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Abstract. The paper deals with the problem of decomposition of sym­
metric infinitely divisible random variables into a product of independent 
symmetric infinitely divisible factors.

We denote by P the set of all probability measures defined on Borel sub­
sets of the real line R. By S denote the subset of P consisting of symmetric 
probability measures. By Poo we denote the subset of P consisting of in­
finitely divisible probability measures. Put 5^ = S D Poo- By 6C we denote 
the probability, measure concetrated at the point c. We shall also use the 
notation 0 = |(<b +0-i). Given ;z, u € P we denote by /z*zz the convolution 
of /z and P. We denote by /z the characteristic function of /z, i.e.

£(/) = eitx^dx) (f e R).

By /z o y we denote the multiplicative convolution of /z and v, i.e. the 
probability distribution of the product XY of independent random variables
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X and Y with the probability distribution /z and v respectively. Observe 
that do^ = ^for/z€S which shows that d is a unit element in S for the 
operation o. It is clear that

(1)
r°° ~

(^z o = / fXtx^v^dx). 
J —oo

A probability measure A from P is said to be a - multiplicator if 
A o p, £ Pqo for every /z € P. The set of all P^ - multiplicators will be 
denoted by P^ . Setting — S 0 P^ and using the notation :

AoP = {/zop:/z6A,p€P}

we have the inclusion

(2) PnsSo = sSocSOo.

Several authors have dealt with probability measures belonging to P^ 
and Goldier’s result on mixtures of the exponential distributions in [2] 
extended by F. W. Steutel in [4] showed that the set P^ is non-empty. For 
detailed information we refer to [5].

A probability measure A from Sqo is said to be multiplicativelly 5^ - 
decomposable if there exist probability measures p. and v belonging to 
such that A = /j, o v. In the opposite case A is called multiplicatively Sqo - 
indecomposable. The problem of multiplicative Sqo - decomposability was 
discussed in [6]. In particular the following result was obtained.

Each probability measure /z from Sqo other than 6q has a representation

(3) g = /z1o/z2o...o/zl,

where is a positive integer, the factors /Zj, /z2, ... , /z* belong to Sqo and 
are multiplicatively Sqo - indecomposable. Moreover for every probability 
measure ;z the set of all possible integers k in representation (3) is finite.

Let fi 6 Soo and /z <$o • Two representations

H = /zj o /z2 o ... o fik and /z = iq o p2 o ... o z/r

with multiplicatively - indecomposable factors /zj,^z2,... ,/z<- and 
pi,p2,... ,z/r from are said to be equivalent if fc = r and the fc-tuple
zq, p2,... , jq. is a permutation of the fc-tuple 6ai o 6O2 o ^2,... , 6at o 
for some ai, o2,... ,ak € R.

Lemma. If n € P and

(4) /z(t) >0 for t G R,

then |x|~1 /z(dx-) = oo .
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Proof. If /z has a positive mass at the origin, then our statement is ob­
vious. Consequently we may assume that ^({0}) = 0. Since, by (4), the 
characteristic function /z is real-valued, we conclude that /z € S. Thus

/
T rT rOO rOO

/z(t)dt = 2 / / cos txp(dx)dt = 4 / i_1 sin Txp(dx)
-T J-T Jo Jo

for every T > 0 . Contrary to the assertion of the Lemma let us suppose 
that

(6) oo.

Then, by (5), J^p(t)dt < oo which together with inequality (4) shows 
that the measure /z is absolutely continuous with respect to the Lebesgue 
measure on R. Setting p(dx) = g(x)dx we have, by (6), the inequality

x-1 g(x)dx < oo. Consequently, bv Riemann- Lebesgue Theorem

r°°
lim / x 1q(x)sinTxdx = 0.

Comparying this with (5) we get the equality = 0 which, by (4)
and the continuity of /z, yields /z(Z) = 0 for t e R. But this contradicts the 
formula /z(0) = 1. The Lemma is thus proved.

Theorem. Suppose that A € Soo and J^^X^dt < oo . Then A is multi- 
plicatively Soo * indecomposable.

Proof. Suppose the contrary and put A = ;z o v where /z,z/ £ Soo • Since 
/z(t) > 0 for t e R, we have, by (1), the formula

/°° r°°X(f)dt = / p(t)dt |x|-1z/(dx).

-oo J-oo J—oo

Consequently, by Lemma, f^o X(t)dt — oo which contradicts the assump­
tion. The Theorem is thus proved.

The above Theorem may serve for determining of multiplicatively Soo - 
indecomposable factors. We shall illustrate this by some examples.

Example 1. Stable probability measure. Given 0 < p < 2 we denote by crp 
the symmetric stable probability measure with the characteristicr function
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<7p(Z) = exp(-|Z|p) (Z G R). Of course ap G and f^ap(t)dt < oo 
which, by the Theorem, shows that the stable measures <rp(0 < p < 2) are 
multiplicatively - indecomposable. This gives an affirmative answer to 
the problem raised in [6]

Example 2. The measures ap o aq (0 < p, q < 2). The well-known result 
on variance mixtures of Gaussian probability measures can be formulated 
as follows. Let X be a random variable with the probability distribution 
A. Suppose that the probability distribution of X2 is infinitely divisible. 
Then <r2 o A G Soo (see [5]). Consider two independent random variables 
Y and Z with the probability distribution <r2 and /x respectively. Here p, 
is an arbitrary probability measure from P. Observe that the probability 
distribution of Y2 is the gamma distribution on [0, oo) with the density 
2-1(7ra;)~1/2 exp(—x/4) and, consequently, by Steutel’s Theorem from [4] 
belongs to P^. Hence it follows that the probability distribution the random 
variable Y2 Z2 belongs to P^ which shows that cr2 o ct2 o p G for every 
/x G P. In other words

(7) a2o<j2 G C-

ft is well-known that for every pair 0 < p < r < 2 there exists a proba­
bility measure vPiT concentrated on the positive half-line and fulfilling the 
condition

(8) dp = <rr o uPtT

(see [1, Chapter XVII. Exercise 9]. Applying formula (1) we get the equality

/oo roo roo
ap(t)dt — / ar(t)dt / ar_1i/Pir(da:)

-oo J — oo Jo

which yields the inequality

(9)
/•CO
/ ® 1 vP,r(dx) < oo (0 < p < r < 2).

Jo

Setting r — 2 into (8) we get the formula

apo aq = <j2 o <r2 o pPi2 o i/,i2

which, by (2) and (7), yields

<7p°<7, G S£> (0 < p,q< 2).
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Consider the case 0<p<l,0<p<2. Setting Xr = <rp o for 
q < r < 2 we have, by (8),

(10) <TpO(7, = aroAr.

By Keilson-Steutel Theorem from [3]

(11) Pp e for 0 < p < 1

which shows that Ar 6 Soo • Further, by (1) and (9),

/
OO ?OO fOO

\r(t)dt = / <7p(Z)dZ / x-1//7ir(da;).
-oo J—oo JO

Applying Theorem we conclude that the probability measures Ar is multi- 
plicatively - indecomposable. Thus formula (10) defines a non-denume- 
rable family of non-equivalent decompositions of the probability measure 
ap o aq with 0 < p < 1 and 0 < q < 2.

For the probability measure o <72 the situation is quite different. In 
fact suppose that 02 0 02 = p o p with p, v 6 Soo • By a simple calculation 
we have the formula

(02002)7*) = (i + 4/2)~1/2 (<eR)

which shows, by Theorem 2 in [6], that p = Sa o <t2 and v = Sb 0 02 for some 
a,b e R.

Consequently, the probability measure 02 0 02 has exactly one decompo­
sition up to the equivalence relation.

Example 3. The multiplicative semigroup generated by ap. Suppose that 
0 < p < 1. By Zolotariev Theorem ([7, Theorem 3.5.2]) there exists a one- 
parameter multiplicative semigroup pr (r > 0) fulfilling the conditions

(12) Pq O pr = pq+r (qir > 0)

and

(13) Pi = 0p •

It is clear that

(14) pr / <$o for r > 0 .
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Given r > 1 we have, by (12) and ( 13), pr = ap o pr_x which, by (11), 
yields

(15) pr € Sn for r > 1.

A measure A from S is called cancellable if the equality A o p — A o v 
with p,v G S yields p = v. Suppose that ap o p = ap o v and p,v € S. By 
formula (1) and the symmetry of p and v we have

rOO rOO
/ exp(-|/|pxp)/z(<Za;) = / exp(-|Z|pxp)p(da:) (< € R)

Jo Jo

which, by the uniqueness of the Laplace transform, yields p = v. Thus the 
stable probability measures ap are cancellable. Moreover, by (12) and (13), 
for every positive integer m the multiplicative convolution power pm = apm 
is cancellable.

Now we shall prove that the equality

(16) Pq = 6c°Pr

for some c € R and q,r > 0 yields q = r. Contrary to this assume that 
q r. Since, by (14), 0, we may assume without loss of generality that
q = r + a for some a > 0.

Taking a positive number b such that m = r + b is a positive integer we 
get, by (12) and (16),

(It) Pm 0 Pa ~ Pm 0 •

Since, by (15), pm 6 S^, we have o pm = pm ■ Consequently equality
(17) can be written in the form

pm O (tf 0 pa) = pmO (0ofc).

Of course both probability measures fl o pa and fl o bc are symmetric. 
Since the probability measure pm is cancellable, the above equality yields 

(18) o pa = i? o Sc.

Observe that for every positive integer n fulfilling the condition na > 1 
we have, by (15), pna € which implies pna = tfo pna. Thus, by ( 12) and 
( 18),

Pna = ^OPa)°n = fl ° bcn .

Hence it follows that the probability measure pna is concentrated at the 
two points —cn and cn. On the other hand the support of the infinitely
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divisible probability measure pna different, by (14), from <$o is unbounded 
([1, Chapter VI. 3]) which yields the contradiction. This shows that equality 
(16) implies q = r.

From (13) it follows that the probability measure px is multiplicatively 
Soo - indecomposable. By Proposition 1 in [6] the subset of S<x, consisting 
of all multiplicatively - indecomposable probability measures is open in 
the topology of weak convergence. Consequently, we can choose an integer 
s > 2 such that pr are multiplicatively S<x> - indecomposable whenever 
l<r<l + l/s. Given an arbitrary positive integer n and a real number 
q fulfilling the inequality 0 < q < (2^)-1 we put for the sake of notation 
a(q) = 1 + ę, 6(ę) = 1 - q + l/s, w = (n + l)(s + 1) and

u(k) = k(s + 1) - 1, v(k') = (n + 1 - k)s - 1 (fc = 1,2,... , n).

It is clear that 1 < a(q) < 1 + 1 /s, 1 < 6(9) < 1 + l/s, n(A;) < 1 and 
u(fc) > 1 for k = 1,2,... , n. Moreover for every k = 1,2,... ,n we get, 
by (12), a non-denumerable family of non-equivalent decompositions of the 
probability measure pw into (n + l)s + k multiplicatively - indecompos­
able factors

ou(fc) ovlk)
Pw — Pa(q) 0 Pb(q) 0 Pa(0) ° Pfe(O) ’
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