|| < ||« - u|| for 
u, u $ Ux the same conclusion holds in noncompact settings, and in many 
cases (including the compact case) an even stronger conclusion holds. (For 
the convenience of the reader we append a short proof of Klee’s theorem to 
this paper.)

In a Banach space setting the principal results of [18] are the following. 
(The setting in [18] is a more abstract.)

Theorem 2.1. Let K be a weakly compact convex subset of a Banach 
space and suppose K has normal structure. Suppose T : K —> K satisfies

||T(a;) - T(j/)|| < max{h, ||x - y||}, (x, y e A).

Then there exists z £ K such that [|z - T(z)|| < h.

If T satisfies a Holder condition, then it is possible to say even more.

Theorem 2.2. Suppose K is a nonempty bounded closed convex subset of 
a Banach space X, ane suppose T K —> K satisfies

||T(®) - T(3/)|| < h ||x - i/||p , (x, j/ € A),

for some h,p e (0,1). Then inf{||x - T(x)|| : x e K} < h'lM.

Recall that a Banach space X is said to have uniform normal structure 
([8]) if there exists a constant c 6 (0,1) such that each bounded convex 
subset K of X satisfies

jnf. SUP{||2 - y\\ : y € K} < cdiam(K).

Such spaces are known to be reflexive [22].
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Theorem 2.3. Let K be a bounded closed convex subset of a Banach space 
X which has uniform normal structure. Suppose T : K —> K satisfies

||T(x) - T(jz)|| < max{h,||a: - y||}, (®,jz € A').

Then there exists 2 (E K such that ||2 - T(z)|| < ch.

As we noted at the outset the preceding results apply to mappings T : 
K —> K which satisfy the Holder condition

l|2’(*)-T(s0l|<M*-<.

where 0 < p, h < 1. In this case one can say a little more.

Theorem 2.4. Let X be a Banach space which has uniform normal struc­
ture with coefficient c, let K be bounded closed convex subset of X, and 
suppose T : K —<• K satisfies

||T(x) - T(y)|| <h\\x- j/||p , (x,y e A', h,p € (0,1)),

Then if p is sufficiently near 1, inf{||i — T(z)|| : x € A'} < ch.

Proof. By Theorem 2.3 there exists z € A' such that ||z — T(z)|| < ch. 
Thus

Since c < 1, cph1+p < ch for all p sufficiently near 1. □

The above estimate invites comparison with the displacement estimate 
of Theorem 2.2. Clearly for certain values of p, h and c it will be the case 
that ch < h1^1-?); in particular this is always true if c < h and p < 1/2, 
and for all h < 1 if p is sufficiently small.

The following is another consequence of the results of [18].

Theorem 2.5. Let K be a closed convex admissible subset of and
let T : K —► K be h-nonexpansive. Then there exists z 6 A such that 
II* - T(z)|| < h/2.

Most of the results of [18] are qualitative in that no effort was made to 
determine optimal minimal displacement for the classes of mappings con­
sidered. Also there is another question left open:
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QUESTION. Let K be a bounded closed convex subset of a Banach space, 
and suppose T :/<—►/< is b-nonexpansive for h > 0. Under what condi­
tions can one conclude that there exists z 6 K such that ||z - T(z)|| < b?

In view of Theorem 2.1, if K is weakly compact and has normal struc­
ture, then one obtains even more, namely, the existence of z € K for which 
||2 — T(,z)|| < h. This leaves the tempting suggestion that weak compactness 
alone suffices for an affirmative answer to the question. Note that the lim­
iting case of the above (when h = 0) involves a question about fixed points 
of nonexpansive mappings which remains unresolved, although in this case 
it is known ([2]) that weak compactness alone does not suffice. It seems 
plausible that the two problems may be related.

3. Klee’s result. The results of the previous section are obtained by 
geometric arguments. For sake of comparison we now append a short proof 
of a slightly sharpened version of Klee’s theorem using a partition of unity 
argument which is standard in topological fixed point theory. (We also 
remark that even sharper results are known for compact convex K C Rn; 
see Cromme and Diener [5]. The results in [5] provide minimal displacement 
estimates involving certain moduli of continuity for f : K —> K which, for 
certain /, are smaller than inf{e : f is t-continuous}.)

The result proved here is the following.

Theorem 3.1. Suppose K is a compact convex subset of a normed linear 
space, and suppose f : K K is t-continuous. Then there exists a point 
x0 6 K such that ||/(xo) - £o|| < t.

The proof involves showing that / may be uniformly approximated by 
a suitable continuous function / and then applying Schauder’s Theorem. 
(Klee’s approach involves approximating the domain of / with a polyhedral 
set, using triangulation to approximate f by a piecewise linear function and 
then applying Brouwer’s Theorem.)

Theorem 3.1 is a direct consequence of the following.

Theorem 3.2. Suppose K is 
space X, and suppose f : K 
continuous mapping f : K - 
x e K.

a compact convex subset of a normed linear
—> K is t-continuous. Then there exists a

» K such that ||/(i) — /(x)|| < e for each

Before proving the above we need some terminology. If X is a topological 
space and </> : X —► R, then the support of </> is defined to be the closure
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of the set <f> 1(R — {0}). In particular, if x ^(support </>) then there is some 
neighborhood of x on which (j) vanishes.

Definition 3.1. Let {U\,- • -,Un} be an open covering of the topological 
space X. A family of continuous functions (j>,\ : X [0,1], i = 1,... ,n, is 
said to be a partition of unity of X dominated by the family {Ui} if
(i) (support fa) C Ui for each t; and
(ii) <j>i(x) = 1 for each x 6 X.

The topological fact we need is the following. Its proof can be found in 
any standard topological text (e.g., [6], [14], [23]).

Theorem 3.3 (Partitions of unity). . Let {Ui,... ,Un} be a finite open 
covering of the metric (or, more generally, normal topological) space M. 
Then there exists a partition of unity of M dominated by the family {A,}.

Proof of Theorem 3.2. Since f is e-continuous, for each x G A there 
exists rx > 0 such that diam(f(U(x-, rx)) < e. (Recall that U(x; rx)denotes 
the open ball centered at x with radius rx.) Since K is compact there 
exists a finite set {xj,... , zj} C K such that K C U;=1 A(z^; rXi/2). Let 
7 = inffr-ę, : 1 < i < j}. Notice that we now have the following. If 
x,y G A and ||z - y|| < r/2 then there exists an i such that x,y € U(xp, rTi); 
hence ||/(z) — /(j/)|| < e. Now again use the fact that K is compact to 
select A = {ai,... ,an} C A' so that K C U"=1A,- where Ui = U(ai',r/2), 
i = 1,... ,n. Then the family {{/<} is a finite open covering of K so there 
exists a partition of unity {(fa}"=1 of K dominated by the family {£7*}. 
Define the function f : K —> X as follows: f(x) = $3"=1 <t>i(x)f(a,i) for each 
x G A.

Since f(A) C A' and S"=i </>«(x) = 1 we see that in fact, f(K) C 
ebrw(/(A)) C A. Furthermore, since each of the functions <j>i is continu­
ous, f is continuous.

Observe also that for x G A,

l|/(*)-/(*)|| = ||/(a;) — || = ||^^(a;)[/(a:)-/(ai)]||

i=l «=1

<£^(x)||/(x)-/(a,)||.
t=l

Since </>,(z) = 0 if x $ Ui while ||/(a?) - /(«»)j| < f if x G Ui, it follows that 
f(x) - /(i)|| < By Schuader’s Theorem f has a fixed point x0, whence 
f(x0) - i0|| < e. □
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There is still a little more one can say in this direction. Let x denote 
the usual Kuratowski measure of non compactness. A mapping T : K —> X 
is said to be condensing if T is continuous and if x(T(A)) < x(A) f°r each 
A C K for which x(A) > 0- An obvious weakening is to say that T : K —♦ X 
is e-condensing if T is c-continuous and if A)) < x(A) for each A C K 
for which x(A) > 0. This leads to a mild extension of Theorem 3.2.

Theorem 3.4. Suppose K is a compact convex subset of a normed linear 
space, and suppose f : K —> K is e-condensing. Then there exists a point 
xo € K such that ||/(x0) - x0|| < c.

Proof. A standard argument using the condensing condition (e.g., see [27; 
p. 500]) allows one to construct a nonempty compact convex subset H C K 
such that T : H —> H.

□

A similar observation holds for b-nonexpansive mappings.

Theorem 3.5. Suppose K is a bounded closed convex subset of a Banach 
space and suppose T : K —> K satisfies:

(i) x(^(A)) < x(A) for each A C K for which x(A) > 0;
(ii) ||T(x) — T(y)|| < max{c,||x - j/||) for each x,y € K. Then there exists 

x0 E K such that ||x0 - T(x0)|| < c.

Proof. As above, there exists a nonempty compact convex subset H C K 
such that T : H —> H. Since H is compact, H is weakly compact and has 
normal structure. Thus the conclusion follows from Theorem 2.1.

□

Remark. W. Kryszewski has remarked to the author that perhaps the 
quickest way to see that Klee’s result is true is to invoke the set-valued 
extension of Schauder’s theorem due Bohnenblust and Karlin (or, more 
generally, the extensions due to Fan and Glicksberg; see, e.g., [27, p.452]). 
Thus under the assumptions of 3.2 introduce the mapping F : K —» by 
setting for x € K, F(x) = £(/(x);c) n K.

The fact that f is c-continuous is sufficient to ensure that F is upper 
semi-continuous and hence F has a fixed point in the set valued sense. 
Thus x € F(x) for some x E A from which the conclusion follows.

Such set-valued extensions of Schauder’s theorem are also obtained easily 
via partition of unity arguments.



Remarks on Approximation and Approximate ... 177

Acknowledgement. The author thanks Brailey Sims for suggesting the 
formulation of Theorem 1.2 and for detecting an oversight in the proof of 
Theorem 3.2.

References

[1] Aksoy, A. G. and M. A. Khamsi, Nonstandard Methods in Fixed Point Theory, 
Springer-Verlag, New York, Berlin, 1990.

[2] Alspach, D. E., A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 
(1981), 423-424.

[3] Baillon, J. B. and R. E. Bruck, The rate of asymptotic regularity is G(^), in 
Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, 
(A. G. Kartsatos, ed.), Marcel Dekker, Inc., New York, Basel, Hong Kong, 1996, pp. 
51-81.

[4] Bula, I., On the stability of the Bohl-Brouwer-Schauder theorem, Nonlinear Anal. 
26 (1996), 1859-1868.

[5] Cromme, L. and I. Diener, Fixed point theorems for discontinuous mappings, Math. 
Programming 51 (1991), 257-267.

[6] Dugundji, J., Topology, W. C. Brown, Dubuque, 1989.
[7] ______, Positive definite functions and coincidences, Fund. Math. 90 (1976), 131-

142.
[8] Gillespie, A. and B. Williams, Fixed point theorem for nonexpansive mappings on 

Banach spaces with uniformly normal structure, Appl. Anal. 9 (1979), 121-124.
[9] Goebel, K., On the minimal displacement of points under lipschitzian mappings, 

Pacific J. Math. 45 (1973), 151-163.
[10] Goebel, K. and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Univ. 

Press, Cambridge, 1990, 244 pp.
[11] Goebel, K. and T. Komorowski, Retracting balls onto spheres and minimal displace­

ment, in Fixed Point Theory and Applications, (J-B. Baillon and M. A. Thera, eds.), 
Longman Scientific Technical, Essex, 1991, pp. 155-172.

[12] Gosh, M. K. and L. Debnath, Convergence of Ishikawa Iterates of Quasi-Nonexpansive 
Mappings, J. Math. Anal. Appl. 207 (1997), 96-103.

[13] Ishikawa, S., Fixed points and iteration of a nonexpansive mapping in a Banach 
space, Proc. Amer. Math. Soc. 59 (1976), 65-71.

[14] Kelley, J. L., General Topology, D. Van Nostrand, Princeton, 1955.
[15] Kirk, W. A., Locally nonexpansive mappings in Banach spaces, in Fixed Point The­

ory, (E. Fadell and G. Fournier, eds.), Springer-Verlag, Berlin, Heidelberg, New 
York, 1981, pp. 178-198.

[16] ______ ) 4n application of a generalized Krasnoselskii-Ishikawa iteration process,
in Fixed Point Theory and Applications, (J-B. Baillon and M. A. Thera, eds.), 
Longman Scientific fc Technical, Essex, 1991, pp. 261-268.

[17] ---------, Continuous mappings in compact hyperconvex metric spaces, Numer. Funct.
Anal, and Optimiz. 17 (1996), 599-603.

t'8]---------, Holder continuity and minimal displacement (to appear).
[!9] Kirk, W. A. and S. S. Shin, Fixed Point Theorems in Hyperconvex Spaces, Houston 

J. Math, (to appear).
[20] Klee, V., Stability of the fixed point property, Colloq. Math. VIII (1961), 43-46.
[21] Lacey, H. E., The Isometric Theory of Classical Banach Spaces, Springer-Verlag, 

Berlin, Heidelberg, New York, 1974.



178 W. A. Kirk

[22] Maluta, E., Uniformly normal structure and related coefficients, Pacific J. Math. 
Ill (1984), 357-369.

[23] Munkres, J. R., Topology: A First Course, Prentice-Hall, Englewood Cliffs, 1975.
[24] Outlaw, C. L., Mean value iteration of nonexpansive mappings in Banach spaces, 

Pacific J. Math. 30 (1969), 747-750.
[25] Petryshyn, W. V., A new fixed point theorem and its applications, Bull. Amer. Math. 

Soc. 78 (1972), 225-229.
[26] Sullivan, F., Ordering and completeness of metric spaces, Nieuw Arch. Wisk. 24 

(1981), 178-193.
[27] Zeidler, E., Nonlinear Functional Analysis I: Fixed Point Theorems, Springer-Verlag, 

New York, Berlin Heidelberg, Tokyo, 1986.

Department of Mathematics 
University of Iowa 
Iowa City, Iowa 52242-1419 
e-mail: kirk@math.uiowa.edu

received September 3, 1997

mailto:kirk%40math.uiowa.edu

